Участник:SeleznevaSN — различия между версиями

Материал из Кафедра математической кибернетики
Перейти к: навигация, поиск
(Области научных интересов)
 
(не показаны 112 промежуточные версии 2 участников)
Строка 1: Строка 1:
 
{{DISPLAYTITLE:Селезнева Светлана Николаевна}}
 
{{DISPLAYTITLE:Селезнева Светлана Николаевна}}
[[Image:Selezneva.jpg|thumb|right|Селезнева Светлана Николаевна]]'''Селезнева Светлана Николаевна''' — кандидат физико-математических наук, доцент.
+
[[Image:Selezneva3.jpg|thumb|right|Селезнева Светлана Николаевна]]'''Селезнева Светлана Николаевна''' — доктор физико-математических наук, профессор кафедры МК,
  
 +
e-mail: selezn@cs.msu.ru
  
== [[Области научных интересов]] ==
+
[http://istina.msu.ru/profile/selezn@cs.msu.su Профиль Селезневой С.Н. в системе "ИСТИНА"]
  
===Полиномиальные представления булевых и многозначных функций===
+
== [[Области научных интересов]]==
  
Исследуется сложность представления булевых и многозначных функций полиномиальными формами различных видов.
+
'''Полиномиальные представления дискретных функций'''
  
===Алгоритмическая сложность распознавания свойств булевых и многозначных функций===
+
Рассматриваются представления функций алгебры логики и функций многозначной логики полиномами над соответствующим полем или кольцом и изучаются свойства таких представлений в следующих направлениях. 
  
Исследуется сложность алгоритмов распознавания свойств булевых и многозначных функций, заданных в определенном языке.
+
*Сложность распознавания свойств функций, заданных полиномами.
  
===Полиномы над конечными полями===
+
Разрабатываются быстрые алгоритмы распознавания ряда важных свойств функций, если на вход вычислителю функция подается в виде полинома. При этом оценивается сложность алгоритмов относительно длины полинома (т.е. числа слагаемых в полиноме) и числа переменных в нем. Селезневой С.Н. получены быстрые алгоритмы проверки свойств монотонности, самодвойственности, инвариантности, периодичности функции по ее полиному. Рассматриваемые свойства существенны в приложениях, связанных с защитой информации.
  
Изучаются свойства полиномов над конечными полями во взаимосвязи с полиномиальными представлениями конечнозначных функций.
+
*Сложность полиномиальных представлений функций.  
  
== Спецсеминары ==
+
Разрабатываются подходы к построению для функций полиномиальных форм (поляризованных, обобщенных, псевдополиномиальных) с оценками их сложности. Селезневой С.Н. получены алгоритмы построения оптимальных по порядку псевдополиномиальных форм для функций n переменных. Рассматриваемые представления применимы при проектировании цифровых устройств с операциями сложения и умножения в конечных кольцах и полях.
  
===[[Сложность решения дискретных задач]]===
+
*Свойства полиномиальных представлений функций
  
== Лекционные курсы ==
+
Исследуются вопросы выразимости и полноты в классах функций, связанных с классом всех полиномиальных функций. Селезневой С.Н. получены критерии полиномиальности функций k-значной логики по составному модулю k. На основе этих критериев найден линейный алгоритм проверки полиномиальности по составному модулю функции, заданной вектором значений. При положительном ответе этот алгоритм находит канонический полином функции, которая подается на вход вычислителю. Рассматриваемые вопросы важны для дальнейшего применения при разработке алгоритмов.
===[[Избранные вопросы дискретной математики]]===
+
<!---[https://www.youtube.com/watch?v=h8eLGaS3gQY Видео: лекция "О сложности функций k-значных логик в классах полиномиальных форм" (6 октября 2015 г.)]--->
  
Лекции по курсу "Избранные вопросы дискретной математики" (3-й курс, группа 318)
+
== Спецсеминары ==
  
[[Media:dm_lection1.pdf|Лекция 1]]: Выборки. Размещения, перестановки, размещения с повторениями, сочетания, сочетания с повторениями, их число. Примеры.
+
*[[Сложность решения дискретных задач]]
  
[[Media:dm_lection2.pdf|Лекция 2]]: Биномиальные и полиномиальные коэффициенты, их свойства. Метод производящих функций (конечный случай). Оценки биномиальных коэффициентов и их сумм.
+
== Лекционные курсы ==
  
