
Проверка на простоту некоторых чисел вида 2·3m-1

№ m Количество
десятичных
разрядов

Время проверки,
целая часть секунд

1 1 1 0

2 2 2 0

3 7 4 0

4 8 5 0

5 12 7 0

6 23 12 0

7 56 28 0

8 62 30 0

9 68 33 0

10 131 63 0

11 387 185 0

12 644 308 0

13 3751 1790 1

14 5270 2515 2

15 6335 3023 3

16 8544 4077 6

17 9204 4392 7

В программе реализован алгоритм, описанный Е.В. Садовником в статье «Проверка на
простоту некоторых чисел вида 2kpm-1» при k=1, p=3. Программа реализована на языке C++
с использованием библиотеки GMP (https://gmplib.org/) и запускалась на компьютере со
следующими характеристиками:
 процессор - Pentium(R) Dual-Core CPU T4400 @ 2.20GHz × 2;
 память - 3,9 ГиБ.
За 24 часа было проверено 14000 чисел указанного вида, среди них найдено 16 простых (см.
таблицу).
Текст программы с комментариями:

#include <gmp.h>
#include <gmpxx.h>
#include <time.h>
#include <iostream>
#include <fstream>

using namespace std;

int main (void)
{
 mpz_t n, s, k, s_tmp, tmp;

 unsigned int m, j;
 time_t t1, t2;
 mpz_inits(n, s, s_tmp, k, tmp, NULL);
 mpz_set_ui(n, 5);

 ofstream prime, composite;
 prime.open("prime.txt", fstream::trunc);
 composite.open("composite.txt", fstream::trunc);

 for (m = 2; m <= 49340; ++m)
 {
 /* n = n * 3 + 2; */
 mpz_mul_ui(n, n, 3);
 mpz_add_ui(n, n, 2);

 t1 = time(NULL);
 mpz_set_ui(s, 14);
 for (j = 2; j <= m; ++j) {

 /* s = (s * (s * s - 3)) % n; */
 mpz_set(s_tmp, s);
 mpz_mul(s, s, s);
 mpz_sub_ui(s, s, 3);
 mpz_mul(s, s, s_tmp);
 mpz_mod(s, s, n);
 }
 t2 = time(NULL);

 /* if (s != 2) { */
 if (mpz_cmp_ui(s, 2) != 0) {

 /* k = s * s - 1; */
 mpz_mul(k, s, s);
 mpz_sub_ui(k, k, 1);

 /* if (!(k % n)) */
 mpz_mod(tmp, k, n);
 if (mpz_cmp_ui(tmp, 0) == 0)
 /*true*/
 prime << m << endl << mpz_get_str(NULL, 10, n) << " " << (t2 - t1) << endl;
 else
 /*false*/
 composite << m << endl;
 }
 }

 mpz_clears(n, s, s_tmp, k, tmp, NULL);
 prime.close();
 composite.close();

 return 0;
}

