Дискретная математика 2 (группа 141) — различия между версиями
(→Программа курса) |
(→Программа курса) |
||
(не показаны 42 промежуточных версий 1 участника) | |||
Строка 1: | Строка 1: | ||
− | Лектор - | + | Лектор - профессор [[Вороненко Андрей Анатольевич]]. |
Курс читается для группы 141 во втором семестре. Лекции - 2 ч в неделю, семинары - 2 ч в неделю. Форма отчетности - экзамен. | Курс читается для группы 141 во втором семестре. Лекции - 2 ч в неделю, семинары - 2 ч в неделю. Форма отчетности - экзамен. | ||
Строка 5: | Строка 5: | ||
[[Категория:Лекционные_курсы_кафедры_МК]] | [[Категория:Лекционные_курсы_кафедры_МК]] | ||
− | == | + | ==Объявления== |
+ | Экзамен по курсу "Дискретная математика 2" проходит устно. В билете два вопроса, первый из части А, второй из части Б, а также задача. При ответе на первый вопрос билета можно пользоваться любыми печатными материалами (конспектами, книгами и т.д.). При ответе на второй вопрос билета никакими материалами пользоваться не разрешается. | ||
+ | |||
+ | [[Media:dm2-exam2016-v.doc|Вопросы к экзамену]] | ||
+ | |||
+ | По результатам контрольных работ, проведенных в семестре, каждый студент группы получил один из баллов (1, 0,5 или 0) по каждой из четырех тем задач ("Комбинаторика", "СФЭ", "Конечные автоматы без выхода", "Конечные автоматы с выходом"). | ||
+ | Балл 1 означает, что студент освобожден от задачи по этой теме. | ||
+ | Балл 0,5 означает, что студент решает задачу по этой теме в том случае, если она у него в билете. | ||
+ | Балл 0 означает дополнительную задачу по этой теме. Все дополнительные задачи решаются до того, как студент тянет билет. Отсутствие на контрольной означает балл 0 по соответствующей теме. | ||
+ | |||
+ | ==Программа курса== | ||
− | *Лекция 1 | + | *Лекция 1. Комбинаторные объекты и комбинаторные числа. Правило суммы и правило произведения. Размещения, перестановки, размещения с повторениями, сочетания, сочетания с повторениями. Их число и рекуррентные формулы для них. Теорема о числе сочетаний с повторениями. [1] стр. 171-174, 178-183, [5] стр. 253-255, [4] стр. 5-7. [[Media:dm2-lect1-selezn.pdf|Лекция 1]] |
Задачи к лекции: найти число объектов определенного вида. | Задачи к лекции: найти число объектов определенного вида. | ||
− | *Лекция 2 | + | *Лекция 2. Свойства биномиальных коэффициентов и их последовательностей. Формула бинома Ньютона. Производящие функции, вычисление сумм и доказательство комбинаторных тождеств. Формула включений-исключений и ее производные случаи. [1] стр. 177-178, 188-190, 197-200, [5] стр. 262-263, [4] стр. 7-10. [[Media:dm2-lect2-selezn.pdf|Лекция 2]] |
Задачи к лекции: при помощи производящих функций вычислить комбинаторную сумму или доказать комбинаторное тождество; при помощи формулы включений-исключений найти число объектов определенного вида. | Задачи к лекции: при помощи производящих функций вычислить комбинаторную сумму или доказать комбинаторное тождество; при помощи формулы включений-исключений найти число объектов определенного вида. | ||
− | *Лекция 3 | + | *Лекция 3. Функции натурального аргумента (последовательности). Рекуррентные уравнения. Линейные однородные рекуррентные уравнения (ЛОРУ). Частное решение ЛОРУ, лемма о линейной комбинации частных решений ЛОРУ. Общее решение ЛОРУ. Характеристический многочлен ЛОРУ. Теоремы об общем решении ЛОРУ. Линейные неоднородные рекуррентные уравнения (ЛНРУ), их частные и общие решения. Теорема об общем решении ЛНРУ. Теорема о частном решении ЛНРУ. [1] стр. 177-178, 188-190, [5] стр. 265-266, стр. 266 3.1, 3.4, [4] стр. 10-13. [[Media:dm2-lect3-selezn.pdf|Лекция 3]] |
Задачи к лекции: решить заданное ЛОРУ или ЛНРУ. | Задачи к лекции: решить заданное ЛОРУ или ЛНРУ. | ||
− | *Лекция 4 | + | *Лекция 4. Схемы из функциональных элементов (СФЭ) в некотором базисе. Сложность и глубина СФЭ. Примеры. Метод синтеза СФЭ по ДНФ. [2] стр. 40-41. |
