Операторы замыкания в многозначной логике — различия между версиями

Материал из Кафедра математической кибернетики
Перейти к: навигация, поиск
(Новая страница: «Полугодовой спецкурс. Лектор — профессор Марченков Сергей Серафимович. == Программа к…»)
(нет различий)

Версия 18:44, 31 октября 2013

Полугодовой спецкурс. Лектор — профессор Марченков Сергей Серафимович.

Программа курса

Оператор параметрического замыкания. Основные свойства параметрического замыкания. Принцип двойственности для параметрической выразимости.

Базисы классов Невозможно разобрать выражение (Преобразование в PNG прошло с ошибкой — проверьте правильность установки latex и dvips (или dvips + gs + convert)): T_0 , Невозможно разобрать выражение (Преобразование в PNG прошло с ошибкой — проверьте правильность установки latex и dvips (или dvips + gs + convert)): T_1 , параметрический базис класса Невозможно разобрать выражение (Преобразование в PNG прошло с ошибкой — проверьте правильность установки latex и dvips (или dvips + gs + convert)): T_{01} . Базис класса Невозможно разобрать выражение (Преобразование в PNG прошло с ошибкой — проверьте правильность установки latex и dvips (или dvips + gs + convert)): S , параметрический базис класса Невозможно разобрать выражение (Преобразование в PNG прошло с ошибкой — проверьте правильность установки latex и dvips (или dvips + gs + convert)): S_{01} .

Параметрическая замкнутость классов Невозможно разобрать выражение (Преобразование в PNG прошло с ошибкой — проверьте правильность установки latex и dvips (или dvips + gs + convert)): T_0 , Невозможно разобрать выражение (Преобразование в PNG прошло с ошибкой — проверьте правильность установки latex и dvips (или dvips + gs + convert)): S , Невозможно разобрать выражение (Преобразование в PNG прошло с ошибкой — проверьте правильность установки latex и dvips (или dvips + gs + convert)): D . Параметрическая замкнутость класса Невозможно разобрать выражение (Преобразование в PNG прошло с ошибкой — проверьте правильность установки latex и dvips (или dvips + gs + convert)): L . Параметрическая замкнутость класса Невозможно разобрать выражение (Преобразование в PNG прошло с ошибкой — проверьте правильность установки latex и dvips (или dvips + gs + convert)): U .

Лемма о параметрическом замыкании функции из Невозможно разобрать выражение (Преобразование в PNG прошло с ошибкой — проверьте правильность установки latex и dvips (или dvips + gs + convert)): S\setminus L . Критерий параметрической полноты в классе Невозможно разобрать выражение (Преобразование в PNG прошло с ошибкой — проверьте правильность установки latex и dvips (или dvips + gs + convert)): P_2 . Критерий параметрической полноты в классе Невозможно разобрать выражение (Преобразование в PNG прошло с ошибкой — проверьте правильность установки latex и dvips (или dvips + gs + convert)): T_0 . Критерии параметрической полноты в классах Невозможно разобрать выражение (Преобразование в PNG прошло с ошибкой — проверьте правильность установки latex и dvips (или dvips + gs + convert)): S, S_{01} . Критерий параметрической полноты в классе Невозможно разобрать выражение (Преобразование в PNG прошло с ошибкой — проверьте правильность установки latex и dvips (или dvips + gs + convert)): T_{01} .

Оператор позитивного замыкания. Основные свойства позитивного замыкания. Позитивная полнота множества всех констант. Позитивно замкнутые классы булевых функций. Порождение позитивно замкнутого класса множеством всех его Невозможно разобрать выражение (Преобразование в PNG прошло с ошибкой — проверьте правильность установки latex и dvips (или dvips + gs + convert)): k -местных функций.

Оператор замыкания Невозможно разобрать выражение (Преобразование в PNG прошло с ошибкой — проверьте правильность установки latex и dvips (или dvips + gs + convert)): 1L_k , Невозможно разобрать выражение (Преобразование в PNG прошло с ошибкой — проверьте правильность установки latex и dvips (или dvips + gs + convert)): 1L_2 -замкнутые классы.

Оператор эквационального замыкания. Эквациональная полнота множества всех констант. Порождение эквационально замкнутого класса множеством всех его Невозможно разобрать выражение (Преобразование в PNG прошло с ошибкой — проверьте правильность установки latex и dvips (или dvips + gs + convert)): k -местных функций. Соотношение между операторами Pol и Eq. Эквационально замкнутые классы булевых функций.

Оператор замыкания с разветвлением по предикату. E-полнота множества всех констант. E-замкнутые классы булевых функций.

Литература

  1. Кузнецов А.В. О средствах для обнаружения невыводимости и невыразимости. В кн. "Логический вывод". М.: Наука, 1979. С. 5—33.
  2. Марченков С.С. О выразимости функций многозначной логики в некоторых логико-функциональных языках // Дискретная математика. — 1999. — Т. 11, N 4. — С. 110—126.
  3. Марченков С.С. Замкнутые классы булевых функций. М.: Физматлит, 2000.
  4. Марченков С.С. Операторы замыкания с разветвлением по предикату // Вестник МГУ. Серия 1. Математика. Механика. == 2003. — N 6. — С. 37—39.
  5. Марченков С.С. Эквациональное замыкание // Дискретная математика. — 2005. — Т. 17, N 2. — С. 117—126.

Ссылки

  • Программа курса (pdf)