Дискретные модели — различия между версиями
(→Программа курса) |
|||
Строка 41: | Строка 41: | ||
#Емеличев В.А., Мельников О.И., Сарванов В.И., Тышкевич Р.И. Лекции по теории графов. М.: Наука, 1990. | #Емеличев В.А., Мельников О.И., Сарванов В.И., Тышкевич Р.И. Лекции по теории графов. М.: Наука, 1990. | ||
#Bondy J.A., Murty U.S.R. Graph theory. Springer, 2008. | #Bondy J.A., Murty U.S.R. Graph theory. Springer, 2008. | ||
− | #Оре О. Теория графов. М.: Наука, 1980. | + | <!---#Оре О. Теория графов. М.: Наука, 1980. |
#Харари Ф. Теория графов. М.: Мир, 1973. | #Харари Ф. Теория графов. М.: Мир, 1973. | ||
− | #Липский В. Комбинаторика для программистов. М.: Мир, 1988. | + | #Липский В. Комбинаторика для программистов. М.: Мир, 1988.---> |
==О проведении экзамена== | ==О проведении экзамена== |
Версия 22:11, 6 февраля 2022
Курс для студентов неинтегрированной магистратуры (1-й курс, 2-й семестр)
Лекции - 16 ч, отчетность - экзамен.
Лектор - Селезнева Светлана Николаевна.
Объявления
Программа курса
Тема 1. Многозначные логики.
- Лекция 1: Функции k-значной логики. Формулы. Теоремы о представлении функций k-значной логики в 1-й и 2-й формах.
- Лекция 2: Полиномы. Теорема о представлении функций k-значной логики полиномами по модулю k. Полнота в P_k. Теорема о полноте системы Поста. Функция Вебба.
- Лекция 3: Замыкание и замкнутый класс. Сохранение функцией отношения. Замкнутые классы функций, сохраняющих отношение. Критериальная система. Предполные классы.
- Лекция 4: Распознавание полноты в P_k. Замкнутый класс, базис замкнутого класса. Теорема Янова и теорема Мучника. Замкнутые классы в P_k при k >= 3.
Тема 2. Графы.
- Лекция 5: Графы. Простейшие свойства графов.Деревья, остовные деревья. Число остовных деревьев полного помеченного графа. Оценка числа висячих вершин в остовном дереве графа.
- Лекция 6: Раскраски графов. Хроматическое число графа. Критерий двуцветности графа. Оценки хроматического числа графа.
- Лекция 7: Наследственные свойства графов. Экстремальные графы. Оценка числа ребер в графе с наследственным свойством. Планарные графы, наибольшее число ребер в планарном графе. Наибольшее число ребер в графе без треугольников. Теорема Турана о наибольшем числе ребер в графе без полного графа с n вершинами.
- Лекция 8: Числа Рамсея. Верхняя и нижняя оценки чисел Рамсея.
Литература
- Яблонский С.В. Введение в дискретную математику. М.: Высшая школа, 2001.
- Алексеев В.Б. Лекции по дискретной математике. М.: Инфра-М, 2012.
- Гаврилов Г.П., Сапоженко А.А. Задачи и упражнения по дискретной математике. М.: Физматлит, 2004.
- Емеличев В.А., Мельников О.И., Сарванов В.И., Тышкевич Р.И. Лекции по теории графов. М.: Наука, 1990.
- Bondy J.A., Murty U.S.R. Graph theory. Springer, 2008.
О проведении экзамена
Экзамен проходит в виде письменной работы. На экзамене не разрешается пользоваться никакими материалами. Письменная работа содержит 10 заданий. Задания 1-4 - типовые задачи, каждая из которых оценивается в 3 балла (примерный перечень типовых задач ниже). Каждое из заданий 5-8 - определение или формулировка теоремы с дополнительным вопросом, который проясняет суть определения или теоремы. Каждое из заданий 5-8 оценивается в 3 балла. Задания 9-10 - нестандартные задачи или доказательство теоремы или ее части. Каждое из заданий 9-10 оценивается в 4 балла. Продолжительность работы - 1,5 ч (одна пара).
За письменную работу можно получить не более 32 баллов. Критерии оценок:
не менее 27 баллов - "отлично";
20-26 баллов - "хорошо";
13-19 баллов - "удовлетворительно";
не более 12 баллов - "неудовлетворительно".
Примерный перечень типовых задач к экзамену:
1) доказать заданное тождество для функций k-значной логики ([3] гл. III 1.1(1-12));
2) записать заданную функцию k-значной логики в 1-й или во 2-й форме при заданном k ([3] гл. III 1.11);
3) построить полином по модулю k для заданной функции k-значной логики при заданном простом k ([3] гл. III 2.7);
4) выяснить, задается ли полиномом по модулю k заданная функция k-значной логики при заданном составном k ([3] гл. III 2.12);
5) исследовать заданную систему функций на полноту ([3] гл. III 2.13, 2.19, 2.21, 2.22);
6) найти число попарно неизоморфных графов определенного вида и перечислить эти графы ([3] гл. VI 1.3-1.8, 1.29);
7) построить код заданного остовного дерева полного графа или восстановить остовное дерево полного графа по его коду ([4] стр. 79-80);
8) построить остовное дерево для заданного связного графа с заданным числом висячих вершин;
9) найти хроматическое число заданного графа ([3] гл. VI 2.18, 2.19);
10) найти наибольшее число ребер в графе с заданным наследственным свойством ([3] гл. VI 2.8, 2.9, 2.10, 2.17).