− | Задачи к лекции: для заданной | + | Задачи к лекции: для заданной функции алгебры логики или системы функций алгебры логики построить СФЭ в заданном базисе с заданной сложностью или глубиной. |
− | *Лекция 5 | + | *Лекция 5. Сумматор. Сложность одноразрядного сумматора. Теорема о верхней оценке сложности n-разрядного сумматора в базисе из конъюнкции, дизъюнкции и отрицания. Вычитатель. Теорема о верхней оценке сложности n-разрядного вычитателя в базисе из конъюнкции, дизъюнкции и отрицания. [2] стр. 43-44. |
Задачи к лекции: построить n-разрядный сумматор или вычитатель при заданном n. | Задачи к лекции: построить n-разрядный сумматор или вычитатель при заданном n. | ||
− | *Лекция 6 | + | *Лекция 6. Умножитель. Леммы о сложности СФЭ для умножения на разряд и на степень двойки. Лемма о соотношении сложностей СФЭ для (n+1)-разрядного и n-разрядного умножителей. Теорема Карацубы о сложности СФЭ для n-разрядного умножителя. [2] стр. 45-48. |
Задачи к лекции: построить n-разрядный умножитель при заданном n. | Задачи к лекции: построить n-разрядный умножитель при заданном n. | ||
− | *Лекция 7 | + | *Лекция 7. Конечные автоматы (КА) без выхода (конечные автоматы-распознаватели). Диаграммы переходов. Автоматные множества (языки). Лемма о свойствах автоматных множеств. Пример неавтоматного множества. [[Media:dm2-lect7-selezn1.pdf|Лекция 7]] |
Задачи к лекции: по заданной диаграмме переходов найти язык, принимаемый этим автоматом; доказать автоматность языка, построив диаграмму переходов автомата, принимающего этот язык. | Задачи к лекции: по заданной диаграмме переходов найти язык, принимаемый этим автоматом; доказать автоматность языка, построив диаграмму переходов автомата, принимающего этот язык. | ||
− | *Лекция 8 | + | *Лекция 8. Недетерминированные конечные автоматы (НКА) без выхода. Теорема о совпадении классов множеств, принимаемых недетерминированными и детерминированными конечными автоматами. Процедура детерминизации НКА. [[Media:dm2-lect8-selezn.pdf|Лекция 8]] |
Задачи к лекции: детерминизировать заданный НКА. | Задачи к лекции: детерминизировать заданный НКА. | ||
− | *Лекция 9 | + | *Лекция 9. Операции над конечно-автоматными множествами. Дополнение, объединение, пересечение, произведение и итерация автоматных множеств, их автоматность. [[Media:dm2-lect9-selezn.pdf|Лекция 9]] |
+ | |||
+ | Задачи к лекции: по заданным ДКА без выхода построить НКА, принимающие множества, являющиеся дополнением, объединением, произведением или итерацией множеств, принимаемых исходными ДКА; провести детерминизацию полученных НКА. | ||
+ | |||
+ | *Лекция 10. Регулярные выражения и регулярные множества. Теорема о совпадении классов регулярных множеств и автоматных множеств. [[Media:dm2-lect10-selezn.pdf|Лекция 10]] | ||
Задачи к лекции: по заданному регулярному выражению построить КА, принимающий регулярное множество, соответствующее этому регулярному выражению; по заданному автоматному множеству построить регулярное выражение, определяющее это автоматное множество. | Задачи к лекции: по заданному регулярному выражению построить КА, принимающий регулярное множество, соответствующее этому регулярному выражению; по заданному автоматному множеству построить регулярное выражение, определяющее это автоматное множество. | ||
− | *Лекция | + | *Лекция 11. Конечные автоматы с выходом (КАВ) (конечные автоматы-преобразователи). Диаграммы переходов, канонические уравнения. Автоматные функции. Функция единичной задержки, доказательство ее автоматности. Пример неавтоматной функции. [[Media:dm2-lect11-selezn.pdf|Лекция 11]] |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
Задачи к лекции: по описанию функции доказать ее неавтоматность или доказать ее автоматность, построив диаграмму переходов автомата для этой функции. | Задачи к лекции: по описанию функции доказать ее неавтоматность или доказать ее автоматность, построив диаграмму переходов автомата для этой функции. | ||
