Дискретная математика (1й курс) — различия между версиями

Материал из Кафедра математической кибернетики
Перейти к: навигация, поиск
(Лекторы)
(Литература)
 
(не показаны 55 промежуточные версии 3 участников)
Строка 1: Строка 1:
 
== Лекторы ==
 
== Лекторы ==
*проф. [[Алексеев Валерий Борисович|В.Б. Алексеев]]
+
*проф. [[Алексеев Валерий Борисович| Алексеев Валерий Борисович]]
*проф. [[Марченков Сергей Серафимович|С.С. Марченков]]
+
*проф. [[Марченков Сергей Серафимович| Марченков Сергей Серафимович]]
*проф.  [[Селезнева Светлана Николаевна| С.Н. Селезнева]]
+
*проф.  [[Селезнева Светлана Николаевна| Селезнева Светлана Николаевна]]
  
== Вопросы к экзамену по курсу «Дискретная математика», 2019 год.==
+
== Экзамен 2024. Вопросы к экзамену по курсу «Дискретная математика» для 2 и 3 потоков, 2024 год.==
  
В билете 2 вопроса (один из части А и один из части В) и задача.
+
Экзамен планируется устный. В билете 2 вопроса (один из части А и один из части В) и задача.
  
===Часть А===  
+
===Часть А===
'''Ответ без подготовки, по любым материалам (конспекты, книжки, распечатки лекций и т.д.). Проверяется, насколько осознаны все доказательства (основной вопрос – «почему?»). Определения и формулировки без конспектов.'''
+
Часть А – ответ без подготовки, по любым материалам (конспекты, книжки, распечатки лекций и т.д.). Можно смотреть текст на ноутбуке, но нельзя пользоваться мобильными телефонами. Проверяется, насколько осознаны все доказательства (основной вопрос – «почему?»). Определения и формулировки без конспектов.  
 
<ol>
 
<ol>
<li> Сокращенная дизъюнктивная нормальная форма. Метод ее построения по конъюнктивной нормальной форме (метод Нельсона).
 
 
<li> Алгоритм построения вектора коэффициентов полинома Жегалкина (с обоснованием).  
 
<li> Алгоритм построения вектора коэффициентов полинома Жегалкина (с обоснованием).  
 
<li> Двойственность. Класс самодвойственных функций, его замкнутость.
 
<li> Двойственность. Класс самодвойственных функций, его замкнутость.
Строка 17: Строка 16:
 
<li> Теорема Поста о полноте системы функций алгебры логики.
 
<li> Теорема Поста о полноте системы функций алгебры логики.
 
<li> Теорема о предполных классах.
 
<li> Теорема о предполных классах.
<li> Теоремы о представлении k-значных функций 2-й формой и полиномами.
 
 
<li> Деревья. Свойства деревьев.
 
<li> Деревья. Свойства деревьев.
<li> Алгоритм построения кратчайшего остовного дерева (с обоснованием) (вопрос № 9 только для студентов 2-го и 3-го потоков).
+
<li> Алгоритм построения кратчайшего остовного дерева (с обоснованием).
 
<li> Теорема о раскраске планарных графов в 5 цветов.
 
<li> Теорема о раскраске планарных графов в 5 цветов.
<li> Алгоритм распознавания взаимной однозначности (разделимости) алфавитного кодирования (с обоснованием).  
+
<li> Алгоритм распознавания взаимной однозначности алфавитного кодирования (с обоснованием).  
<li> Теорема Маркова о взаимной однозначности (разделимости) алфавитного кодирования.
+
<li> Теорема Маркова.
 
<li> Неравенство Макмиллана.
 
<li> Неравенство Макмиллана.
 
<li> Существование префиксного кода с заданными длинами кодовых слов.
 
<li> Существование префиксного кода с заданными длинами кодовых слов.
Строка 30: Строка 28:
 
<li> Схемы из функциональных элементов и элементов задержки. Автоматность осуществляемых ими отображений.
 
<li> Схемы из функциональных элементов и элементов задержки. Автоматность осуществляемых ими отображений.
 
<li> Моделирование автоматной функции схемой из функциональных элементов и элементов задержки.  
 
<li> Моделирование автоматной функции схемой из функциональных элементов и элементов задержки.  
<li> Теорема Мура. Пример автомата, на котором достигается оценка теоремы Мура.
+
<li> Теорема Мура.  
 
