Дискретные функции и выполнимость ограничений

Материал из Кафедра математической кибернетики
Перейти к: навигация, поиск


Обязательный курс для студентов 518/1 группы магистерской программы "Дискретные структуры и алгоритмы".

Спецкурс для студентов магистратуры.

Лектор - Селезнева Светлана Николаевна

Лекции - 2 ч в неделю.

Семинары - 1 ч в неделю (для студентов 518/1 группы).

Аннотация. Курс посвящен системному подходу к изучению теоретической вычислительной сложности задач обобщенной выполнимости. Задача обобщенной выполнимости, или выполнимости ограничений, состоит в выяснении выполнимости системы отношений, принадлежащих заранее известному множеству S и связывающих произвольные переменные. При этом полагается, что в множество S входят отношения на конечном множестве, содержащем k элементов. Известная задача выполнимости КНФ является частным случаем этой задачи.

В курсе показывается, что вычислительная сложность задачи обобщенной выполнимости зависит только от функций, сохраняющих все отношения из S. Подробно разбирается случай k=2, описываются все виды множеств S, при которых задача обобщенной выполнимости является полиномиальной, и показывается ее труднорешаемость во всех других случаях. Рассматривается общий подход к изучению вычислительной сложности этой задачи при произвольных k.

Объявления

Лекции

Часть 1. Повторение.

Лекция 1. Вступление. Алгебра логики. Функции алгебры логики. Формулы. Полнота. Замкнутые классы. Классы T_0, T_1, L, S, M. Теорема Поста.

Лекция 2. Конъюнктивные нормальные формы. Имплицента, простая имплицента функции. Сокращенная КНФ функции. Способы построения сокращенной КНФ.

Лекция 3. Полином Жегалкина. Способы построения полинома Жегалкина функции. Линейная имплицента функции. Линейная конъюнктивная нормальная форма (ЛКНФ). Линейная соимплицента функции. Поиск всех линейных соимплицент функции.

Лекция 4. Задачи распознавания. Вычислительная сложность задачи. Классы P и NP, NP-полные задачи. NP-полнота задачи 3-раскраски графов. Задача обобщенной выполнимости.

Коллоквиум 1.

Часть 2. Обобщенная выполнимость.

Лекция 5. Слабо положительные и слабо отрицательные КНФ и функции. Критерии слабой положительности и слабой отрицательности функции. Полиномиальность проверки выполнимости слабо положительной и слабо отрицательной КНФ.

Лекция 6. Биюнктивные КНФ и функции. Критерий биюнктивности функции. Полиномиальность проверки выполнимости биюнктивной КНФ. Полиномиальность поиска решения выполнимой биюнктивной КНФ.

Лекция 7. ЛКНФ и мультиаффинные функции. Критерий мультиаффинности функции. Полиномиальность проверки выполнимости ЛКНФ. Полиномиальность проверки по полиному Жегалкина представимости функции в виде ЛКНФ. Функции, сохраняющие константу.

Лекция 8. Условная выразимость функций. Леммы об условной выразимости. Лемма о функции, не сохраняющий единицу, и о функции, сохраняющей ноль. Лемма о несамодополнительной функции. Лемма о самодополнительной функции.

Лекция 9. Лемма о не слабо положительной функции и не слабо отрицательной функции. Лемма о небиюнктивной функции и немультиаффинной функции. Условная выразимость дизъюнкции трех литералов.

Лекция 10. Теорема разделимости Шефера. Задача обобщенной выполнимости с бесконечным множеством.

Коллоквиум 2.

Семинары

Занятие 1. Сокращенная КНФ и способы ее построения.

Занятие 2. Полином Жегалкина. ЛКНФ и представимость в виде ЛКНФ.

Занятие 3. Классы P и NP, NP-полнота.

Коллоквиум 1 по теме "Функции алгебры логики и сложностные классы".

Занятие 4. Слабо положительные и слабо отрицательные функции.

Занятие 5. Биюнктивные и мультиаффинные функции.

Занятие 6. Теорема разделимости Шефера.

Коллоквиум 2 по теме "Теорема Шефера".

Программа курса

  • Функции алгебры логики. Конъюнктивные и дизъюнктивные нормальные формы (КНФ и ДНФ). Сокращенная КНФ и способы ее построения. Полиномы Жегалкина, быстрый способ построения полинома Жегалкина функции. Линейные конъюнктивные нормальные формы (ЛКНФ). Проверка представимости функции в виде ЛКНФ.
  • Задачи распознавания свойств. Классы P и NP. Полиномиальные, NP-трудные и NP-полные задачи. NP-полнота задачи k-раскраски графов при k >= 3. Задача обобщенной выполнимости S-ВЫП.
  • Слабо положительные, слабо отрицательные и биюнктивные КНФ и слабо положительные, слабо отрицательные и биюнктивные функции алгебры логики. Критерии слабой положительности, слабой отрицательности и биюнктивности функции. Полиномиальность распознавания выполнимости слабо положительной, слабо отрицательной и биюнктивной КНФ.
  • Линейные и мультиаффинные функции алгебры логики. Приведенное представление мультиаффинной функции алгебры логики. Критерий мультиаффинности функции. Полиномиальность распознавания выполнимости конъюнкции приведенных представлений мультиаффинных функций.
  • Условная выразимость функций алгебры логики, леммы об условной выразимости функций (о транзитивности, о замене множителя в конъюнктивной форме, о подстановке констант вместо переменных и о навешивании отрицаний над переменными). Лемма о функции, сохраняющей константу 0, и функции, не сохраняющей константу 1. Лемма о функции, не являющейся самодополнительной. Лемма о функции, не являющейся слабо положительной, и функции, не являющейся слабо отрицательной. Леммы о небиюнктивной функции и немультиаффинной функции. Теорема Шефера о разделимости вычислительной сложности задачи S-ВЫП.
  • Предикаты на конечном множестве. Формулы, S-формулы и замкнутые классы предикатов. Задача выполнимости ограничений S-ВЫП. Функции на конечном множестве. Формулы и замкнутые классы функций. Сохранение предиката функцией, полиморфизмы. Двузначный случай. Вычислительная сложность некоторых задач S-ВЫП. Теорема о разделимости вычислительной сложности задачи S-ВЫП.

Экзамен