Избранные вопросы дискретной математики — различия между версиями

Материал из Кафедра математической кибернетики
Перейти к: навигация, поиск
(Программа курса)
(Литература)
 
(не показаны 198 промежуточные версии 1 участника)
Строка 1: Строка 1:
 +
Курс читает [[Селезнева Светлана Николаевна|Селезнева Светлана Николаевна]]
 +
 +
Курс "Избранные вопросы дискретной математики" читается в 5-м семестре (36 ч лекций и 18 ч семинаров). Отчетность - экзамен.
 +
 +
==Объявления==
 +
 
==Программа курса==
 
==Программа курса==
Курс "Избранные вопросы дискретной математики" читается в 5-м семестре. Форма отчетности - экзамен. Экзамен проходит письменно. За экзаменационную работу студент получает определенное количество баллов.
 
  
В течение семестра по курсу проходят два письменных коллоквиума. За каждый коллоквиум студент получает дополнительные или штрафные баллы.
+
'''Тема 1. Основы теории множеств.''' Множества, операции над множествами. Мощность множества, конечные множества. Отношения, виды отношений. [1] Гл. 1, разделы 1.1, 1.3; Гл. 3, разделы 3.1, 3.3, 3.5.
 +
 
 +
Упражнения. [1] Гл. 1, разделы 1.2, 1.4; Гл. 3, разделы 3.2, 3.4, 3.6.
 +
 
 +
'''Тема 2. Функции k-значной логики. Формулы.''' Функции k-значной логики. Таблицы значений, векторы значений. Формулы, эквивалентные формулы, тождества. Эквивалентные преобразования формул, доказательства тождеств. [2] Гл. 1, раздел 1; [3] Гл. 3, стр. 88--89. Упражнения. [3] Гл. 3, N 1.1, 1.2, 1.6, 1.7, 1.8.
 +
 
 +
'''Тема 3. Функции k-значной логики. Нормальные формы.''' Представление функций k-значной логики 1-й и 2-й формами. Полные системы. Система Поста. Полнота системы Поста. [2] Гл. 1, раздел 2(до стр. 15); [3] Гл. 3, раздел 1, стр. 91--92. Упражнения. [3] Гл. 3, N 1.11, 1.12.
  
Оценка на экзамене по курсу выставляется по следующему правилу: количество баллов, полученное студентом за экзаменационную работу, увеличивается на дополнительные баллы за коллоквиумы или уменьшается на штрафные баллы за коллоквиумы; по вычисленному значению выводится оценка по критериям экзамена (критерии станут известны позднее).
+
'''Тема 4. Функции k-значной логики. Полиномы.''' Полиномы по модулю k. Представление функций k-значной логики полиномами по модулю k. Вычисление коэффициентов полиномов функций k-значной логики. [2] Гл. 1, раздел 2(стр. 15--16); [3] Гл. 3, раздел 2, стр. 93--95. Упражнения. [3] Гл. 3, N 2.7, 2.8, 2.11, 2.12, 2.23.
  
Первый коллоквиум состоится на 6-й лекции 10 октября. Темы коллоквиума: прочитанные пять лекций. При написании коллоквиума не разрешается пользоваться никакими материалами.
+
'''Коллоквиум 1''' по темам 2--4.
  
Второй коллоквиум состоится на 12-й лекции 21 ноября. Темы коллоквиума: прочитанные шестая-одиннадцатая лекции. При написании коллоквиума не разрешается пользоваться никакими материалами.
+
==Литература==
  
Курс читает [[Селезнева Светлана Николаевна|Селезнева С.Н.]]
+
#Селезнева С.Н. Основы дискретной математики. М.: МАКС Пресс, 2010.
 +
#[[Media:ИзбрГлавыДискрМатем_2015.pdf|Марченков С.С. Избранные главы дискретной математики. М.: МАКС Пресс, 2015.]]
 +
#Гаврилов Г.П., Сапоженко А.А. Задачи и упражнения по дискретной математике. М.: Физматлит, 2004.
 +
#[[Media:fsbook_marchenkovss.pdf|Марченков С.С. Функциональные системы. М.: МАКС Пресс, 2012.]]
  
