Дискретные функции и выполнимость ограничений — различия между версиями

Материал из Кафедра математической кибернетики
Перейти к: навигация, поиск
(Лекции)
(Лекции)
Строка 28: Строка 28:
  
 
[[Media: dfvo-l5-selezn.pdf | Лекция 5]]. Слабо положительные и слабо отрицательные КНФ и функции. Критерии слабой положительности и слабой отрицательности функции. Полиномиальность проверки выполнимости слабо положительной и слабо отрицательной КНФ.
 
[[Media: dfvo-l5-selezn.pdf | Лекция 5]]. Слабо положительные и слабо отрицательные КНФ и функции. Критерии слабой положительности и слабой отрицательности функции. Полиномиальность проверки выполнимости слабо положительной и слабо отрицательной КНФ.
 +
 +
[[Media: dfvo-l6-selezn.pdf | Лекция 6]]. Биюнктивные КНФ и функции. Критерий биюнктивности функции. Полиномиальность проверки выполнимости биюнктивной КНФ. Полиномиальность поиска решения выполнимой биюнктивной КНФ.
  
 
==Упражнения==
 
==Упражнения==

Версия 23:44, 25 октября 2018


Обязательный курс для студентов 518/1 группы магистерской программы "Дискретные структуры и алгоритмы".

Спецкурс для студентов магистратуры.

Лекции - 2 ч в неделю.

Семинары - 1 ч в неделю (для студентов 518/1 группы).

Аннотация. Цель курса - показать, каким образом теория дискретных функций применяется при решении задачи обобщенной выполнимости. Задача обобщенной выполнимости, или выполнимости ограничений (англ. constraint satisfaction problem, CSP) состоит в выяснении выполнимости системы отношений, взятых из заранее известного множества S и связывающих произвольные переменные. При этом полагается, что в S входят отношения над конечным множеством A, |A| = k. В курсе показывается, что вычислительная сложность задачи S-выполнимости зависит только от функций, сохраняющих все отношения из S. Первая часть курса посвящена булевой выполнимости (k = 2). В ней рассматривается теорема Шефера о дихотомии вычислительной сложности задачи булевой выполнимости. Вторая часть курса посвящена задаче S-выполнимости для произвольных конечных k > 2. Доказываются случаи NP-полноты этой задачи, а также рассматриваются ее полиномиальные случаи. Приводится теорема о дихотомии вычислительной сложности задачи S-выполнимости для произвольных конечных k.

Лектор - Селезнева Светлана Николаевна

Объявления

Лекции

Лекция 1. Функции алгебры логики. Формулы и функции, определяемые формулами. Замкнутые классы и полные системы.

Лекция 2. Конъюнктивные нормальные формы. Имплицента, простая имплицента функции. Сокращенная КНФ функции. Способы построения сокращенной КНФ.

Лекция 3. Полином Жегалкина. Способы построения полинома Жегалкина функции. Линейная имплицента функции. Линейная конъюнктивная нормальная форма (ЛКНФ). Нахождение всех линейных имплицент функции. Проверка представимости ЛКНФ.

Лекция 4. Задачи распознавания. Вычислительная сложность задачи. Классы P и NP, NP-полные задачи. NP-полнота задачи 3-раскраски графов. Задача обобщенной выполнимости.

Лекция 5. Слабо положительные и слабо отрицательные КНФ и функции. Критерии слабой положительности и слабой отрицательности функции. Полиномиальность проверки выполнимости слабо положительной и слабо отрицательной КНФ.

Лекция 6. Биюнктивные КНФ и функции. Критерий биюнктивности функции. Полиномиальность проверки выполнимости биюнктивной КНФ. Полиномиальность поиска решения выполнимой биюнктивной КНФ.

Упражнения

Занятие 1. Сокращенная КНФ и способы ее построения.

Занятие 2. Полином Жегалкина. ЛКНФ и представимость ЛКНФ.

Занятие 3. Классы P и NP, NP-полнота.

Занятие 4. Слабо положительные, слабо отрицательные и биюнктивные функции.

Занятие 5. Мультиаффинные функции.

Занятие 6. Теорема разделимости Шефера.

Занятие 7. Доказательство NP-полноты некоторых задач.

Занятие 8. Доказательство полиномиальности некоторых задач.

Программа курса

  • Функции алгебры логики. Конъюнктивные и дизъюнктивные нормальные формы (КНФ и ДНФ). Сокращенная КНФ и способы ее построения. Полиномы Жегалкина, быстрый способ построения полинома Жегалкина функции. Линейные конъюнктивные нормальные формы (ЛКНФ). Проверка представимости функции ЛКНФ.
  • Задачи распознавания свойств. Классы P и NP. Полиномиальные, NP-трудные и NP-полные задачи. NP-полнота задач распознавания выполнимости КНФ (ВЫП) и 3-КНФ (3-ВЫП), полиномиальность задачи распознавания выполнимости 2-КНФ (2-ВЫП). Постановка задачи обобщенной выполнимости S-ВЫП.
  • Слабо положительные, слабо отрицательные и биюнктивные КНФ и слабо положительные, слабо отрицательные и биюнктивные функции алгебры логики. Критерии слабой положительности, слабой отрицательности и биюнктивности функции. Полиномиальность распознавания выполнимости слабо положительной, слабо отрицательной и биюнктивной КНФ.
  • Линейные и мультиаффинные функции алгебры логики. Приведенное представление мультиаффинной функции алгебры логики. Критерий мультиаффинности функции. Полиномиальность распознавания выполнимости конъюнкции приведенных представлений мультиаффинных функций.
  • Условная выразимость функций алгебры логики, леммы об условной выразимости функций (о транзитивности, о замене множителя в конъюнктивной форме, о подстановке констант вместо переменных и о навешивании отрицаний над переменными). Лемма о функции, сохраняющей константу 0, и функции, не сохраняющей константу 1. Лемма о функции, не являющейся четной. Лемма о функции, не являющейся слабо положительной, и функции, не являющейся слабо отрицательной. Леммы о небиюнктивной функции и немультиаффинной функции. Теорема разделимости Шефера о сложности задачи обобщенной выполнимости S-ВЫП.
  • NP-полнота задач распознавания слабой положительности, слабой отрицательности, биюнктивности и мультиаффинности функции алгебры логики, заданной в виде ДНФ. Нижняя единица функции. Лемма о нахождении всех нижних единиц функции алгебры логики по ее полиному Жегалкина. Полиномиальность задачи распознавания монотонности функции алгебры логики, заданной в виде полинома Жегалкина. Лемма о числе сомножителей в приведенном представлении мультиаффинной функции. Полиномиальность распознавания мультиаффинности функции алгебры логики, заданной в виде полинома Жегалкина.

Экзамен

Экзамен устный. В билете 2 вопроса и задача. Подготовка к ответу на билет - 1 ч.