[[Media:dm_lection3.pdf|Лекция 3]]: Частично упорядоченные множества (ЧУМ). Диаграмма Хассе. Максимальные, минимальные, наибольший и наименьший элементы. Цепи и антицепи, длина и ширина конечных ЧУМ. Теорема о разбиении ЧУМ на антицепи. Теорема Дилуорса. Булев куб, его длина и ширина. Булеан.
+
*[[Дискретная математика (1-й поток)]] (курс для студентов 1-го курса, см. также [[Дискретная математика (1й курс)]])
  
[[Media:dm_lection4.pdf|Лекция 4]]: Теорема Анселя о разбиении булева куба на цепи. Оценки числа монотонных булевых функций. Расшифровка монотонных булевых функций.
+
*[[Избранные вопросы дискретной математики]] (курс для студентов 318 группы)
  
[[Media:dm_lection5.pdf|Лекция 5]]: Покрытия множества и покрытия матрицы. Лемма о градиентном покрытии. Оценки мощности затеняющего множества булева куба и длины полиномиальных нормальных форм булевых функций.
+
*[[Избранные вопросы теории графов]], часть 3 (курс для студентов 418 группы)
  
[[Media:dm_lection6.pdf|Лекция 6]]: Коллоквиум 1.
+
*[[Дискретные функции и выполнимость ограничений]] (курс для студентов 518/1 группы, спецкурс для студентов магистратуры)
  
[[Media:dm_lection7.pdf|Лекция 7]]: Функция Мёбиуса. Формула обращения Мёбиуса. Принцип включений-исключений.
+
*[[Дискретные модели]] (курс для студентов неинтегрированной магистратуры, 1-й курс)
  
[[Media:dm_lection8.pdf|Лекция 8]]: Линейные однородные и неоднородные рекуррентные уравнения.
+
*[[Графы и их приложения]] (спецкурс для аспирантов)
  
[[Media:dm_lection9.pdf|Лекция 9]]: Группы. Изоморфизм групп. Симметрическая группа перестановок. Теорема Кэли.
+
*[[Булевы функции и полиномы]] (спецкурс) - читался в 2008-2013 г.г.
  
[[Media:dm_lection10.pdf|Лекция 10]]: Подгруппы. Смежные классы. Теорема Лагранжа. Орбита и стабилизатор элемента. Лемма Бернсайда.
+
==Учебные пособия==
  
[[Media:dm_lection11.pdf|Лекция 11]]: Раскраски. Эквивалентность раскрасок относительно группы перестановок. Теорема Пойа (частный случай). Производящие функции. Перечисляющий ряд для фигур и перечисляющий ряд для функций. Теорема Пойа (общий случай). Примеры.
+
[[Media:ok-2.pdf|Алексеев В.Б., Вороненко А.А., Ложкин С.А., Романов Д.С., Сапоженко А.А., Селезнева С.Н. Задачи по курсу "Основы кибернетики"]], 2-е изд. М.: МАКС Пресс, 2011.
  
Лекция 12 (21.11): Коллоквиум 2.
+
[[Media:odm-selezn.pdf|Селезнева С.Н. Основы дискретной математики]]. М.: МАКС Пресс, 2010.
  
Лекция 13 (28.11): Кольца. Кольцо многочленов.
+
[[Media:bool_polynoms.pdf|Селезнева С.Н. Булевы функции и полиномы]]. Пособие по спецкурсу. Составители: Дайняк А.Б., Шуплецов М.С. Москва, 2006.
 
+
Лекция 14 (5.12): Поля. Теорема о поле из p^n элементов, где p -- простое число, n > 1.
+
 
+
Лекция 15 (12.12): Линейные коды.
+
 
+
Лекция 16 (19.12): Функции k-значной логики и способы их представления.
+
 
+
===[[Дискретная математика 2 (группа 141)]]===
+
 
+
===[[Дискретные модели|Дискретные модели (магистратура, 1-й курс)]]===
+
 
+
===[[Булевы функции и полиномы|Булевы функции и полиномы (спецкурс)]]===
+
  
 
== Аспиранты и студенты ==
 
== Аспиранты и студенты ==
  
== Избранные публикации ==
+
* аспиранты: Лобанов Алексей (3 г/о), Шурыгин Дмитрий (2 г/о)
 
+
* 618/1 группа: Бубнов Егор, Вершков Станислав
===О полиномиальных представлениях булевых функций и функций многозначных логик===
+
* 418 группа: Воробьева Злата, Ушаков Дмитрий, Жумабай Мусахан (КФ)
 
+
* 318 группа: Голобоков Дмитрий, Колесникова Наталья
# О сложности представления функций многозначных логик поляризованными полиномами. ([http://mathcyb.cs.msu.su/paper/selezn/selezn02.ps PostScript]) // Дискретная математика (2002), т. 14, вып. 2, с. 48-53.
+
 
