Предполные классы многозначной логики — различия между версиями

Материал из Кафедра математической кибернетики
Перейти к: навигация, поиск
(Новая страница: «Полугодовой спецкурс. Лектор — профессор Марченков Сергей Серафимович. == Программа к…»)
(нет различий)

Версия 18:46, 31 октября 2013

Полугодовой спецкурс. Лектор — профессор Марченков Сергей Серафимович.

Программа курса

Предикаты на множестве Невозможно разобрать выражение (Преобразование в PNG прошло с ошибкой — проверьте правильность установки latex и dvips (или dvips + gs + convert)): E_k . Отношение сохранения предиката функцией. Предикатное описание классов Невозможно разобрать выражение (Преобразование в PNG прошло с ошибкой — проверьте правильность установки latex и dvips (или dvips + gs + convert)): T_0, T_1, S, M, L .

Семейства предикатов P, O, L, E, C, B. Замкнутость семейств P, O, L, E, C, B относительно операции декартовой степени. Замкнутость семейств E, C, B относительно операции взятия полного прообраза. Соотношение между классами функций Невозможно разобрать выражение (Преобразование в PNG прошло с ошибкой — проверьте правильность установки latex и dvips (или dvips + gs + convert)): \rm{Pol}(\rho)

и Невозможно разобрать выражение (Преобразование в PNG прошло с ошибкой — проверьте правильность установки latex и dvips (или dvips + gs + convert)): \rm{Pol}(\rho^l)

.

Предполнота классов типа P.

Предполнота классов типа O и E.

Класс функций, линейных по простому модулю. Предполнота классов типа L.

Предполнота классов типа C.

Леммы о трех наборах и о квадрате. Класс Слупецкого. Предполнота классов типа B.

Однородные функции. Примеры однородных функций. Построение конечного базиса в классе однородных функций.

Литература

  1. Rosenberg I.G. Über die funktionale Vollständigkeit in der mehrvertigen Logiken // Rozpravy Československě Akad. Věd. Řada Math. Přir. Věd. Praha. — 1970. — Bd. 80. — S. 3—93
  2. Яблонский С.В., Гаврилов Г.П., Набебин А.А. Анализ и синтез схем в многозначных логиках. Часть I. М.: Из-во МЭИ, 1989.
  3. Яблонский С.В., Гаврилов Г.П., Набебин А.А. Предполные классы в многозначных логиках. М.: Из-во МЭИ, 1997.
  4. Марченков С.С. Предполнота замкнутых классов в P_k: предикатный подход // Математические вопросы кибернетики, вып. 6. — 1996. — С. 117—132.
  5. Буевич В.А. Вариант доказательства критерия полноты для функций Невозможно разобрать выражение (Преобразование в PNG прошло с ошибкой — проверьте правильность установки latex и dvips (или dvips + gs + convert)): k

-значной логики // Дискретная математика. — 1996. — Т. 8, N 4. — С. 11—36.

  1. Марченков С.С. Однородные алгебры // Проблемы кибернетики, вып. 39. — 1982. — С. 85—106.

Ссылки

  • Программа курса (pdf)