Сложность решения дискретных задач

Материал из Кафедра математической кибернетики
Перейти к: навигация, поиск

Спецсеминар для студентов и аспирантов кафедры математической кибернетики. Проходит по пятницам с 16:20 до 17:55. ауд. 503

Тематика семинара

Алгоритмическая сложность задач распознавания свойств дискретных функций, сложность вычисления дискретных функций, сложность полиномиальных представлений дискретных функций, построение и анализ эффективности алгоритмов для решения дискретных задач.

Заседание семинара

Участники семинара (декабрь 2013 г.)

Руководители

Селезнева Светлана Николаевна

Расписание докладов

Осенний семестр 2014-2015 учебного года

Слушатели семинара: Барбачакова Светлана (518 гр.), Ким Игорь (518 гр.), Плаксина Анна (518 гр.), Хрулев Егор (518 гр.), Гордеев Михаил (418 гр.). В осеннем семестре 2014-2015 учебного года заседания семинара проходят совместно с семинаром Дискретный анализ.

}

Весенний семестр 2013-2014 учебного года

В весеннем семестре 2013-2014 учебного года заседания семинара проходят совместно с семинаром Дискретный анализ.

Дата Доклад Докладчик
17 октября 2014 г. О сложности функций алгебры логики в классе поляризованных полиномиальных форм.

Доклад по статье Н.А. Перязева, "Алгебра и логика", 1995, т. 34, N 3.

Ким Игорь, 518 гр.
Дата Доклад Докладчик
28 марта 2014 г. Хрулев Егор (418 гр.)
21 марта 2014 г. О длине булевых функций в классе полиномиальных форм с аффинными множителями в слагаемых. Доклад по статье Селезневой С.Н. Гордеев Михаил (318 гр.)
14 марта 2014 г. О мультипликативной сложности квадратичных булевых функций. Доклад по статье Mirwald R., Schnorr C.P. The multiplicative complexity of quadratic boolean forms // Theoretical Computer Science. 102. 1992. P. 307-328. Плаксина Анна (418 гр.)
21 февраля 2014 г. Организационное заседание семинара

Осенний семестр 2013-2014 учебного года

В осеннем семестре 2013-2014 учебного года слушатели семинара выполняют практическое задание. Оно состоит в написании программы построения больших простых чисел по алгоритмам из работы Садовник Е.В. Проверка на простоту некоторых чисел вида 2kp^m-1 // Дискретная математика, 2006, т. 18, вып. 1, с. 146-155 (http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=dm&paperid=38&option_lang=rus) и получении экспериментальных результатов. Цели исследований:

1. Изучить быстрые алгоритмы построения больших простых чисел.

2. Написать программу с использованием библиотеки для работы с большими числами.

3. Исследовать, насколько эффективно (с точки зрения времени работы) алгоритм, имеющий хорошую теоретическую оценку временной сложности, работает на практике.

4. Получить экспериментальные результаты - простые числа с десятками тысяч десятичных знаков.

Выход на суперкомпьютеры не предполагается, студенты пользуются персональными компьютерами.

Студент Вид чисел Результаты
Красиков Антон, 518 группа N = 2 * k * 7^m - 1 Текст программы, Результат №1, Результат №2
Плаксина Анна, 418 группа N = 2 * 3^m - 1 Текст программы и результаты
Хрулев Егор, 418 группа N = 2 * k * 3^m - 1 Текст программы, Результаты
Гордеев Михаил, 318 группа N = 2 * 7^m - 1 Текст программы, Результаты