<li> Метод Карацубы построения схемы для умножения, верхняя оценка ее сложности.
 
<li> Метод Карацубы построения схемы для умножения, верхняя оценка ее сложности.
 
</ol>
 
</ol>
  
=== Часть В ===  
+
=== Часть В ===
'''Ответ без конспектов и почти без подготовки (3-5 минут), с доказательствами (можно излагать устно).'''
+
Часть В – ответ без конспектов и других материалов и почти без подготовки (3-5 минут), с доказательствами (можно излагать устно).  
<ol start="22">
+
<ol start="20">
 
<li> Функции алгебры логики. Равенство функций. Тождества для элементарных функций.
 
<li> Функции алгебры логики. Равенство функций. Тождества для элементарных функций.
 
<li> Теорема о разложении функции алгебры логики по переменным. Теорема о совершенной дизъюнктивной нормальной форме.
 
<li> Теорема о разложении функции алгебры логики по переменным. Теорема о совершенной дизъюнктивной нормальной форме.
Строка 46: Строка 44:
 
<li> Лемма о немонотонной функции.
 
<li> Лемма о немонотонной функции.
 
<li> Теорема о максимальном числе функций в базисе в алгебре логики.
 
<li> Теорема о максимальном числе функций в базисе в алгебре логики.
<li> k-значные функции. Теорема о существовании конечной полной системы в Pk.
 
 
<li> Основные понятия теории графов. Изоморфизм графов. Связность.
 
<li> Основные понятия теории графов. Изоморфизм графов. Связность.
 
<li> Корневые деревья. Верхняя оценка их числа.
 
<li> Корневые деревья. Верхняя оценка их числа.
Строка 54: Строка 51:
 
<li> Теорема о раскраске вершин графа в 2 цвета (теорема Кенига).
 
<li> Теорема о раскраске вершин графа в 2 цвета (теорема Кенига).
 
<li> Оптимальные коды, их свойства.
 
<li> Оптимальные коды, их свойства.
<li> Линейные двоичные коды. Теорема о кодовом расстоянии линейных кодов (вопрос № 39 только для студентов 2-го и 3-го потоков).
+
<li> Линейные двоичные коды. Теорема о кодовом расстоянии линейных кодов.
 
<li> Схемы из функциональных элементов. Реализация функций алгебры логики схемами.
 
<li> Схемы из функциональных элементов. Реализация функций алгебры логики схемами.
 
<li> Сумматор. Верхняя оценка сложности сумматора. Вычитатель.
 
<li> Сумматор. Верхняя оценка сложности сумматора. Вычитатель.
 
<li> Понятие автоматных функций, их представление диаграммой Мура. Единичная задержка.  
 
<li> Понятие автоматных функций, их представление диаграммой Мура. Единичная задержка.  
 
</ol>
 
</ol>
 +
Третьим пунктом в билете стоит задача по одной из 4 тем: алгебра логики, графы, коды, автоматы.
 +
Задачи решаются без конспектов и любых других материалов.
 +
 +
После ответа на билет возможна прогонка по всему материалу без конспекта (определения, формулировки, идеи доказательств) и добавочные задачи на любые темы.
  
 
===Литература===
 
===Литература===
 
<ol>
 
<ol>
 
<li> Собственный конспект лекций.
 