− | *Лекция 12 | + | *Лекция 12. Схемы из функциональных элементов с элементами задержки (СФЭз), автоматность осуществляемых ими отображений. Реализация КАВ СФЭз. [[Media:dm2-lect12-selezn.pdf|Лекции 12-13]] |
− | + | ||
Задачи к лекции: по заданной СФЭз построить КАВ, реализуемый этой схемой; построить СФЭз, реализующий заданный КАВ. | Задачи к лекции: по заданной СФЭз построить КАВ, реализуемый этой схемой; построить СФЭз, реализующий заданный КАВ. | ||
− | *Лекция 13 | + | *Лекция 13. Упрощение конечных автоматов с выходом. Лемма о двух отличимых состояниях КАВ. Теорема Мура о длине эксперимента, отличающего два отличимые состояния КАВ. |
Задачи к лекции: упростить заданный КАВ, представленный диаграммой переходов. | Задачи к лекции: упростить заданный КАВ, представленный диаграммой переходов. | ||
Строка 101: | Строка 111: | ||
На дом: [1] Гл. X 1.1(3-4, 6-7), 1.18(4-6), 1.2(3-4), 1.5(3-4), 1.7(3-4, 6). | На дом: [1] Гл. X 1.1(3-4, 6-7), 1.18(4-6), 1.2(3-4), 1.5(3-4), 1.7(3-4, 6). | ||
− | *Занятие 6. Синтез некоторых систем | + | *Занятие 6. Синтез некоторых систем функций алгебры логики. |
[1] Гл. X 1.9(1-2), 1.10, 1.11(1-2), 1.12(1, 3), 1.13(1), 1.10, 2.8 (1-3, СФЭ с уменьшением сложности). | [1] Гл. X 1.9(1-2), 1.10, 1.11(1-2), 1.12(1, 3), 1.13(1), 1.10, 2.8 (1-3, СФЭ с уменьшением сложности). |
Текущая версия на 04:43, 13 февраля 2023
Лектор - профессор Вороненко Андрей Анатольевич.
Курс читается для группы 141 во втором семестре. Лекции - 2 ч в неделю, семинары - 2 ч в неделю. Форма отчетности - экзамен.
Объявления
Экзамен по курсу "Дискретная математика 2" проходит устно. В билете два вопроса, первый из части А, второй из части Б, а также задача. При ответе на первый вопрос билета можно пользоваться любыми печатными материалами (конспектами, книгами и т.д.). При ответе на второй вопрос билета никакими материалами пользоваться не разрешается.
По результатам контрольных работ, проведенных в семестре, каждый студент группы получил один из баллов (1, 0,5 или 0) по каждой из четырех тем задач ("Комбинаторика", "СФЭ", "Конечные автоматы без выхода", "Конечные автоматы с выходом"). Балл 1 означает, что студент освобожден от задачи по этой теме. Балл 0,5 означает, что студент решает задачу по этой теме в том случае, если она у него в билете. Балл 0 означает дополнительную задачу по этой теме. Все дополнительные задачи решаются до того, как студент тянет билет. Отсутствие на контрольной означает балл 0 по соответствующей теме.
Программа курса
- Лекция 1. Комбинаторные объекты и комбинаторные числа. Правило суммы и правило произведения. Размещения, перестановки, размещения с повторениями, сочетания, сочетания с повторениями. Их число и рекуррентные формулы для них. Теорема о числе сочетаний с повторениями. [1] стр. 171-174, 178-183, [5] стр. 253-255, [4] стр. 5-7. Лекция 1
Задачи к лекции: найти число объектов определенного вида.
- Лекция 2. Свойства биномиальных коэффициентов и их последовательностей. Формула бинома Ньютона. Производящие функции, вычисление сумм и доказательство комбинаторных тождеств. Формула включений-исключений и ее производные случаи. [1] стр. 177-178, 188-190, 197-200, [5] стр. 262-263, [4] стр. 7-10. Лекция 2
Задачи к лекции: при помощи производящих функций вычислить комбинаторную сумму или доказать комбинаторное тождество; при помощи формулы включений-исключений найти число объектов определенного вида.
- Лекция 3. Функции натурального аргумента (последовательности). Рекуррентные уравнения. Линейные однородные рекуррентные уравнения (ЛОРУ). Частное решение ЛОРУ, лемма о линейной комбинации частных решений ЛОРУ. Общее решение ЛОРУ. Характеристический многочлен ЛОРУ. Теоремы об общем решении ЛОРУ. Линейные неоднородные рекуррентные уравнения (ЛНРУ), их частные и общие решения. Теорема об общем решении ЛНРУ. Теорема о частном решении ЛНРУ. [1] стр. 177-178, 188-190, [5] стр. 265-266, стр. 266 3.1, 3.4, [4] стр. 10-13. Лекция 3
Задачи к лекции: решить заданное ЛОРУ или ЛНРУ.