==Архив лекций==
+
<!---'''Занятие 1'''. Тождества в k-значной логике. Представления k-значных функций в 1-й и 2-й формах и полиномами по модулю k.
[[Media:dm_lection1.pdf|Лекция 1]]: Выборки. Размещения, перестановки, размещения с повторениями, сочетания, сочетания с повторениями, их число. Примеры.
+
  
[[Media:dm_lection2.pdf|Лекция 2]]: Биномиальные и полиномиальные коэффициенты, их свойства. Метод производящих функций (конечный случай). Оценки биномиальных коэффициентов и их сумм.
+
[4] Гл. III 1.1(3, 6, 10, 12), 1.2(1, 3), 1.11(2, 4, 8, 11), 2.7(1, 3, 6, 9), 2.12(1, 2), 2.8(1, 3).
  
[[Media:dm_lection3.pdf|Лекция 3]]: Частично упорядоченные множества (ЧУМ). Диаграмма Хассе. Максимальные, минимальные, наибольший и наименьший элементы. Цепи и антицепи, длина и ширина конечных ЧУМ. Теорема о разбиении ЧУМ на антицепи. Теорема Дилуорса. Булев куб, его длина и ширина. Булеан.
+
На дом: [4] Гл. III 1.1(4, 7, 11, 13), 1.2(2, 4), 1.6, 1.11(5, 10), 2.7(2, 8, 10), 2.12(3, 5), 2.8(2), 2.11(1, 2).
  
[[Media:dm_lection4.pdf|Лекция 4]]: Теорема Анселя о разбиении булева куба на цепи. Оценки числа монотонных булевых функций. Расшифровка монотонных булевых функций.
+
'''Занятие 2'''. Функции, сохраняющие множество и сохраняющие разбиение. Сведение к заведомо полным системам.  
  
[[Media:dm_lection5.pdf|Лекция 5]]: Покрытия множества и покрытия матрицы. Лемма о градиентном покрытии. Оценки мощности затеняющего множества булева куба и длины полиномиальных нормальных форм булевых функций.
+
[4] Гл. III 2.1(1 а, б, г, д), 2.2(1, 2), 2.13(1, 2, 5, 6), 2.16(1, 3), 2.19(1, 2, 3, 4).
  
[[Media:dm_lection6.pdf|Лекция 6]]: Коллоквиум 1.
+
На дом: [4] Гл. III 2.13(7, 8, 9, 10), 2.16(2, 4), 2.19(5, 9, 10, 11, 12), 2.14, 2.15.
  
[[Media:dm_lection7.pdf|Лекция 7]]: Функция Мёбиуса. Формула обращения Мёбиуса. Принцип включений-исключений.
+
'''Занятие 3'''. Проверка полноты систем функций. Критерий полноты. Система полиномов. Базисы.  
  
[[Media:dm_lection8.pdf|Лекция 8]]: Линейные однородные и неоднородные рекуррентные уравнения.
+
[4] Гл. III 2.20(1, 2, 3), 2.21(1, 2, 5, 7), 2.22(1, 3, 5), 2.23(1, 3, 4), 2.25(1, 3).
  
[[Media:dm_lection9.pdf|Лекция 9]]: Группы. Изоморфизм групп. Симметрическая группа перестановок. Теорема Кэли.
+
На дом: [4] Гл. III 2.20(4, 5, 7), 2.21(3, 4, 6, 8), 2.22(2, 4, 6), 2.23(5, 7), 2.25(2, 4).--->
 +
<!---'''Занятие 4'''. Группы, подгруппы, теорема Кэли. Цикловой индекс группы перестановок.  
  
[[Media:dm_lection10.pdf|Лекция 10]]: Подгруппы. Смежные классы. Теорема Лагранжа. Орбита и стабилизатор элемента. Лемма Бернсайда.
+
[5] 2.1(1, 2), 2.2(2, 4), 2.3(1, 3, 5, 7), 2.4(2, 4), 2.5(2, 4, 6, 8), 2.6(2, 3), 2.7(1).
  
