Дискретные модели управляющих систем — различия между версиями
(→Объявления) |
|||
Строка 4: | Строка 4: | ||
==Объявления== | ==Объявления== | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
Экзамен проходит устно. В билете - два вопроса. Подготовка к ответу в течение одного часа, можно пользоваться любыми источниками. Ответ на билет у доски. Сначала аспирант выписывает на доске заметки к ответу, при этом можно пользоваться только своими записями, сделанными во время часа подготовки. После ответа на оба вопроса билета аспиранту предлагается дополнительный вопрос (определение, теорема, идея доказательства). Ответ на дополнительный вопрос - без источников. | Экзамен проходит устно. В билете - два вопроса. Подготовка к ответу в течение одного часа, можно пользоваться любыми источниками. Ответ на билет у доски. Сначала аспирант выписывает на доске заметки к ответу, при этом можно пользоваться только своими записями, сделанными во время часа подготовки. После ответа на оба вопроса билета аспиранту предлагается дополнительный вопрос (определение, теорема, идея доказательства). Ответ на дополнительный вопрос - без источников. | ||
Строка 43: | Строка 37: | ||
Замкнутый класс и базис замкнутого класса. Теоремы Янова и Мучника о существовании в многозначных логиках замкнутых классов без базиса и со счетным базисом. [1] стр. 67-69, [[Media: dmus7-selezn.pdf| Слайды к лекции 7]] | Замкнутый класс и базис замкнутого класса. Теоремы Янова и Мучника о существовании в многозначных логиках замкнутых классов без базиса и со счетным базисом. [1] стр. 67-69, [[Media: dmus7-selezn.pdf| Слайды к лекции 7]] | ||
− | '''Лекция 8'''. | + | '''Лекция 8'''. Конечные автоматы. Регулярные события и их представления в автоматах. |
− | Конечные автоматы | + | Конечные автоматы без выхода, детерминированные и недетерминированные. Автоматные множества. Пример неавтоматного множества. Теорема о совпадении классов множеств слов, допускаемых конечными детерминированными и недетерминированными автоматами. Процедура детерминизации конечного автомата. |
+ | [[Media: dmus8-selezn.pdf| Слайды к лекции 8]] | ||
− | '''Лекция 9'''. | + | '''Лекция 9'''. Конечные автоматы. Регулярные события и их представления в автоматах. |
− | + | Операции над автоматными множествами: дополнение, объединение, пересечение, произведение, итерация, их автоматность. | |
+ | [[Media: dmus9-selezn.pdf| Слайды к лекции 9]] | ||
− | '''Лекция | + | '''Лекция 10'''. Конечные автоматы. Регулярные события и их представления в автоматах. |
− | + | Регулярные выражения и регулярные множества. Совпадение классов автоматных и регулярных множеств. | |
+ | [[Media: dmus10-selezn.pdf| Слайды к лекции 10]] | ||
− | |||
− | '''Лекция 14'''. Конечные поля и их основные свойства. | + | '''Лекция 11'''. Конечные автоматы. Эксперименты с автоматами. |
+ | |||
+ | Конечные автоматы с выходом. Преобразование периодических последовательностей конечными автоматами с выходом. Отличимость состояний в конечных автоматах с выходом. Упрощение автоматов. | ||
+ | [[Media: dmus11-selezn.pdf| Слайды к лекции 11]] | ||
+ | |||
+ | '''Лекция 12'''. Конечные поля и их основные свойства. | ||
+ | |||
+ | Кольца, поля. Теорема о конечном целостном кольце. Характеристика кольца. Кольцо многочленов. Деление с остатком многочленов над полем. Неприводимые многочлены над полем. Поле остатков от деления на неприводимый многочлен над полем. | ||
+ | [[Media: dmus12-selezn.pdf| Слайды к лекции 12]] | ||
+ | |||
+ | '''Лекция 13'''. Конечные поля и их основные свойства. | ||
+ | |||
+ | Построение конечных полей. Вычисления в конечных полях. Свойства мультипликативной группы конечного поля. | ||
+ | [[Media: dmus13-selezn.pdf| Слайды к лекции 13]] | ||
+ | |||
+ | '''Лекция 14'''. Конечные поля и их основные свойства. | ||
+ | |||
+ | Произведение неприводимых многочленов степени, кратной n. Число неприводимых многочленов над простым полем. Расширения полей. Корни неприводимых многочленов над простым полем в его расширении. Существование и единственность поля с p^n элементами, где p - простое число, n \ge 1. | ||
+ | [[Media: dmus14-selezn.pdf| Слайды к лекции 14]] | ||
'''Литература''' | '''Литература''' | ||
− | + | ||
