Участник:SeleznevaSN — различия между версиями
Материал из Кафедра математической кибернетики
(→Полиномы над конечными полями) |
|||
Строка 31: | Строка 31: | ||
'''Публикации''' | '''Публикации''' | ||
− | *О некоторых свойствах полиномов над конечным полем | + | *О некоторых свойствах полиномов над конечным полем // Дискретная математика (2001), т. 13, вып. 2, с. 111-119. |
== Спецсеминары == | == Спецсеминары == |
Версия 11:27, 3 февраля 2014
Селезнева Светлана Николаевна — кандидат физико-математических наук, доцент,e-mail: selezn@cs.msu.su
Содержание
Области научных интересов и публикации
Полиномиальные представления булевых и многозначных функций
Исследуется сложность представления булевых и многозначных функций полиномиальными формами различных видов.
Публикации
- О сложности представления функций многозначных логик поляризованными полиномами // Дискретная математика (2002), т. 14, вып. 2, с. 48-53.
Алгоритмическая сложность распознавания свойств булевых и многозначных функций
Исследуется сложность алгоритмов распознавания свойств булевых и многозначных функций, заданных в определенном языке.
Публикации
- Полиномиальный алгоритм распознавания принадлежности функций k-значных логик, представленных полиномами, к предполным классам линейных функций // Вестник МГУ. Серия 15. Вычислительная математика и математическая кибернетика (2001), вып. 3, с. 40-43.
- Полиномиальный алгоритм для распознавания принадлежности реализованной полиномом функции k-значной логики предполным классам самодвойственных функций. (Полный текст работы) // Дискретная математика. Т. 10. № 3. 1998. С. 64-72.
- О сложности распознавания полноты множеств булевых функций, реализованных полиномами Жегалкина. (Полный текст работы) // Дискретная математика. Т. 9. № 4. 1997. С. 24-31.
Полиномы над конечными полями
Изучаются свойства полиномов над конечными полями во взаимосвязи с полиномиальными представлениями конечнозначных функций.
Публикации
- О некоторых свойствах полиномов над конечным полем // Дискретная математика (2001), т. 13, вып. 2, с. 111-119.
Спецсеминары
Сложность решения дискретных задач
Лекционные курсы
Избранные вопросы дискретной математики
Дискретная математика 2 (группа 141)
Дискретные модели (магистратура, 1-й курс)
Булевы функции и полиномы (спецкурс)
Учебные пособия
Селезнева С.Н. Основы дискретной математики. М.: МАКС Пресс, 2010.
Алексеев В.Б., Вороненко А.А., Ложкин С.А., Романов Д.С., Сапоженко А.А., Селезнева С.Н. Задачи по курсу "Основы кибернетики", 2-е изд. М.: МАКС Пресс, 2011.
Аспиранты и студенты
Заметки
20.01.2014 г. О вечере кафедры математический кибернетики