Дискретная математика (1й курс) — различия между версиями
Строка 3: | Строка 3: | ||
*проф. [[Марченков Сергей Серафимович|С. С. Марченков]] | *проф. [[Марченков Сергей Серафимович|С. С. Марченков]] | ||
*доц. [[Романов Дмитрий Сергеевич|Д. С. Романов]] | *доц. [[Романов Дмитрий Сергеевич|Д. С. Романов]] | ||
− | == Вопросы к экзамену по курсу «Дискретная математика».== | + | == Вопросы к экзамену по курсу «Дискретная математика», 2015 год.== |
В билете 2 вопроса (один из части А и один из части В) и задача. | В билете 2 вопроса (один из части А и один из части В) и задача. |
Версия 09:25, 26 мая 2015
Содержание
Лекторы
- проф. В. Б. Алексеев
- проф. С. С. Марченков
- доц. Д. С. Романов
Вопросы к экзамену по курсу «Дискретная математика», 2015 год.
В билете 2 вопроса (один из части А и один из части В) и задача.
Часть А
Ответ без подготовки, по любым материалам (конспекты, книжки, распечатки лекций и т.д.). Проверяется, насколько осознаны все доказательства (основной вопрос – «почему?»). Определение и формулировки — без конспектов.
- Сокращенная дизъюнктивная нормальная форма. Метод ее построения по конъюнктивной нормальной форме (метод Нельсона).
- Алгоритм построения вектора коэффициентов полинома Жегалкина (с обоснованием).
- Двойственность. Класс самодвойственных функций, его замкнутость.
- Лемма о нелинейной функции.
- Теорема Поста о полноте системы функций алгебры логики.
- Теорема о предполных классах.
- Теоремы о представлении k-значных функций 2-й формой и полиномами.
- Деревья. Свойства деревьев.
- Алгоритм построения кратчайшего остовного дерева (с обоснованием).
- Теорема о раскраске планарных графов в 5 цветов.
- Алгоритм распознавания взаимной однозначности алфавитного кодирования (с обоснованием). Теорема Маркова.
- Неравенство Макмиллана.
- Существование префиксного кода с заданными длинами кодовых слов.
- Теорема редукции.
- Коды с исправлением r ошибок. Оценка функции Mr(n).
- Коды Хэмминга. Оценка функции M1(n).
- Схемы из функциональных элементов и элементов задержки. Автоматность осуществляемых ими отображений.
- Моделирование автоматной функции схемой из функциональных элементов и элементов задержки.
- Теорема Мура. Пример автомата, на котором достигается оценка теоремы Мура.
- Метод Карацубы построения схемы для умножения, верхняя оценка ее сложности.
Часть В
Ответ без конспектов и почти без подготовки (3-5 минут), с доказательствами (можно излагать устно).
- Функции алгебры логики. Равенство функций. Тождества для элементарных функций.
- Теорема о разложении функции алгебры логики по переменным. Теорема о совершенной дизъюнктивной нормальной форме.
- Полные системы. Примеры полных систем (с доказательством полноты).
- Теорема Жегалкина о представимости функции алгебры логики полиномом.
- Понятие замкнутого класса. Замкнутость классов
- Класс монотонных функций, его замкнутость.
- Лемма о несамодвойственной функции.
- Лемма о немонотонной функции.
- Теорема о максимальном числе функций в базисе в алгебре логики.
- k-значные функции. Теорема о существовании конечной полной системы в Pk.
- Основные понятия теории графов. Изоморфизм графов. Связность.
- Корневые деревья. Верхняя оценка их числа.
- Геометрическая реализация графов. Теорема о реализации графов в трехмерном пространстве.
- Планарные (плоские) графы. Формула Эйлера.
- Доказательство непланарности графов K5 и K3,3. Теорема Понтрягина-Куратовского (доказательство в одну сторону).
- Теорема о раскраске вершин графа в 2 цвета (теорема Кенига).
- Оптимальные коды, их свойства.
- Линейные двоичные коды. Теорема о кодовом расстоянии линейных кодов.
- Схемы из функциональных элементов. Реализация функций алгебры логики схемами.
- Сумматор. Верхняя оценка сложности сумматора. Вычитатель.
- Понятие автоматных функций, их представление диаграммой Мура. Единичная задержка.
- Несуществование эксперимента, определяющего начальное состояние автомата.
Литература
- Собственный конспект лекций.
- Алексеев В.Б. Лекции по дискретной математике. М.: Инфра-М, 2012. (Вопросы 3-6, 8, 10-35, 37, 39-41)
- Яблонский С.В. Введение в дискретную математику. М.: Наука, 1986. (Вопросы 1, 3-7, 11-13, 21-30)
- Гаврилов Г.П., Сапоженко А.А. Задачи и упражнения по дискретной математике. М.: Физматлит, 2004. (Вопрос 2 (стр. 53-56) и вопрос 38 (задача 4.9 из главы 7))
- Алексеев В.Б. Введение в теорию сложности алгоритмов. М.: Издательский отдел факультета ВМК МГУ, 2002 (Вопрос 9)
- Алексеев В.Б., Ложкин С.А. Элементы теории графов, схем и автоматов. М.: Издательский отдел факультета ВМК МГУ, 2000 (Вопрос 42)
- Емеличев В.А., Мельников О.И., Сарванов В.И., Тышкевич Р.И. Лекции по теории графов. М.: Наука, 1990 (Вопрос 36 (стр. 36-37 и 237))
Задачи на экзамене
По результатам контрольных работ по каждой из четырех тем (алгебра логики, графы, коды, автоматы) у каждого студента должна стоять одна из трех оценок — 0, 1/2 или 1. Оценка 0 означает, что на экзамене студент должен решить дополнительную задачу по данной теме, оценка 1/2, — что студент решает задачу по данной теме только в случае, если она выпадает в билете. Оценка 1 означает, что на экзамене студент не должен решать по данной теме как дополнительные задачи, так и задачу из билета. Дополнительные задачи решаются до выбора билета. Студенты, не решившие достаточное количество дополнительных задач, удаляются с экзамена с оценкой «неудовлетворительно», количество решенных задач может ограничить сверху оценку, получаемую на экзамене.
Задачи решаются без конспектов.
После ответа на билет возможна прогонка по всему материалу (определения, формулировки, идеи доказательств) и добавочные задачи на любые темы (не путать с дополнительными!).