# Яблонский С. В. Введение в дискретную математику. М.: Высшая школа, 2001. | # Яблонский С. В. Введение в дискретную математику. М.: Высшая школа, 2001. | ||
# Алексеев В.Б. Лекции по дискретной математике. М.: Инфра-М, 2012. | # Алексеев В.Б. Лекции по дискретной математике. М.: Инфра-М, 2012. | ||
Строка 71: | Строка 85: | ||
==Вопросы к экзамену== | ==Вопросы к экзамену== | ||
− | Весенний семестр | + | Весенний семестр 2017-2018 учебного года |
# Размещения, перестановки, размещения с повторениями, сочетания, их число и рекуррентные формулы для них. Сочетания с повторениями. Теорема о числе сочетаний с повторениями. | # Размещения, перестановки, размещения с повторениями, сочетания, их число и рекуррентные формулы для них. Сочетания с повторениями. Теорема о числе сочетаний с повторениями. | ||
Строка 89: | Строка 103: | ||
# Шефферовы функции. Критерий шефферовости. | # Шефферовы функции. Критерий шефферовости. | ||
# Замкнутый класс и базис замкнутого класса. Теоремы Янова и Мучника о существовании в многозначных логиках замкнутых классов без базиса и со счетным базисом. | # Замкнутый класс и базис замкнутого класса. Теоремы Янова и Мучника о существовании в многозначных логиках замкнутых классов без базиса и со счетным базисом. | ||
+ | |||
+ | '''Список вопросов не завершен, он будет продолжен''' | ||
[[Категория:Лекционные курсы кафедры МК]] | [[Категория:Лекционные курсы кафедры МК]] |
Версия 22:16, 7 февраля 2018
Обязательный курс для аспирантов 1 г/о кафедр ИО, МК, ММП
Курс читает доцент Селезнева Светлана Николаевна
Объявления
Экзамен проходит устно. В билете - два вопроса. Подготовка к ответу в течение одного часа, можно пользоваться любыми источниками. Ответ на билет у доски. Сначала аспирант выписывает на доске заметки к ответу, при этом можно пользоваться только своими записями, сделанными во время часа подготовки. После ответа на оба вопроса билета аспиранту предлагается дополнительный вопрос (определение, теорема, идея доказательства). Ответ на дополнительный вопрос - без источников.
Лекции
Лекция 1. Комбинаторика. Основные комбинаторные числа. Оценки и асимптотики комбинаторных чисел.
Размещения, перестановки, размещения с повторениями, сочетания, их число и рекуррентные формулы для них. Сочетания с повторениями. Теорема о числе сочетаний с повторениями. Оценки и асимптотики биномиальных коэффициентов. Оценки и асимптотики сумм биномиальных коэффициентов. [1] стр. 171-183, 213-214, Слайды к лекции 1
Лекция 2. Графы. Граф и сеть. Оценки числа графов и сетей различных видов. Планарные графы. Формула Эйлера для планарных графов. Теорема Понтрягина-Куратовского.
Графы и сети. Оценка числа псевдографов с q ребрами. Оценка числа деревьев с q ребрами. Планарные графы. Формула Эйлера для планарных графов. Теорема о наибольшем числе ребер в планарном графе. Непланарность графов K5 и K3,3. Теорема Понтрягина-Куратовского. [1] стр. 222-227, 230-233, [2] стр. 26-38, [3] стр. 126-129, Слайды к лекции 2
Лекция 3. Графы. Экстремальная теория графов. Теорема Турана. Теорема Рамсея.
Наследственные свойства графов. Теорема о числе ребер в графах с наследственным свойством. Теорема о числе ребер в графе без треугольников. Теорема Турана о числе ребер в графе без полного графа с n вершинами. Числа Рамсея. Оценки чисел Рамсея. [3] стр. 28-31, [4] стр. 301-302, 308-313, Слайды к лекции 3
Лекция 4. Многозначные логики. Способы представления k-значных функций. Полнота. Система Поста.
Функции k-значной логики. Способы представления k-значных функций: 1-я и 2-я формы, полиномы. Полные системы. Теорема о полноте системы Поста в k-значной логике. [1] стр. 43-50, 69-73, Слайды к лекции 4
Лекция 5. Многозначные логики. Алгоритм распознавания полноты конечных систем k-значных функций. Теорема Кузнецова о функциональной полноте.
Теорема о существовании алгоритма распознавания полноты в k-значной логике. Классы функций, сохраняющих множество и сохраняющих разбиение, их замкнутость. Теорема Кузнецова о функциональной полноте. [1] стр. 50-56, Слайды к лекции 5
Лекция 6. Многозначные логики. Теорема Яблонского. Теорема Слупецкого.
Существенные функции. Три леммы о существенных функциях. Теорема Яблонского. Теорема Слупецкого. [1] стр. 56-65, Слайды к лекции 6
Лекция 7. Многозначные логики. Особенности многозначных логик.
