Математические модели и методы проектирования архитектуры сверхбольших интегральных схем

Материал из Кафедра математической кибернетики
Перейти к: навигация, поиск


Обязательный курс для студентов группы 518/2.

Руководитель: Подымов В.В.

Актуальность информации: весенний семестр 2017/2018 учебного года.

Общая информация и критерии оценки

Курс содержит шесть обязательных блоков:

  1. конвейер,
  2. кэш-память,
  3. виртуальная память,
  4. прерывания,
  5. внеочередное исполнение команд,
  6. лекционные и лабораторные занятия от представителей компании АО "Байкал Электроникс".

Каждый из первых пяти блоков может быть сдан одним из двух равноценных способов:

  • выполнением практического задания по написанию кода на языке Verilog;
  • устным ответом на экзамене.

Последний блок сдаётся посещением пар, посвящённых этому блоку, и прилежным выполнением лабораторных заданий на этих парах.

По итогам проведения курса выставляется оценка

  • "Отлично", если сданы все блоки, и при этом хотя бы один из пяти первых блоков сдан выполнением практического задания.
  • "Хорошо", если сдан последний блок и четыре из пяти первых блоков.
  • "Удовлетворительно", если сданы четыре блока.
  • "Неудовлетворительно", если сдано менее четырёх блоков.

Практические задания

Выполнение практического задания - это написание кода на языке Verilog и программная симуляция этого кода.

Все задания сформулированы для однотактового или, по желанию, более сложно устроенного процессора, система команд которого включает:

  • хотя бы одну арифметико-логическую команду на трёх регистрах,
  • хотя бы одну арифметико-логическую команду на двух регистрах с константой в коде команды,
  • хотя бы одну инструкцию условного ветвления,
  • инструкцию безусловного ветвления,
  • инструкцию чтения из памяти в регистр и
  • инструкцию записи в память из регистра.

Конвейер

Реализовать процессор с конвейером, корректно разрешающим все конфликты (hazards) и содержащим:

  1. пять "классических" стадий выполнения инструкции;
  2. пересылку значений (bypass) хотя бы для одного типа конфликтов чтения после записи (read-after-write hazard);
  3. спекулятивное исполнение для ускоренного разрешения конфликтов по управлению, возникающих при исполнении инструкций условного ветвления.

Кэш-память

Реализовать кэш данных. Допускается реализация как над однотактовым процессором (в связи с задержками из-за промахов кэша он станет многотактовым), так и над конвейеризованным процессором. Моделируемая пропускная способность основной памяти данных - одно слово за такт. Требования к кэш-памяти:

  1. хотя бы два слова в строке,
  2. хотя бы восемь строк,
  3. полуассоциативность: индекс строки - хотя бы два бита, и хотя бы две строки для каждого индекса.

Остальные детали реализации кэша могут выбираться любым способом.

Виртуальная память

Реализовать TLB возле кэша данных. Реализация должна включать в себя:

  1. кэш данных с виртуальной адресацией,
  2. таблицу страниц не менее чем на 8 записей,
  3. базовый регистр для таблицы страниц,
  4. команды заполнения записей в таблице,
  5. трансляцию адресов в командах работы с памятью,
  6. работу со страницами размером не менее 4-х слов,
  7. защиту от доступа за пределы доступной виртуальной памяти и за пределы выбранной страницы - например, полную остановку работы процессора, игнорирование недопустимой инструкции или фиксированные действия процессора наподобие увеличения значения заданного регистра вместо доступа к памяти.

Детали реализации, включая формат новых команд, точное устройство таблицы, точный алгоритм трансляции и способ решения проблем виртуализации (наподобие проблемы синонимичности - aliasing), выбираются любым способом.

Прерывания

Реализация механизма точных прерываний должна включать в себя:

  1. конвейер,
  2. обработчик прерываний в памяти инструкций по произвольно выбранному адресу, который можно "вшить" в схему процессора,
  3. хотя бы одно внешнее прерывание, возникающее при появлении единицы в сигнале irq, подаваемом процессору извне наряду с clock и reset,
  4. прерывание по неверному коду команды,
  5. прерывание по переполнению в АЛУ хотя бы для одной арифметико-логической команды,
  6. хотя бы одну инструкцию явного вызова прерывания,
  7. идейно корректное продолжение работы процессора по завершении прерывания.

Точный алгоритм обработки прерываний (например, наличие приоритетов или вложенной обработки прерываний) может выбираться любым способом.

Внеочередное исполнение команд

Реализация внеочередного исполнения команд должна корректно исполнять произвольные входные программы и содержать:

  1. конвейер,
  2. команду умножения целых чисел (формат - такой же, как у всех арифметико-логических команд на трёх регистрах, младшие 6 бит можно определить произвольно),
  3. отдельное арифметико-логическое устройство, умножающее два целых числа за 3 такта,
  4. внеочередное исполнение команд согласно алгоритму Томасуло.

Общую шину данных в алгоритме Томасуло можно реализовать любым способом - например, на основе мультиплексоров и демультиплексоров.

Рабочая программа для устного ответа на экзамене

  1. Конвейер:
    • пять классических стадий исполнения инструкции (выборка, декодирование, исполнение, доступ к памяти, запись в регистр),
    • латентность и производительность,
    • конфликты (структурные, по данным, по управлению),
    • пересылка значений,
    • спекулятивное исполнение.
  2. Общая организация памяти:
    • современное устройство ячеек памяти,
    • современная организация доступа к ячейкам памяти,
    • область применения различных видов памяти,
    • характеристики производительности памяти: латентность, частота доступа, пропускная способность, время доступа, время передачи, время цикла.
  3. Кэш-память:
    • пространственная и временная локальность доступа к памяти,
    • основные понятия: строка, тэг, попадание, промах, конфликты и вытеснение,
    • производительность кэша: частоты и задержки, связанные с попаданиями и промахами кэша,
    • виды кэша: прямого отображения, полностью ассоциативный, полуассоциативный,
    • классификация промахов кэша (Three Cs),
    • политика вытеснения и политика записи,
    • иерархия кэш-памяти, эксклюзивный и инклюзивный кэш,
    • оптимизация доступа к кэш-памяти: конвейеризация, кэш вытеснения (victim cache), буфер записи, предвыборка, многопортовый кэш, банки кэш-памяти, неблокирующий кэш.
  4. Виртуальная память:
    • физическая (абсолютная) и виртуальная адресация,
    • трансляция адресов, страницы памяти, таблицы страниц, каскады таблиц,
    • механизмы защиты доступа к памяти,
    • буфер ассоциативной трансляции,
    • виртуальная и физическая кэш-память,
    • хэшированные таблицы страниц.
  5. Прерывания:
    • общее понятие прерывания, точное прерывание,
    • прерывания, исключения и ловушки,
    • обработчик прерываний, механизмы обработки прерываний,
    • классификация точных прерываний: синхронные и асинхронные, вызываемые и вынужденные, маскируемые и немаскируемые, возобновляемые и терминальные,
    • влияние прерываний на устройство других архитектурных концепций.
  6. Внеочередное исполнение команд:
    • параллелизм на уровне инструкций и сравнение производительности процессора с внеочередным и очередным исполнениями инструкций,
    • конфликты конвейера при введении внеочередного исполнения,
    • табличный алгоритм: стадии конвейера, буфер инструкций, конфликты и их разрешение, производительность,
    • алгоритм Томасуло: стадии конвейера, буфер инструкций, станции резервирования, конфликты и их разрешение, производительность.