+
===Об алгоритмической сложности распознавания свойств булевых функций и функций многозначных логик, заданных в определенном языке===
+
 
+
# Полиномиальный алгоритм распознавания принадлежности функций k-значных логик, представленных полиномами, к предполным классам линейных функций. ([http://mathcyb.cs.msu.su/paper/selezn/selez01v.ps PostScript]) // Вестник МГУ. Серия 15. Вычислительная математика и математическая кибернетика (2001), вып. 3, с. 40-43.
+
# Полиномиальный алгоритм для распознавания принадлежности реализованной полиномом функции k-значной логики предполным классам самодвойственных функций. ([http://mathcyb.cs.msu.su/paper/selezn/selezn98.ps PostScript]) // Дискретная математика (1998), т. 10, вып. 3, с. 64-72.
+
# О сложности распознавания полноты множеств булевых функций, реализованных полиномами Жегалкина. ([http://mathcyb.cs.msu.su/paper/selezn/selezn97.ps PostScript]) // Дискретная математика (1997), т. 9, вып. 4, с. 24-31.
+
 
+
===О свойствах полиномов над конечными полями===
+
 
+
# О некоторых свойствах полиномов над конечным полем. ([http://mathcyb.cs.msu.su/paper/selezn/selez01d.ps PostScript]) // Дискретная математика (2001), т. 13, вып. 2, с. 111-119.
+

Текущая версия на 12:48, 19 февраля 2024

Селезнева Светлана Николаевна
Селезнева Светлана Николаевна — доктор физико-математических наук, профессор кафедры МК,

e-mail: selezn@cs.msu.ru

Профиль Селезневой С.Н. в системе "ИСТИНА"

Области научных интересов

Полиномиальные представления дискретных функций

Рассматриваются представления функций алгебры логики и функций многозначной логики полиномами над соответствующим полем или кольцом и изучаются свойства таких представлений в следующих направлениях.

  • Сложность распознавания свойств функций, заданных полиномами.

Разрабатываются быстрые алгоритмы распознавания ряда важных свойств функций, если на вход вычислителю функция подается в виде полинома. При этом оценивается сложность алгоритмов относительно длины полинома (т.е. числа слагаемых в полиноме) и числа переменных в нем. Селезневой С.Н. получены быстрые алгоритмы проверки свойств монотонности, самодвойственности, инвариантности, периодичности функции по ее полиному. Рассматриваемые свойства существенны в приложениях, связанных с защитой информации.

  • Сложность полиномиальных представлений функций.

Разрабатываются подходы к построению для функций полиномиальных форм (поляризованных, обобщенных, псевдополиномиальных) с оценками их сложности. Селезневой С.Н. получены алгоритмы построения оптимальных по порядку псевдополиномиальных форм для функций n переменных. Рассматриваемые представления применимы при проектировании цифровых устройств с операциями сложения и умножения в конечных кольцах и полях.

  • Свойства полиномиальных представлений функций

Исследуются вопросы выразимости и полноты в классах функций, связанных с классом всех полиномиальных функций. Селезневой С.Н. получены критерии полиномиальности функций k-значной логики по составному модулю k. На основе этих критериев найден линейный алгоритм проверки полиномиальности по составному модулю функции, заданной вектором значений. При положительном ответе этот алгоритм находит канонический полином функции, которая подается на вход вычислителю. Рассматриваемые вопросы важны для дальнейшего применения при разработке алгоритмов.

Спецсеминары

Лекционные курсы

Учебные пособия

Алексеев В.Б., Вороненко А.А., Ложкин С.А., Романов Д.С., Сапоженко А.А., Селезнева С.Н. Задачи по курсу "Основы кибернетики", 2-е изд. М.: МАКС Пресс, 2011.

Селезнева С.Н. Основы дискретной математики. М.: МАКС Пресс, 2010.

Селезнева С.Н. Булевы функции и полиномы. Пособие по спецкурсу. Составители: Дайняк А.Б., Шуплецов М.С. Москва, 2006.

Аспиранты и студенты

  • аспиранты: Лобанов Алексей (3 г/о), Шурыгин Дмитрий (2 г/о)
  • 618/1 группа: Бубнов Егор, Вершков Станислав
  • 418 группа: Воробьева Злата, Ушаков Дмитрий, Жумабай Мусахан (КФ)
  • 318 группа: Голобоков Дмитрий, Колесникова Наталья