Практикум по дискретным структурам — различия между версиями

Материал из Кафедра математической кибернетики
Перейти к: навигация, поиск
м
 
(не показаны 30 промежуточные версии 1 участника)
Строка 1: Строка 1:
 +
[[Категория:Спецкурсы кафедры МК]]
 
[[Категория:Лекционные курсы кафедры МК]]
 
[[Категория:Лекционные курсы кафедры МК]]
 
[[Категория:Магистерская программа Дискретные структуры и алгоритмы]]
 
[[Категория:Магистерская программа Дискретные структуры и алгоритмы]]
Строка 10: Строка 11:
 
Цель: изучить/повторить наиболее изветсные дискретные модели, которые используются на практике, и освоить програмные инструменты работы ними.
 
Цель: изучить/повторить наиболее изветсные дискретные модели, которые используются на практике, и освоить програмные инструменты работы ними.
  
== Лекции по курск ==
+
== Лекции по курсу ==
  
  
Лекция 1. Регулярные выражения и обработка тескта.
+
=== Лекция 1. Переборные алгоритмы и их применения. ===
  
Лекция 2. Преобразование Фурье в приложении к обработке аудио и видео сигналов.
+
Использование переборных алгоритмов для задач комбинаторной оптимизации.
 +
Перебор остовных деревьев, решение задачи коммивояжёра, поиск минимальных полиномов.
  
Лекция 3. Sat-решатели и их приложения.
+
Распараллеливание программы.
  
Лекция 4. Задачи машинного обучения. Классические модели Machine Learning.
+
=== Лекция 2. Оптимизация перебора. ===
  
Лекция 5. Нейронные сети и их применение к задачам ML.
+
Метод ветвей и границ. Применение МВГ на примере задачи коммивояжёра.
  
Лекция 6. Final State Transducers и их применение к задачам распознавания звука.
+
=== Лекция 3. Подходы к построению быстрых алгоритмов. ===
  
Лекция 7. Лингвистические модели и задачи обработки текста.
+
Градиентный метод. Динамическое программирование.
  
Лекция 8. Скрытые Марковские модели и их приложения.
+
=== Лекция 4. Sat-решатели и их приложения - 1. ===
  
В рамках данного курса предусмотрено 7 практических заданий. Для получения зачёта необходимо сдать все 7 заданий.
+
Пример SAT решателя, применения для задач построения схемы минимальной сложности для функции.
 +
 
 +
=== Лекция 5. Sat-решатели и их приложения - 2. ===
 +
 
 +
Применение SAT решателей для поиска минимальных полиномиальных форм.
 +
 
 +
=== Лекция 6. Эвристические алгоритмы. ===
 +
 
 +
Моделирование отжига, генетические алгоритмы, роевые алгоритмы.
 +
 
 +
=== Лекция 7. Применение эвристических алгоритмов. ===
 +
 
 +
== Получение зачёта. ==
 +
 
 +
В рамках данного курса предусмотрено 3 практических задания. Для получения зачёта необходимо сдать все 7 заданий.
 
Приём заданий происходит на семинарах во время выступления студента.  
 
Приём заданий происходит на семинарах во время выступления студента.  
  
=== Домашние задания ===
+
== Практические задания ==
 +
 
 +
=== Задание 1. Переборные алгоритмы ===
 +
 
 +
=== Задание 2. Применение SAT решателей к задачам минимизации функций ===
 +
 
 +
Дан базис из булевых функций от 2 переменных (базис определяется вариантом задания, который можно получить у преподавателя). Написать программу, которая получив на вход число N и вектор значений функции строит кнф, которая выполнима, если СФЭ для данной функции сложности N существует, невыполнима иначе. Можно использовать вариант сведения, который был рассказан на лекции. Полученную КНФ подать на вход SAT решателю и получить ответ.
 +
 
 +
Визуализировать схему, которая была найдена при помощи SAT решателя.
  
Реализовать алгоритм перебора всех остовных деревьев заданного графа
+
=== Задание 3. Эвристические алгоритмы ===
Построить классификатор применяя бустинг на основе деревьев решений
+
Проверка выполнимости КНФ на основе метода ветвей и границ
+

Текущая версия на 23:14, 7 октября 2024


Курс по магистерской программе Дискретные структуры и алгоритмы.

Чтение курса обеспечивается кафедрой математической кибернетики, лекторы — м.н.с. Бухман Антон Владимирович.

Цель курса

Цель: изучить/повторить наиболее изветсные дискретные модели, которые используются на практике, и освоить програмные инструменты работы ними.

Лекции по курсу

Лекция 1. Переборные алгоритмы и их применения.

Использование переборных алгоритмов для задач комбинаторной оптимизации. Перебор остовных деревьев, решение задачи коммивояжёра, поиск минимальных полиномов.

Распараллеливание программы.

Лекция 2. Оптимизация перебора.

Метод ветвей и границ. Применение МВГ на примере задачи коммивояжёра.

Лекция 3. Подходы к построению быстрых алгоритмов.

Градиентный метод. Динамическое программирование.

Лекция 4. Sat-решатели и их приложения - 1.

Пример SAT решателя, применения для задач построения схемы минимальной сложности для функции.

Лекция 5. Sat-решатели и их приложения - 2.

Применение SAT решателей для поиска минимальных полиномиальных форм.

Лекция 6. Эвристические алгоритмы.

Моделирование отжига, генетические алгоритмы, роевые алгоритмы.

Лекция 7. Применение эвристических алгоритмов.

Получение зачёта.

В рамках данного курса предусмотрено 3 практических задания. Для получения зачёта необходимо сдать все 7 заданий. Приём заданий происходит на семинарах во время выступления студента.

Практические задания

Задание 1. Переборные алгоритмы

Задание 2. Применение SAT решателей к задачам минимизации функций

Дан базис из булевых функций от 2 переменных (базис определяется вариантом задания, который можно получить у преподавателя). Написать программу, которая получив на вход число N и вектор значений функции строит кнф, которая выполнима, если СФЭ для данной функции сложности N существует, невыполнима иначе. Можно использовать вариант сведения, который был рассказан на лекции. Полученную КНФ подать на вход SAT решателю и получить ответ.

Визуализировать схему, которая была найдена при помощи SAT решателя.

Задание 3. Эвристические алгоритмы