<li> Собственный конспект лекций.
<li> Алексеев В.Б. Лекции по дискретной математике. М.: Инфра-М, 2012. (Вопросы 3-6, 8, 10-36, 38, 40-42)
+
<li> Лекции (онлайн) Алексеева В.Б. по дискретной математике: https://www.youtube.com/watch?v=SAhzEOVDNEI&list=PLcsjsqLLSfNAY-pm5c4XZQhSl1U_20itT
<li> [[Media:Lectdm.doc|Алексеев В.Б. Лекции по дискретной математике. ВМК, 2004.]] Электронный ресурс. (Вопросы 3-6, 8, 10-36, 38, 40-42)
+
<li> Алексеев В.Б. Лекции по дискретной математике. М.: Инфра-М, 2012. (Вопросы 2-6, 8-33, 35, 37-39)
<li> Яблонский С.В. Введение в дискретную математику. М.: Наука, 1986. (Вопросы 1, 3-7, 12-14, 22-31)
+
<li> [[Media:Lectdm.doc|Алексеев В.Б. Лекции по дискретной математике. ВМК, 2004.]] Электронный ресурс. (Вопросы 2-6, 8-33, 35, 37-39)
<li> Гаврилов Г.П., Сапоженко А.А. Задачи и упражнения по дискретной математике. М.: Физматлит, 2004. (Вопрос 2 (стр. 53-56) и вопрос 39 (задача 4.9 из главы 7))
+
<li> Яблонский С.В. Введение в дискретную математику. М.: Наука, 1986. (Вопросы 2-5, 10-12, 20-28)
<li> [[Media:KNIGA1.pdf|Алексеев В.Б. Введение в теорию сложности алгоритмов.]] М.: Издательский отдел факультета ВМК МГУ, 2002 (Вопрос 9)
+
<li> Гаврилов Г.П., Сапоженко А.А. Задачи и упражнения по дискретной математике. М.: Физматлит, 2004. (Вопрос 1 (стр. 53-56) и вопрос 36 (задача 4.9 из главы 7))
<li> Емеличев В.А., Мельников О.И., Сарванов В.И., Тышкевич Р.И. Лекции по теории графов. М.: Наука, 1990 (Вопрос 37 (стр. 36-37 и 237))
+
<li> [[Media:KNIGA1.pdf|Алексеев В.Б. Введение в теорию сложности алгоритмов.]] М.: Издательский отдел факультета ВМК МГУ, 2002 (Вопрос 7)
 +
<li> Емеличев В.А., Мельников О.И., Сарванов В.И., Тышкевич Р.И. Лекции по теории графов. М.: Наука, 1990 (Вопрос 34 (стр. 36-37 и 237))
 +
<li> Весь материал имеется также в книге: Алексеев В.Б. Дискретная математика : учебник. М.: Инфра-М, 2021 (доступна в электронной библиотечной системе (ЭБС) Znanium.com).
 
</ol>
 
</ol>
 
===Задачи на экзамене===
 
 
В билете кроме двух теоретических вопросов указана тема задачи. Всего тем четыре: алгебра логики, графы, коды, автоматы.
 
 
По итогам контрольных работ каждый студент по каждой из этих четырех тем получает одну из трех оценок - 1; 0,5 или 0.
 
 
Оценка 1 по определенной теме означает освобождение от задачи по этой теме, если она попадается в билете. Оценка 0 означает дополнительную задачу по этой теме на экзамене. Все дополнительные задачи (по одной задаче по каждой теме, за которую 0) решаются студентом до выбора билета. Если студент не решил достаточного числа дополнительных задач, то ему может быть поставлена оценка неуд (без возможности выбрать билет). Если студент решил не все дополнительные задачи и тянет билет, то ему снижается оценка с учетом числа нерешенных дополнительных задач.
 
 
Задачи решаются без конспектов.
 
 
После ответа на билет экзаменатор может опрашивать студента по всему материалу (определения, формулировки теорем, идеи доказательств). Кроме того, экзаменатор может предлагать студенту решить задачи по любым темам из курса (в том числе, по которым у студента 1).
 
 
На пересдаче нет освобождения от задач и дополнительных задач: студент отвечает на два теоретических вопроса в билете и решает задачу из билета.
 
 
  
 
[[Категория:Лекционные курсы кафедры МК]]
 
[[Категория:Лекционные курсы кафедры МК]]

Текущая версия на 12:35, 29 мая 2024

Лекторы

Экзамен 2024. Вопросы к экзамену по курсу «Дискретная математика» для 2 и 3 потоков, 2024 год.

Экзамен планируется устный. В билете 2 вопроса (один из части А и один из части В) и задача.

Часть А

Часть А – ответ без подготовки, по любым материалам (конспекты, книжки, распечатки лекций и т.д.). Можно смотреть текст на ноутбуке, но нельзя пользоваться мобильными телефонами. Проверяется, насколько осознаны все доказательства (основной вопрос – «почему?»). Определения и формулировки – без конспектов.

