Дискретные модели
Материал из Кафедра математической кибернетики
Версия от 16:40, 10 февраля 2014; SeleznevaSN (обсуждение | вклад)
Программа обязательного курса для студентов магистратуры, 1-й курс, 2-й семестр.
Лектор - доцент Селезнева Светлана Николаевна.
Объявления
Лекции
- Лекция 1: Выборки. Размещения, перестановки, размещения с повторениями, сочетания, сочетания с повторениями, их число и рекуррентные формулы для них. Примеры. Лекция 1
- Лекция 2: Свойства комбинаторных чисел. Производящие функции, подсчет комбинаторных сумм и доказательство комбинаторных тождеств.
- Лекция 3: Принцип включений-исключений.
- Лекция 4: Рекуррентные уравнения. Линейные однородные и неоднородные рекуррентные уравнения, их решения.
- Лекция 5: Графы. Транспортная задача. Теорема Форда-Фалкерсона. Алгоритм построения максимального потока в сети.
- Лекция 6: Графы интервалов. Применения графов интервалов. Задача регулирования транспорта светофором. Графовая модель задачи управления сигналами светофора.
- Лекция 7: Задача выбора маршрутов и ее частный случай - задача распределения рейсов по дням. Графовая модель задачи распределения рейсов. Хроматическое число графа. Критерий двураскрашиваемости графа. Верхние и нижние оценки хроматических чисел графов.
Литература
- Яблонский С.В. Введение в дискретную математику. М.: Высшая школа, 2001.
- Форд Л.Р., Фалкерсон Д.Р. Потоки в сетях. М.: Мир, 1966.