- Лекция 4. Схемы из функциональных элементов (СФЭ) в некотором базисе. Сложность и глубина СФЭ. Примеры. Метод синтеза СФЭ по ДНФ. [2] стр. 40-41.
Задачи к лекции: для заданной функции алгебры логики или системы функций алгебры логики построить СФЭ в заданном базисе с заданной сложностью или глубиной.
- Лекция 5. Сумматор. Сложность одноразрядного сумматора. Теорема о верхней оценке сложности n-разрядного сумматора в базисе из конъюнкции, дизъюнкции и отрицания. Вычитатель. Теорема о верхней оценке сложности n-разрядного вычитателя в базисе из конъюнкции, дизъюнкции и отрицания. [2] стр. 43-44.
Задачи к лекции: построить n-разрядный сумматор или вычитатель при заданном n.
- Лекция 6. Умножитель. Леммы о сложности СФЭ для умножения на разряд и на степень двойки. Лемма о соотношении сложностей СФЭ для (n+1)-разрядного и n-разрядного умножителей. Теорема Карацубы о сложности СФЭ для n-разрядного умножителя. [2] стр. 45-48.
Задачи к лекции: построить n-разрядный умножитель при заданном n.
- Лекция 7. Конечные автоматы (КА) без выхода (конечные автоматы-распознаватели). Диаграммы переходов. Автоматные множества (языки). Лемма о свойствах автоматных множеств. Пример неавтоматного множества. Лекция 7
Задачи к лекции: по заданной диаграмме переходов найти язык, принимаемый этим автоматом; доказать автоматность языка, построив диаграмму переходов автомата, принимающего этот язык.
- Лекция 8. Недетерминированные конечные автоматы (НКА) без выхода. Теорема о совпадении классов множеств, принимаемых недетерминированными и детерминированными конечными автоматами. Процедура детерминизации НКА. Лекция 8
Задачи к лекции: детерминизировать заданный НКА.
- Лекция 9. Операции над конечно-автоматными множествами. Дополнение, объединение, пересечение, произведение и итерация автоматных множеств, их автоматность. Лекция 9
Задачи к лекции: по заданным ДКА без выхода построить НКА, принимающие множества, являющиеся дополнением, объединением, произведением или итерацией множеств, принимаемых исходными ДКА; провести детерминизацию полученных НКА.
- Лекция 10. Регулярные выражения и регулярные множества. Теорема о совпадении классов регулярных множеств и автоматных множеств. Лекция 10
Задачи к лекции: по заданному регулярному выражению построить КА, принимающий регулярное множество, соответствующее этому регулярному выражению; по заданному автоматному множеству построить регулярное выражение, определяющее это автоматное множество.
- Лекция 11. Конечные автоматы с выходом (КАВ) (конечные автоматы-преобразователи). Диаграммы переходов, канонические уравнения. Автоматные функции. Функция единичной задержки, доказательство ее автоматности. Пример неавтоматной функции. Лекция 11
Задачи к лекции: по описанию функции доказать ее неавтоматность или доказать ее автоматность, построив диаграмму переходов автомата для этой функции.
- Лекция 12. Схемы из функциональных элементов с элементами задержки (СФЭз), автоматность осуществляемых ими отображений. Реализация КАВ СФЭз. Лекции 12-13
Задачи к лекции: по заданной СФЭз построить КАВ, реализуемый этой схемой; построить СФЭз, реализующий заданный КАВ.
- Лекция 13. Упрощение конечных автоматов с выходом. Лемма о двух отличимых состояниях КАВ. Теорема Мура о длине эксперимента, отличающего два отличимые состояния КАВ.
Задачи к лекции: упростить заданный КАВ, представленный диаграммой переходов.
Литература
- Яблонский С.В. Введение в дискретную математику. М.: Высшая школа, 2001.
- Алексеев В.Б. Лекции по дискретной математике. М.: МАКС Пресс, 2004.
- Марченков С.С. Конечные автоматы. М.: Физматлит, 2008 (Часть 1).
- Редькин Н.П. Дискретная математика. М.: Физматлит, 2008.
- Гаврилов Г.П., Сапоженко А.А. Задачи и упражнения по дискретной математике. М.: Физматлит, 2004.
- Селезнева С.Н. Основы дискретной математики. М.: МАКС Пресс, 2010.
