Дискретные модели — различия между версиями

Материал из Кафедра математической кибернетики
Перейти к: навигация, поиск
(Лекции)
(Объявления)
Строка 4: Строка 4:
  
 
== Объявления ==
 
== Объявления ==
 +
 +
[[Media: exam-discr-mod.docx|Информация к экзамену]] по курсу "Дискретные модели", 2014 г.
  
 
== Лекции ==
 
== Лекции ==

Версия 15:00, 9 апреля 2014

Программа обязательного курса для студентов магистратуры, 1-й курс, 2-й семестр.

Лектор - доцент Селезнева Светлана Николаевна.

Объявления

Информация к экзамену по курсу "Дискретные модели", 2014 г.

Лекции

  • Лекция 1: Выборки. Размещения, перестановки, размещения с повторениями, сочетания, сочетания с повторениями, их число и рекуррентные формулы для них. Примеры. Лекция 1
  • Лекция 2: Свойства комбинаторных чисел. Производящие функции, подсчет комбинаторных сумм и доказательство комбинаторных тождеств. Принцип включений-исключений. Лекция 2
  • Лекция 3: Рекуррентные уравнения. Линейные однородные и неоднородные рекуррентные уравнения (ЛОРУ и ЛНРУ). Общие решения ЛОРУ и ЛНРУ. Примеры. Лекция 3
  • Лекции 4-5: Графы. Транспортная задача. Поток в транспортной сети и его величина. Сечения, пропускная способность сечения. Теорема Форда-Фалкерсона о величине максимального потока в транспртной сети. Алгоритм построения максимального потока в сети. Лекции 4-5
  • Лекция 6: Задача выбора маршрутов и ее частный случай - задача распределения рейсов по дням. Графовая модель задачи распределения рейсов. Хроматическое число графа. Критерий двураскрашиваемости графа. Верхние и нижние оценки хроматических чисел графов. Лекция 6
  • Лекция 7: Графы интервалов. Применения графов интервалов. Задача регулирования транспорта светофором. Графовая модель задачи управления сигналами светофора. Лекция 7

Литература

  1. Яблонский С.В. Введение в дискретную математику. М.: Высшая школа, 2001.
  2. Гаврилов Г.П., Сапоженко А.А. Задачи и упражнения по дискретной математике. М.: Физматлит, 2004.
  3. Форд Л.Р., Фалкерсон Д.Р. Потоки в сетях. М.: Мир, 1966.
  4. Робертс Ф.С. Дискретные математические модели с приложениями к социальным, биологическим и экологическим задачам. М.: Наука, 1986.