[[Media:dm_lection11.pdf|Лекция 11]]: Раскраски. Эквивалентность раскрасок относительно группы перестановок. Теорема Пойа (частный случай). Производящие функции. Перечисляющий ряд для фигур и перечисляющий ряд для функций. Теорема Пойа (общий случай). Примеры.
+
На дом: [5] 2.1(3, 4), 2.2(1, 3), 2.3(2, 4, 6, 8), 2.4(1, 3, 5), 2.5(1, 3, 5, 7), 2.6(1, 4), 2.7(2).
  
Лекция 12 (21.11): Коллоквиум 2.
+
'''Занятие 5'''. Раскраски. Теорема Пойа (частный случай).  
  
Лекция 13 (28.11): Кольца. Кольцо многочленов.
+
[5] 2.8(2, 3, 6), 2.12(1, 2 (1-2)), 2.13(1, 2).
  
Лекция 14 (5.12): Поля. Теорема о поле из p^n элементов, где p -- простое число, n > 1.
+
На дом: [5] 2.8(1, 4, 5, 7, 8), 2.12(2 (3-4)), 2.13(3), 2.14(2, 3), 2.15(2, 3).
  
Лекция 15 (12.12): Линейные коды.
+
'''Занятие 6'''. Раскраски. Теорема Пойа (общий случай).  
  
Лекция 16 (19.12): Функции k-значной логики и способы их представления.
+
[5] 2.9(1-4), 2.10(2, 4), 2.11(1, 2), 2.16(1, 3), 2.17(1,3).
  
==Вопросы к экзамену по курсу «Избранные вопросы дискретной математики»==
+
На дом: [5] 2.9(5-8), 2.10(1, 3), 2.11(3, 4), 2.16(2, 4), 2.17(2, 4).
'''(осенний  семестр 2009/2010 учебного года, группы 318, 319, лектор — доцент С.Н. Селезнева)'''
+
  
'''Часть A. Вопросы, при ответе на которые, можно пользоваться конспектами (некоторое время, при этом ответ не состоит в чтении конспекта). Определения и теоремы должны быть сформулированы до того, как конспект будет открыт.'''
+
'''Занятие 7'''. Построение конечных полей.
  
* Алгоритм  распознавания полноты конечных систем функций k-значной логики.
+
[6] 3.1(1, 3, 5, 7), 3.3(1, 3, 5, 7), 3.4(1, 3, 5, 7), 3.5(1, 3), 3.7(1, 3).
* Теорема Кузнецова о функциональной полноте.
+
* Существенные функции. Леммы о существенных функциях: о трех наборах, основная и о квадрате.
+
* Критерий полноты  Яблонского систем функций k-значной логики.
+
* Операции над о.-д. функциями. Замкнутость класса о.-д. функций относительно операций суперпозиции и обратной связи.
+
* Леммы о преобразовании периодических последовательностей о.-д. функцией. Несводимость операции обратной связи к операции суперпозиции.
+
* Леммы о преобразовании машинных кодов: основного в l-кратный, решетчатого в основной и квазиосновного в основной.
+
* Операция суперпозиции. Теорема о замкнутости класса вычислимых функций относительно операции суперпозиции.
+
* Операция примитивной рекурсии. Теорема о замкнутости класса вычислимых функций относительно операции примитивной рекурсии.
+
* Операция минимизации. Теорема о замкнутости класса вычислимых функций относительно операции минимизации.
+
* Класс примитивно-рекурсивных функций. Примитивная рекурсивность функции Пеано и ее обобщений. Классы частично-рекурсивных и общерекурсивных функций.
+
* Теорема о схеме одновременной примитивной рекурсии.
+
* Формула Клини. Теорема о соотношении классов частично-рекурсивных и вычислимых функций.
+
* Кольцо многочленов над полем. Теорема о делении многочленов с остатком. Делимость многочленов. Теорема о наибольшем общем делителе двух многочленов.
+
* Неприводимость многочленов над полем. Теорема о неприводимом делителе произведения многочленов. Теорема о каноническом разложении многочлена на неприводимые сомножители.
+
* Теорема о фактор-кольце кольца целых чисел.
+
* Теорема о фактор-кольце кольца многочленов над простым полем.
+
* Теорема Анселя о разбиении куба <math>B_n</math> на цепи. Теорема об оценках числа монотонных булевых функций.
+
+
'''Часть B. Вопросы, при ответе на которые пользоваться конспектами не предполагается. Ответ почти без подготовки.'''
+
  