Программа семинарских занятий
- Занятие 1. Подсчет числа комбинаторных объектов. Правила суммы и произведения.
[1] Гл. VIII 1.1(1, 2), 1.2(1-2), 1.4(1-3), 1.6, 1.8(1-3), 1.9(1, 2), 1.10(1, 2), 1.11(1-3).
На дом: [1] Гл. VIII 1.1(3), 1.5(1-2), 1.7, 1.8(4-7), 1.9(3), 1.10(3), 1.12(1-3).
- Занятие 2. Свойства биномиальных коэффициентов и их сумм.
[1] Гл. VIII 1.13(1-4), 1.14(1, 3, 5, 7), 1.18(1, 3, 5, 7, 9, 12), 1.21(1, 3), 1.22(1, 3), 1.25(1, 2).
На дом: [1] Гл. VIII 1.13(5-8), 1.14(2, 4, 6), 1.18(2, 4, 6, 8, 10), 1.21(2, 4), 1.22(2, 4), 1.25(3, 4).
- Занятие 3. Принцип включений-исключений.
[1] Гл. VIII 2.1(2-3), 2.4(1-2), 2.5(1, 3), 2.6(1, 3, 5), 2.2, 2.7(1, 3), 2.8.
На дом: [1] Гл. VIII 2.5(2), 2.6(2, 4, 6), 2.7(2, 4), 2.9.
- Занятие 4. Рекуррентные уравнения.
[1] Гл. VIII 3.2(1, 3, 5), 3.3(1, 3, 5), 3.5(1-3), 3.6(2), 3.7(5).
На дом: [1] Гл. VIII 3.2(2, 4, 6), 3.3(2, 4), 3.5(4-5), 3.6(3).
- Занятие 5. Понятие схемы в некотором базисе. Метод синтеза по ДНФ.
[1] Гл. X 1.4(р. 10.2 а)-в)), 1.1(1-2, 5), 1.18(1-3), 1.2(1-2), 1.5(1-2), 1.7(1-2, 5), 1.8.
На дом: [1] Гл. X 1.1(3-4, 6-7), 1.18(4-6), 1.2(3-4), 1.5(3-4), 1.7(3-4, 6).
- Занятие 6. Синтез некоторых систем функций алгебры логики.
[1] Гл. X 1.9(1-2), 1.10, 1.11(1-2), 1.12(1, 3), 1.13(1), 1.10, 2.8 (1-3, СФЭ с уменьшением сложности).
На дом: [1] Гл. X 1.9(3), 1.11(3), 1.12(2), 1.13(2), 1.17, 2.8 (4-6, СФЭ с уменьшением сложности).
- Занятие 7. Контрольная работа по темам "Комбинаторика" и "СФЭ" (2 ч).
- Занятие 8. Конечные автоматы без выхода (КА) и автоматные множества. Диаграмма переходов.
[2] 1(1-3, 7), 2(1, 3), 9.
На дом: [2] 1(4-6, 8), 2(2, 4), 10.
- Занятие 9. Недетерминированные конечные автоматы без выхода (НКА). Детерминизация НКА.
[2] 3(1, 3), 4(1, 3), 7(1), 8(1).
На дом: [2] 3(2, 4), 4(2, 4), 7(2), 8(2).
- Занятие 10. Регулярные выражения и регулярные множества. Упрощения КА.
[2] 5(1, 2), 6(1, 3, 5, 7).
На дом: [2] 5(3, 4), 6(2, 4, 6, 8).
- Занятие 11. Конечные автоматы с выходом (КАВ). Диаграмма Мура и канонические уравнения.
[1] Гл. IV 1.1(1-4), 1.2(1-2), 2.1(1, 3, 15, 24, 27).
На дом: [1] Гл. IV 1.1(8-12), 1.2(3-4), 2.1(4, 8, 16, 25, 28).
- Занятие 12. Реализация КАВ СФЭз. Упрощения КАВ.
[1] Гл. IV 2.13(1, 4, 7), 2.14(1, 3), 2.4(1-3).
На дом: [1] Гл. IV 2.13(2, 3, 10), 2.14(2, 4), 2.4(4-6).
- Занятие 13. Контрольная работа по темам «КА» и «КАВ» (2 ч).
Литература
- Гаврилов Г.П., Сапоженко А.А. Задачи и упражнения по дискретной математике. М.: Физматлит, 2004.
- Задачи для семинарских занятий по теме "Конечные автоматы без выхода"
- Селезнева С.Н. Основы дискретной математики. М.: МАКС Пресс, 2010.