Замкнутый класс и базис замкнутого класса. Теоремы Янова и Мучника о существовании в многозначных логиках замкнутых классов без базиса и со счетным базисом. [1] стр. 67-69, Слайды к лекции 7
Лекция 8. Конечные автоматы. Регулярные события и их представления в автоматах.
Конечные автоматы без выхода, детерминированные и недетерминированные. Автоматные множества. Пример неавтоматного множества. Теорема о совпадении классов множеств слов, допускаемых конечными детерминированными и недетерминированными автоматами. Процедура детерминизации конечного автомата. Слайды к лекции 8
Лекция 9. Конечные автоматы. Регулярные события и их представления в автоматах.
Операции над автоматными множествами: дополнение, объединение, пересечение, произведение, итерация, их автоматность. Слайды к лекции 9
Лекция 10. Конечные автоматы. Регулярные события и их представления в автоматах.
Регулярные выражения и регулярные множества. Совпадение классов автоматных и регулярных множеств. Слайды к лекции 10
Лекция 11. Конечные автоматы. Эксперименты с автоматами.
Конечные автоматы с выходом. Преобразование периодических последовательностей конечными автоматами с выходом. Отличимость состояний в конечных автоматах с выходом. Упрощение автоматов. Слайды к лекции 11
Лекция 12. Конечные поля и их основные свойства.
Кольца, поля. Теорема о конечном целостном кольце. Характеристика кольца. Кольцо многочленов. Деление с остатком многочленов над полем. Неприводимые многочлены над полем. Поле остатков от деления на неприводимый многочлен над полем. Слайды к лекции 12
Лекция 13. Конечные поля и их основные свойства.
Построение конечных полей. Вычисления в конечных полях. Свойства мультипликативной группы конечного поля. Слайды к лекции 13
Лекция 14. Конечные поля и их основные свойства.
Произведение неприводимых многочленов степени, кратной n. Число неприводимых многочленов над простым полем. Расширения полей. Корни неприводимых многочленов над простым полем в его расширении. Существование и единственность поля с p^n элементами, где p - простое число, n \ge 1. Слайды к лекции 14
Литература
- Яблонский С. В. Введение в дискретную математику. М.: Высшая школа, 2001.
- Алексеев В.Б. Лекции по дискретной математике. М.: Инфра-М, 2012.
- Харари Ф. Теория графов. М.: Мир, 1973.
- Bondy J.A., Murty U.S.R. Graph theory. Springer, 2008.
- Сапоженко А.А. Некоторые вопросы сложности алгоритмов. М.: Издательский отдел ф-та ВМК МГУ им. М.В. Ломоносова, 2001.
- Лидл Р., Нидеррайтер Г. Конечные поля. Том 1. М.: Мир, 1988.
- Нигматуллин Р.Г. Сложность булевых функций. Казань: Изд-во Казанского университета, 1983.
Вопросы к экзамену
Весенний семестр 2017-2018 учебного года
- Размещения, перестановки, размещения с повторениями, сочетания, их число и рекуррентные формулы для них. Сочетания с повторениями. Теорема о числе сочетаний с повторениями.
- Поведение последовательности биномиальных коэффициентов. Верхняя оценка биномиального коэффициента. Асимптотика суммы биномиальных коэффициентов.
- Граф. Оценка числа псевдографов с q ребрами. Оценка числа деревьев с q ребрами.
- Планарный граф. Формула Эйлера для планарных графов. Непланарность графов K5 и K3,3. Теорема Понтрягина-Куратовского (только формулировка).
- Наследственные свойства графов. Теорема о числе ребер в графах с наследственным свойством. Теорема о числе ребер в планарном графе.
- Теорема о числе ребер в графе без треугольников. Теорема Турана о числе ребер в графе без полного графа с n вершинами.
- Числа Рамсея. Верхняя и нижняя оценки чисел Рамсея.
- Полная система. Теорема о представимости функций k-значной логики в 1-й форме. Теорема о полноте системы Поста в k-значной логике.
- Полная система. Теорема о представимости функций k-значной логики во 2-й форме. Теорема о полноте системы полиномов.
- Полная система. Теорема о существовании алгоритма распознавания полноты в k-значной логике.
- Полная система. Замкнутый класс. Теорема Кузнецова о функциональной полноте.
- Замкнутый класс. Классы функций, сохраняющих множество и сохраняющих разбиение, их замкнутость. Критерии их совпадения с Pk.
- Существенные функции. Леммы о существенных функциях: лемма о трех наборах, основная лемма, лемма о квадрате.
- Теорема Яблонского о полноте систем функций k-значной логики, содержащих все функции одной переменной, принимающие не более (k-1) значений. Теорема Слупецкого.
- Шефферовы функции. Критерий шефферовости.
- Замкнутый класс и базис замкнутого класса. Теоремы Янова и Мучника о существовании в многозначных логиках замкнутых классов без базиса и со счетным базисом.
Список вопросов не завершен, он будет продолжен