Шаблон:Current Seminars — различия между версиями

Материал из Кафедра математической кибернетики
Перейти к: навигация, поиск
(Доклады на спецсеминарах)
(Доклады на спецсеминарах)
Строка 20: Строка 20:
 
|-
 
|-
 
|colspan="3"|'''[[Теория управляющих систем и математические модели СБИС]]'''  
 
|colspan="3"|'''[[Теория управляющих систем и математические модели СБИС]]'''  
{{announce Seminar| 23 марта
+
{{announce Seminar| 6 апреля
| Доклад по статье Редькина Н.П. «К вопросу о длине диагностических тестов для схем» (Матем. заметки, 2017, том 102, выпуск 4, с. 624–627).
+
|-
| align="center" | Курбацкая В.К.
+
| Доклад «Алгоритмы синтеза схем-заплаток для решения задачи ресурсо-ориентированной функциональной коррекции схем из функциональных элементов»
 +
| align="center" | Высоцкий Л. И., Жуков В. В.
 
|}}
 
|}}
 
{{announce Seminar| 16 марта
 
{{announce Seminar| 16 марта

Версия 00:36, 6 апреля 2018

Доклады на спецсеминарах

Дискретная математика и математическая кибернетика
Дискретные функции и сложность алгоритмов
Дискретный анализ
Теория управляющих систем и математические модели СБИС
6 апреля - Доклад «Алгоритмы синтеза схем-заплаток для решения задачи ресурсо-ориентированной функциональной коррекции схем из функциональных элементов»
16 марта Доклад по препринту Попкова К.А. «Полные проверяющие тесты длины два для схем при произвольных константных неисправностях элементов», Препринт № 104 за 2017 г. ИПМ им. М.В. Келдыша РАН, М.: ИПМ им. М.В. Келдыша РАН, 2017, 16 с. Мальцев А.Н.
2 марта 2018 г. Доклад по статье Ложкина С.А., Власова Н.В. "О сложности мультиплексорной функции в классе пи-схем". Хзмолян Д.Э.


Сложность решения дискретных задач
6 апреля 2018 г. Попарная согласованность систем ограничений. Доклад по статье: Janssen P., Jegou P., Nouguier B., Vilarem M.C. A filtering process for general constraint satisfaction problems: achieving pairwise-consistency using an associated binary representations. Шурыгин Дмитрий (318 гр.)


Теоретические проблемы программирования
1 декабря 2017 г.


Доклад по статье J. Howard Johnson Рациональные отношения эквивалентности

В данной статье рассматриваются рациональные отношения (конечные трансдукции), которые являются отношениями эквивалентности. После установления иерархии включений, изучаются сложность вычисления канонических функций и разрешимость некоторых задач принадлежности к классу. Рассматриваются следующие классы: рациональные отношения эквивалентности, ядра эквивалентности рациональных функций, детерминированные рациональные отношения эквивалентности, ядра эквивалентности субсеквенциальных функций, распознаваемые отношения эквивалентности, ограниченные по длине отношения эквивалентности и конечные отношения эквивалентности.  

М. Аббас