* Теоремы о  I-й и II-й формах записи функций k-значной логики.
+
На дом: [6] 3.1(2, 4, 6, 8), 3.3(2, 4, 6, 8), 3.4(2, 4, 6, 8), 3.5(2, 4), 3.7(2, 4).
* Полные системы. Полнота системы Поста. Функция Вебба.
+
* Шефферовы функции. Критерий шефферовости.
+
* Теоремы Янова и Мучника. Следствия из них.
+
* Теорема о полноте системы полиномов в Pk.
+
* Детерминированные функции (д. функции). Мощность класса д. функций. Задание д. функций нагруженными деревьями.
+
* Ограниченно-детерминированные функции (о.-д. функции). Способы их задания. Мощность класса о.-д. функций.
+
* Полнота систем о.-д. функций. Существование аналога функции Шеффера.
+
* Машины Тьюринга (МТ). Машинные коды: основной, l-кратный, решетчатый, квазиосновной. Задача поиска левой единицы в основном коде.
+
* Лемма о моделировании на решетке.
+
* Класс примитивно-рекурсивных функций. Примитивная рекурсивность некоторых функций (знака, сложения, умножения, целой части от деления, и т.д.). Классы частично-рекурсивных и общерекурсивных функций.
+
* Алгебраическая операция, нейтральный элемент, симметричный элемент. Группа, абелева группа. Конечная группа, порядок группы, таблица Кэли. Симметрическая группа перестановок. Подгруппа. Теорема Кэли.
+
* Теорема Лагранжа о порядке подгруппы конечной группы.
+
* Эквивалентность элементов относительно группы перестановок. Орбита и стабилизатор элемента. Лемма о порядке стабилизатора элемента. Лемма Бернсайда о числе орбит.
+
* Раскраски, эквивалентность раскрасок относительно группы перестановок. Теорема Пойа о числе орбит раскрасок.
+
* Кольцо, целостное кольцо, поле. Кольцо многочленов над некоторым кольцом. Теорема о целостности кольца многочленов над полем.
+
* Значение многочлена в точке, корень многочлена. Критерий неприводимости многочленов степени, не выше 3.
+
* Теорема о конечном целостном кольце.
+
* Характеристика кольца. Теорема о характеристике конечного поля.
+
* Идеал кольца, главный идеал. Эквивалентность элементов кольца и класс вычетов по модулю идеала. Фактор-кольцо по модулю идеала.
+
* Частично-упорядоченные множества (ЧУМ). Минимальные и максимальные, наименьший и наибольший элементы. Длина и ширина конечного ЧУМ. Теорема Дилуорса о ширине конечного ЧУМ.
+
* Теоремы о длине и ширине куба <math>B_n</math>.
+
  
'''Литература'''
+
'''Занятие 8'''. Вычисления в конечных полях.  
+
* Яблонский С. В. Введение в дискретную математику. М., Наука, 2001.
+
* Лидл Р., Нидеррайтер Г. Конечные поля. Том 1. М., Мир, 1988.
+
* Ансель Ж. О числе монотонных булевых функций от n переменных. В кн. Кибернетический сборник. Новая серия. Вып. 5. М., Мир, 1968, с. 53-57.
+
* Де Брейн Н. Дж. Теория перечисления Пойа. В сб. ст. Прикладная комбинаторная математика, под ред. Э. Бакенбаха. М., Мир, 1966, с. 61-107.
+
+
==Типовые задачи==
+
  
