Участник:SeleznevaSN — различия между версиями

Материал из Кафедра математической кибернетики
Перейти к: навигация, поиск
(Избранные вопросы дискретной математики)
(Лекции)
Строка 56: Строка 56:
 
* [[Дискретная математика (гр. 141)]]
 
* [[Дискретная математика (гр. 141)]]
 
* [[Дискретные модели (магистратура, 1-й курс)]]
 
* [[Дискретные модели (магистратура, 1-й курс)]]
 
==Лекции==
 
[[Media:dm_lection1.pdf|Лекция 1]]: Выборки. Размещения, перестановки, размещения с повторениями, сочетания, сочетания с повторениями, их число. Примеры.
 
 
[[Media:dm_lection2.pdf|Лекция 2]]: Биномиальные и полиномиальные коэффициенты, их свойства. Метод производящих функций (конечный случай). Оценки биномиальных коэффициентов и их сумм.
 
 
[[Media:dm_lection3.pdf|Лекция 3]]: Частично упорядоченные множества (ЧУМ). Диаграмма Хассе. Максимальные, минимальные, наибольший и наименьший элементы. Цепи и антицепи, длина и ширина конечных ЧУМ. Теорема о разбиении ЧУМ на антицепи. Теорема Дилуорса. Булев куб, его длина и ширина. Булеан.
 
 
[[Media:dm_lection4.pdf|Лекция 4]]: Теорема Анселя о разбиении булева куба на цепи. Оценки числа монотонных булевых функций. Расшифровка монотонных булевых функций.
 
 
[[Media:dm_lection5.pdf|Лекция 5]]: Покрытия множества и покрытия матрицы. Лемма о градиентном покрытии. Оценки мощности затеняющего множества булева куба и длины полиномиальных нормальных форм булевых функций.
 
 
[[Media:dm_lection6.pdf|Лекция 6]]: Коллоквиум 1.
 
 
[[Media:dm_lection7.pdf|Лекция 7]]: Функция Мёбиуса. Формула обращения Мёбиуса. Принцип включений-исключений.
 
 
[[Media:dm_lection8.pdf|Лекция 8]]: Линейные однородные и неоднородные рекуррентные уравнения.
 
 
[[Media:dm_lection9.pdf|Лекция 9]]: Группы. Изоморфизм групп. Симметрическая группа перестановок. Теорема Кэли.
 
 
[[Media:dm_lection10.pdf|Лекция 10]]: Подгруппы. Смежные классы. Теорема Лагранжа. Орбита и стабилизатор элемента. Лемма Бернсайда.
 
 
[[Media:dm_lection11.pdf|Лекция 11]]: Раскраски. Эквивалентность раскрасок относительно группы перестановок. Теорема Пойа (частный случай). Производящие функции. Перечисляющий ряд для фигур и перечисляющий ряд для функций. Теорема Пойа (общий случай). Примеры.
 
 
Лекция 12 (21.11): Коллоквиум 2.
 
 
Лекция 13 (28.11): Кольца. Кольцо многочленов.
 
 
Лекция 14 (5.12): Поля. Теорема о поле из p^n элементов, где p -- простое число, n > 1.
 
 
Лекция 15 (12.12): Линейные коды.
 
 
Лекция 16 (19.12): Функции k-значной логики и способы их представления.
 
  
 
== Избранные публикации ==
 
== Избранные публикации ==

Версия 16:46, 24 ноября 2013

Файл:Selezneva.jpg
Селезнева Светлана Николаевна
Селезнева Светлана Николаевна — кандидат физико-математических наук, доцент.


Области научных интересов

Полиномиальные представления булевых и многозначных функций

Исследуется сложность представления булевых и многозначных функций полиномиальными формами различных видов.

Алгоритмическая сложность распознавания свойств булевых и многозначных функций

Исследуется сложность алгоритмов распознавания свойств булевых и многозначных функций, заданных в определенном языке.

Полиномы над конечными полями

Изучаются свойства полиномов над конечными полями во взаимосвязи с полиномиальными представлениями конечнозначных функций.

Лекционные курсы

Лекции по курсу "Избранные вопросы дискретной математики" (3-й курс, группа 318)

Лекция 1: Выборки. Размещения, перестановки, размещения с повторениями, сочетания, сочетания с повторениями, их число. Примеры.

Лекция 2: Биномиальные и полиномиальные коэффициенты, их свойства. Метод производящих функций (конечный случай). Оценки биномиальных коэффициентов и их сумм.

Лекция 3: Частично упорядоченные множества (ЧУМ). Диаграмма Хассе. Максимальные, минимальные, наибольший и наименьший элементы. Цепи и антицепи, длина и ширина конечных ЧУМ. Теорема о разбиении ЧУМ на антицепи. Теорема Дилуорса. Булев куб, его длина и ширина. Булеан.

Лекция 4: Теорема Анселя о разбиении булева куба на цепи. Оценки числа монотонных булевых функций. Расшифровка монотонных булевых функций.

Лекция 5: Покрытия множества и покрытия матрицы. Лемма о градиентном покрытии. Оценки мощности затеняющего множества булева куба и длины полиномиальных нормальных форм булевых функций.

Лекция 6: Коллоквиум 1.

Лекция 7: Функция Мёбиуса. Формула обращения Мёбиуса. Принцип включений-исключений.

Лекция 8: Линейные однородные и неоднородные рекуррентные уравнения.

Лекция 9: Группы. Изоморфизм групп. Симметрическая группа перестановок. Теорема Кэли.

Лекция 10: Подгруппы. Смежные классы. Теорема Лагранжа. Орбита и стабилизатор элемента. Лемма Бернсайда.

Лекция 11: Раскраски. Эквивалентность раскрасок относительно группы перестановок. Теорема Пойа (частный случай). Производящие функции. Перечисляющий ряд для фигур и перечисляющий ряд для функций. Теорема Пойа (общий случай). Примеры.

Лекция 12 (21.11): Коллоквиум 2.

Лекция 13 (28.11): Кольца. Кольцо многочленов.

Лекция 14 (5.12): Поля. Теорема о поле из p^n элементов, где p -- простое число, n > 1.

Лекция 15 (12.12): Линейные коды.

Лекция 16 (19.12): Функции k-значной логики и способы их представления.

Избранные публикации

  1. О сложности распознавания полноты множеств булевых функций, реализованных полиномами Жегалкина. (PostScript) // Дискретная математика (1997), т. 9, вып. 4, с. 24-31.
  2. Полиномиальный алгоритм для распознавания принадлежности реализованной полиномом функции k-значной логики предполным классам самодвойственных функций. (PostScript) // Дискретная математика (1998), т. 10, вып. 3, с. 64-72.
  3. О некоторых свойствах полиномов над конечным полем. (PostScript) // Дискретная математика (2001), т. 13, вып. 2, с. 111-119.
  4. Полиномиальный алгоритм распознавания принадлежности функций k-значных логик, представленных полиномами, к предполным классам линейных функций. (PostScript) // Вестник МГУ. Серия 15. Вычислительная математика и математическая кибернетика (2001), вып. 3, с. 40-43.
  5. О сложности представления функций многозначных логик поляризованными полиномами. (PostScript) // Дискретная математика (2002), т. 14, вып. 2, с. 48-53.