Графы и их применения — различия между версиями

Материал из Кафедра математической кибернетики
Перейти к: навигация, поиск
(Программа курса)
(Литература)
 
(не показаны 7 промежуточные версии 2 участников)
Строка 1: Строка 1:
 
Обязательный курс магистерской программы "Дискретные структуры и алгоритмы"
 
Обязательный курс магистерской программы "Дискретные структуры и алгоритмы"
  
Курс читается в 1-м семестре магистратуры, 2 ч лекций, 1 ч семинаров
+
Курс читается в 1-м семестре магистратуры, 1 ч лекций, 1 ч семинаров
  
Лекторы: [[Селезнева Светлана Николаевна]], [[Бухман Антон Владимирович]]
+
Лектор: [[Бухман Антон Владимирович]]
  
==Объявления==
 
  
[[Media:gip.docx|'''Вопросы к экзамену''']]
 
 
Экзамен для аспирантов состоится 8 января (в понедельник) в 9 ч в ауд. 503.
 
 
Экзамен для студентов 518/1 группы состоится по расписанию экзаменов.
 
 
==Программа курса==
 
 
'''Часть 1. Основы теории графов'''.
 
 
[[Media:gip-l1-selezn.pdf|'''Лекция 1''']]. Графы. Основные определения. Простейшие свойства графов. Пути и цепи в графах. Связность, k-связность. Деревья, корневые деревья. Остовные деревья.
 
 
[[Media:gip-l2-selezn.pdf|'''Лекция 2''']]. Точки сочленения и мосты. Связность, k-связность. Двусвязные графы. Компоненты двусвязности (блоки) графа. Дерево блоков и точек сочленения графа.
 
 
[[Media:gip-l3-selezn.pdf|'''Лекция 3''']]. Деревья. Остовные деревья. Число остовных деревьев помеченного полного графа. Достижимость промежуточного числа висячих вершин в остовном дереве. Оценка числа висячих вершин в остовном дереве.
 
 
[[Media:gip-l4-selezn.pdf|'''Лекция 4''']]. Раскраски вершин графов. Хроматическое число графа. Критерий двуцветности графа. Верхние оценки хроматического числа графа. Существование графов без треугольников с произвольно большим хроматическим числом.
 
 
[[Media:gip-l5-selezn.pdf|'''Лекция 5''']]. Раскраски ребер графов. Хроматический индекс графа. Хроматический индекс двудольных графов. Верхняя и нижняя оценки хроматического индекса графа.
 
 
[[Media:gip-l6-selezn.pdf|'''Лекция 6''']]. Наследственные свойства графов. Наибольшее число ребер в графах с наследственным свойством. Наибольшее число ребер в планарных графах. Теорема о наибольшем числе ребер в графах без полного подграфа с n вершинами.
 
 
[[Media:gip-l7-selezn.pdf|'''Лекция 7''']]. Числа Рамсея. Верхняя и нижняя оценки числа Рамсея.
 
 
'''Часть 2. Алгоритмы на графах'''.
 
 
'''Лекция 8'''. Поиск в глубину и поиск в ширину в графе. Нахождение остовного дерева графа поиском в глубину и поиском в ширину. Отыскание фундаментального множества циклов в графе. Критерий разделяющей вершины на основе поиска в глубину. Нахождение компонент двусвязности графа.
 
 
'''Лекция 9'''. Алгоритмы поиска кратчайшего остовного дерева. Матроиды и жадные алгоритмы. Теорема Радо-Эдмонса.
 
 
'''Лекция 10'''. Потоки в сетях. Максимальный поток в сети. Теорема Форда-Фалкерсона о величине максимального потока в сети. Алгоритмы отыскания максимального потока в сети.
 
 
'''Лекция 11'''. Паросочетания в графах. Теорема Холла. Паросочетания в двудольных графах. Алгоритм отыскания наибольшего паросочетания двудольного графа на основе построения максимального потока в сети.
 
 
'''Лекция 12'''. Паросочетания в графах. Теорема Куна. Теорема Эдмонса. Алгоритмы отыскания наибольших паросочетаний в двудольных графах и в произвольных графах.
 