* Записать  функцию k-значной логики в I-й или II-й форме, построить ее полином или доказать, что она не задается полиномом по mod k; исследовать систему функций k-значной логики на полноту.
+
[6] 3.6(1, 3, 5, 7), 3.8(1, 3, 5, 7), 3.9(1, 3, 5, 7), 3.10(1, 3, 5, 7), 3.11(1, 3, 5, 7).
* Построить диаграмму Мура о.. функции; доказать полноту системы о.-д. функций.
+
* Применить операцию примитивной рекурсии или операцию минимизации; доказать примитивную рекурсивность функции.
+
* Построить группу перестановок и найти ее цикловой индекс; найти число неэквивалентных раскрасок относительно группы перестановок.
+
* Исследовать многочлен на неприводимость; найти сумму, произведение элементов или обратный элемент в конечном поле.
+
  
'''Литература'''
+
На дом: [6] 3.6(2, 4, 6, 8), 3.8(2, 4, 6, 8), 3.9(2, 4, 6, 8), 3.10(2, 4, 6, 8), 3.11(2, 4, 6, 8).--->
+
* Гаврилов Г.П., Сапоженко А.А. Задачи и упражнения по дискретной математике. М., Физматлит, 2004. Гл. III 1.11, 2.7, 2.20, 2.21, 2.22, 2.23; гл. IV 2.1, 2.17, 2.18; гл. V 2.1, 2.2, 2.3, 2.4, 2.5; гл. VIII 4.1, 4.3, 4.4, 4.9, 4.10.
+
* Лидл Р. Нидеррайтер Г. Конечные поля. Том 1. М., Мир, 1988.
+
  
 +
==О проведении экзамена==
  
  
 
[[Категория:Лекционные курсы кафедры МК]]
 
[[Категория:Лекционные курсы кафедры МК]]

Текущая версия на 20:47, 21 октября 2025

Курс читает Селезнева Светлана Николаевна

Курс "Избранные вопросы дискретной математики" читается в 5-м семестре (36 ч лекций и 18 ч семинаров). Отчетность - экзамен.

Объявления

Программа курса

Тема 1. Основы теории множеств. Множества, операции над множествами. Мощность множества, конечные множества. Отношения, виды отношений. [1] Гл. 1, разделы 1.1, 1.3; Гл. 3, разделы 3.1, 3.3, 3.5.

Упражнения. [1] Гл. 1, разделы 1.2, 1.4; Гл. 3, разделы 3.2, 3.4, 3.6.

Тема 2. Функции k-значной логики. Формулы. Функции k-значной логики. Таблицы значений, векторы значений. Формулы, эквивалентные формулы, тождества. Эквивалентные преобразования формул, доказательства тождеств. [2] Гл. 1, раздел 1; [3] Гл. 3, стр. 88--89. Упражнения. [3] Гл. 3, N 1.1, 1.2, 1.6, 1.7, 1.8.

Тема 3. Функции k-значной логики. Нормальные формы. Представление функций k-значной логики 1-й и 2-й формами. Полные системы. Система Поста. Полнота системы Поста. [2] Гл. 1, раздел 2(до стр. 15); [3] Гл. 3, раздел 1, стр. 91--92. Упражнения. [3] Гл. 3, N 1.11, 1.12.

Тема 4. Функции k-значной логики. Полиномы. Полиномы по модулю k. Представление функций k-значной логики полиномами по модулю k. Вычисление коэффициентов полиномов функций k-значной логики. [2] Гл. 1, раздел 2(стр. 15--16); [3] Гл. 3, раздел 2, стр. 93--95. Упражнения. [3] Гл. 3, N 2.7, 2.8, 2.11, 2.12, 2.23.

Коллоквиум 1 по темам 2--4.

Литература

  1. Селезнева С.Н. Основы дискретной математики. М.: МАКС Пресс, 2010.
  2. Марченков С.С. Избранные главы дискретной математики. М.: МАКС Пресс, 2015.
  3. Гаврилов Г.П., Сапоженко А.А. Задачи и упражнения по дискретной математике. М.: Физматлит, 2004.
  4. Марченков С.С. Функциональные системы. М.: МАКС Пресс, 2012.


О проведении экзамена