Избранные вопросы теории графов — различия между версиями

Материал из Кафедра математической кибернетики
Перейти к: навигация, поиск
(Часть 3)
(Часть 3)
Строка 45: Строка 45:
  
 
[[Media:ivtg3-l7-selezn.pdf|'''Лекция 7''']]. Числа Рамсея. Верхняя оценка числа Рамсея. Нижняя оценка числа Рамсея--->
 
[[Media:ivtg3-l7-selezn.pdf|'''Лекция 7''']]. Числа Рамсея. Верхняя оценка числа Рамсея. Нижняя оценка числа Рамсея--->
 
 
<!---'''Лекция 8'''. Сеть. Поток в сети. Теорема о величине максимального потока в сети. Нахождение максимального потока в сети.
 
<!---'''Лекция 8'''. Сеть. Поток в сети. Теорема о величине максимального потока в сети. Нахождение максимального потока в сети.
  

Версия 14:40, 25 августа 2022

Обязательный курс для студентов 418 группы

Лекции 3 ч в неделю, отчетность - экзамен.

Лекторы - Романов Дмитрий Сергеевич, Селезнева Светлана Николаевна.

Часть 1

Алгебраические свойства графов

Лектор - Романов Дмитрий Сергеевич

Часть 2

Перечисления графов

Лектор - Романов Дмитрий Сергеевич

Часть 3

Структурные свойства графов

Лектор - Селезнева Светлана Николаевна

Программа части 3

  • Графы. Изоморфизм графов. Пути и циклы. Связность. Простейший свойства графов. Обходы графов. Деревья. Свойства деревьев. Остовные деревья. Число остовных деревьев в полном графе. Достижимость промежуточного числа висячих вершин в остовных деревьях. Число висячих вершин в остовных деревьях. Непересекающиеся остовные деревья.
  • Разделяющие вершины в графе. Свойства разделяющих вершин. Двусвязные графы. Свойства двусвязных графов. Мосты в графе. Свойства мостов. Реберно двусвязные графы их свойства. Компоненты двусвязности графа. Свойства компонент двусвязности. Разложение графа на компоненты двусвязности. Дерево компонент двусвязности и разделяющих вершин графа. Цепные разложения графа. Независимые деревья в графе. Реберно независимые деревья в графе.

Лекции


Литература к части 3

Основная:

1. Емеличев В.А., Мельников О.И., Сарванов В.И., Тышкевич Р.И. Лекции по теории графов. М.: Либроком, 2009.

2. Bondy J.A., Murty U.S.R. Graph theory. Springer, 2008.

Дополнительная:

3. Diestel R. Graph Theory. Springer, 2010.

4. Карпов Д.В. Теория графов

5. Харари Ф. Теория графов. М.: Мир, 1973.

6. Оре О. Теория графов. М.: Наука, 1980.

7. Гэри М., Джонсон Д. Вычислительные машины и труднорешаемые задачи. М.: Мир, 1982.

8. Липский В. Комбинаторика для программистов. М.: Мир, 1988.

9. Дасгупта С., Пападимитриу Х., Вазирани У. Алгоритмы. М.: МЦНМО, 2014.

10. Форд Л.Р., Фалкерсон Д.Р. Потоки в сетях. М.: Мир, 1966.

11. Гаврилов Г.П., Сапоженко А.А. Задачи и упражнения по дискретной математике. М.: Физматлит, 2004.


Проверочные работы по части 3.


По итогам проверочных работ для каждого студента выводится предварительная оценка по части 3. Для подтверждения предварительной оценки по части 3 на экзамене проводится опрос студента по темам этой части (определения, формулировки теорем, основные идеи доказательств). Для повышения предварительной оценки по части 3 (не более, чем на один балл), студент тянет билет по этой части, готовится (30 мин) и отвечает на вопрос билета, после чего проводится опрос по темам этой части (определения, формулировки теорем, основные идеи доказательств).