 
'''Лекция 13'''. Эйлеровы пути и циклы в графах. Критерий эйлеровости графа. Задача китайского почтальона. Гамильтоновы пути и циклы в графах. Достаточные условия гамильтоновости графа.
 
 
'''Лекция 14'''. Гамильтоновы циклы в графах. Задача коммивояжера с неравенством треугольника и без него. Приближенные алгоритмы. Переборные алгоритмы, дерево решений. Алгоритм перебора всех остовных деревьев графа.
 
 
'''Лекция 15'''. Изоморфизм графов. Полиномиальный алгоритм проверки изоморфизма деревьев. Построение выпуклого n-угольника на достаточно большом множестве точек.
 
 
==Программа семинарских занятий==
 
 
'''Семинар 1'''. Простейшие свойства графов (повторение).
 
[5] Гл. 6: 1.3, 1.4, 1.5, 1.13, 1.16, 1.21, 1.22, 1.27, 1.28, 1.29, 1.31, 3.10, 3.14, задачи лекции 1.
 
 
'''Семинар 2'''. Связность, двусвязность графов. Остовные деревья.
 
[5] Гл. 6: 1.24, 1.17, 3.15, задачи лекций 2 и 3.
 
 
'''Семинар 3'''. Раскраски графов. Хроматическое число и хроматический индекс графа.
 
[5] Гл. 6: 2.18, 2.19, 2.20, 2.21, задачи лекций 4 и 5. 
 
 
'''Семинар 4'''. Наследственные свойства графов. Числа Рамсея.
 
[5] Гл. 6: 2.7, 2.8, 2.9, 2.10, 2.13, 2.17, задачи лекций 6 и 7.
 
 
==Литература==
 
 
'''Основная''':
 
 
1. Емеличев В.А., Мельников О.И., Сарванов В.И., Тышкевич Р.И. Лекции по теории графов. М.: Либроком, 2009.
 
 
2. Bondy J.A., Murty U.S.R. Graph theory. Springer, 2008.
 
 
3. Харари Ф. Теория графов. М.: Мир, 1973.
 
 
4. Липский В. Комбинаторика для программистов. М.: Мир, 1988.
 
 
5. Гаврилов Г.П., Сапоженко А.А. Задачи и упражнения по дискретной математике. М.: Физматлит, 2004.
 
 
'''Дополнительная''':
 
 
6. Алексеев В.Б. Лекции по дискретной математике. М.: Инфра-М, 2012.
 
 
7. Алексеев В.Б. Введение в теорию сложности алгоритмов. М.: Издательский отдел ф-та ВМК МГУ имени М.В. Ломоносова, 2002.
 
 
8. Гэри М., Джонсон Д. Вычислительные машины и труднорешаемые задачи. М.: Мир, 1982.
 
 
9. Оре О. Теория графов. М.: Наука, 1980.
 
 
10. Робертс Ф.С. Дискретные математические модели с приложениями к социальным, биологическим и экологическим задачам. М.: Наука, 1986.
 
 
11. Форд Л.Р., Фалкерсон Д.Р. Потоки в сетях. М.: Мир, 1966.
 
 
12. Чашкин А.В. Лекции по дискретной математике. М.: Изд-во механико-математического ф-та МГУ имени М.В. Ломоносова, 2007.
 
 
13. Diestel R. Graph Theory. Springer, 2010.
 
 
 
  
 
[[Категория:Лекционные курсы кафедры МК]]
 
[[Категория:Лекционные курсы кафедры МК]]
 
[[Категория:Магистерская программа Дискретные структуры и алгоритмы]]
 
[[Категория:Магистерская программа Дискретные структуры и алгоритмы]]

Текущая версия на 21:57, 11 апреля 2022

Обязательный курс магистерской программы "Дискретные структуры и алгоритмы"

Курс читается в 1-м семестре магистратуры, 1 ч лекций, 1 ч семинаров

Лектор: Бухман Антон Владимирович