  1. Алгоритм построения вектора коэффициентов полинома Жегалкина (с обоснованием).
  2. Двойственность. Класс самодвойственных функций, его замкнутость.
  3. Лемма о нелинейной функции.
  4. Теорема Поста о полноте системы функций алгебры логики.
  5. Теорема о предполных классах.
  6. Деревья. Свойства деревьев.
  7. Алгоритм построения кратчайшего остовного дерева (с обоснованием).
  8. Теорема о раскраске планарных графов в 5 цветов.
  9. Алгоритм распознавания взаимной однозначности алфавитного кодирования (с обоснованием).
  10. Теорема Маркова.
  11. Неравенство Макмиллана.
  12. Существование префиксного кода с заданными длинами кодовых слов.
  13. Теорема редукции.
  14. Коды с исправлением r ошибок. Оценка функции Mr(n).
  15. Коды Хэмминга. Оценка функции M1(n).
  16. Схемы из функциональных элементов и элементов задержки. Автоматность осуществляемых ими отображений.
  17. Моделирование автоматной функции схемой из функциональных элементов и элементов задержки.
  18. Теорема Мура.
  19. Метод Карацубы построения схемы для умножения, верхняя оценка ее сложности.

Часть В

Часть В – ответ без конспектов и других материалов и почти без подготовки (3-5 минут), с доказательствами (можно излагать устно).

  1. Функции алгебры логики. Равенство функций. Тождества для элементарных функций.
  2. Теорема о разложении функции алгебры логики по переменным. Теорема о совершенной дизъюнктивной нормальной форме.
  3. Полные системы. Примеры полных систем (с доказательством полноты).
  4. Теорема Жегалкина о представимости функции алгебры логики полиномом.
  5. Понятие замкнутого класса. Замкнутость классов T0, T1, L.
  6. Класс монотонных функций, его замкнутость.
  7. Лемма о несамодвойственной функции.
  8. Лемма о немонотонной функции.
  9. Теорема о максимальном числе функций в базисе в алгебре логики.
  10. Основные понятия теории графов. Изоморфизм графов. Связность.
  11. Корневые деревья. Верхняя оценка их числа.
  12. Геометрическая реализация графов. Теорема о реализации графов в трехмерном пространстве.
  13. Планарные (плоские) графы. Формула Эйлера.
  14. Доказательство непланарности графов K5 и K3,3. Теорема Понтрягина-Куратовского (доказательство в одну сторону).
  15. Теорема о раскраске вершин графа в 2 цвета (теорема Кенига).
  16. Оптимальные коды, их свойства.
  17. Линейные двоичные коды. Теорема о кодовом расстоянии линейных кодов.
  18. Схемы из функциональных элементов. Реализация функций алгебры логики схемами.
  19. Сумматор. Верхняя оценка сложности сумматора. Вычитатель.
  20. Понятие автоматных функций, их представление диаграммой Мура. Единичная задержка.

Третьим пунктом в билете стоит задача по одной из 4 тем: алгебра логики, графы, коды, автоматы. Задачи решаются без конспектов и любых других материалов.

После ответа на билет возможна прогонка по всему материалу без конспекта (определения, формулировки, идеи доказательств) и добавочные задачи на любые темы.

Литература

  1. Собственный конспект лекций.
  2. Лекции (онлайн) Алексеева В.Б. по дискретной математике: https://www.youtube.com/watch?v=SAhzEOVDNEI&list=PLcsjsqLLSfNAY-pm5c4XZQhSl1U_20itT
  3. Алексеев В.Б. Лекции по дискретной математике. М.: Инфра-М, 2012. (Вопросы 2-6, 8-33, 35, 37-39)
  4. Алексеев В.Б. Лекции по дискретной математике. ВМК, 2004. Электронный ресурс. (Вопросы 2-6, 8-33, 35, 37-39)
  5. Яблонский С.В. Введение в дискретную математику. М.: Наука, 1986. (Вопросы 2-5, 10-12, 20-28)
  6. Гаврилов Г.П., Сапоженко А.А. Задачи и упражнения по дискретной математике. М.: Физматлит, 2004. (Вопрос 1 (стр. 53-56) и вопрос 36 (задача 4.9 из главы 7))
  7. Алексеев В.Б. Введение в теорию сложности алгоритмов. М.: Издательский отдел факультета ВМК МГУ, 2002 (Вопрос 7)
  8. Емеличев В.А., Мельников О.И., Сарванов В.И., Тышкевич Р.И. Лекции по теории графов. М.: Наука, 1990 (Вопрос 34 (стр. 36-37 и 237))
  9. Весь материал имеется также в книге: Алексеев В.Б. Дискретная математика : учебник. М.: Инфра-М, 2021 (доступна в электронной библиотечной системе (ЭБС) Znanium.com).