Большие графы и модели сложных сетей — различия между версиями
PodymovVV (обсуждение | вклад) |
|||
Строка 1: | Строка 1: | ||
+ | [[Категория:Спецкурсы кафедры МК (архив)]] | ||
+ | |||
{{DISPLAYTITLE:Большие графы и модели сложных сетей}} | {{DISPLAYTITLE:Большие графы и модели сложных сетей}} | ||
Спецкурс для студентов магистратуры. Лектор – [[Участник:KonovodovV|Коноводов В.А.]] | Спецкурс для студентов магистратуры. Лектор – [[Участник:KonovodovV|Коноводов В.А.]] | ||
Строка 86: | Строка 88: | ||
* [http://konect.cc/statistics/diameff90/ konect.cc/statistics/diameff90] Статистики некоторых графов | * [http://konect.cc/statistics/diameff90/ konect.cc/statistics/diameff90] Статистики некоторых графов | ||
* [https://hoaxy.osome.iu.edu/ hoaxy.osome.iu.edu] Визуализатор распространения информации в Twitter | * [https://hoaxy.osome.iu.edu/ hoaxy.osome.iu.edu] Визуализатор распространения информации в Twitter | ||
− | |||
− |
Текущая версия на 23:05, 7 октября 2024
Спецкурс для студентов магистратуры. Лектор – Коноводов В.А.
Занятия в весеннем семестре 2022г. завершены.
Курс посвящен современным математическим моделям сложных сетей, состоящих из множества взаимодействующих объектов. У курса две цели. Первая – продемонстрировать, какими свойствами обладают графы, возникающие на практике в различных прикладных областях, а также показать, каким образом проводить анализ больших сетей. Это могут быть социальные, биологические, транспортные, коммуникационные сети, или весь Интернет. Вторая цель – рассмотреть существующие модели случайных графов и их свойства, и показать, какие из них наиболее близки к реальным сетям.
Для освоения курса достаточно иметь начальные знания по теории вероятностей и теории графов. Предполагается, что слушатель знаком с базовыми алгоритмами обработки данных и основами комбинаторики.
По курсу предполагается 2 домашних задания, включающие, в частности, работу с реальными графами и изучение практических аспектов теории сложных сетей.
Объявление о спецкурсе (pdf) (февраль)
Запись первой лекции можно найти здесь.
Содержание
Домашние задания
Первое домашнее задание
- Условие задач.
- Данные к задаче 7.
- Пример результата в задаче 9.
- Срок сдачи – 2 апреля 23:59.
Решение нужно присылать на почту лектора, указанную в презентации, одним письмом. Решения задач 1-6 принимаются в виде одного pdf-файла (скан/фото решения, можно набрать в TeX'e). Решения задач 7-9 принимаются в любом виде (предпочтительнее ссылка на github, и т.п.), в решении обязательно должен быть приложен код программы, который позволит воспроизвести результат, а также сам результат (графики, визуализация и др.). Язык программирования и средства визуализации никак не ограничиваются.
Второе домашнее задание
- Условие задач.
- Данные к задаче 8.
- Срок сдачи – 22 апреля 23:59.
- Внимание! 11.04 исправлены ошибочные индексы в условии задачи 2.
Решение нужно присылать на почту лектора, указанную в презентации, одним письмом. Решения задач 1-6 и теоретическая часть задачи 9 принимаются в виде одного pdf-файла (скан/фото решения, можно набрать в TeX'e). Решения задач 7,8 и практическая часть задачи 9 принимаются в любом виде (предпочтительнее ссылка на github, и т.п.), в решении обязательно должен быть приложен код программы, который позволит воспроизвести результат, а также сам результат (графики, визуализация и др.). Язык программирования и средства визуализации никак не ограничиваются.
Экзамен
Итоговая оценка по курсу формируется из баллов, полученных за домашние задания и баллов за экзамен. Максимальное число баллов за экзамен – 50.
Критерии оценок:
- Оценка отлично: не менее 40 баллов
- Оценка хорошо: не менее 29 и не более 39 баллов
- Оценка удовлетворительно: не менее 18 и не более 28 баллов
- Для получения зачёта по курсу достаточно набрать баллов на оценку "удовлетворительно".
Содержание курса
- Лекция 1. Виды сложных сетей и примеры реальных графов. Разреженность, малый диаметр, гигантская компонента. Закон распределения степеней вершин.
- Лекция 2. Устойчивость и уязвимость гигантской компоненты. Кластерные коэффициенты и ассортативность. Библиотеки для работы с графами.
- Лекция 3. Пример работы с networkx. Платформа Gephi. Силовые алгоритмы визуализации графов.
- Лекция 4. Модель Эрдёша-Реньи. Простейшие свойства графов в модели. Число треугольников и связность.
- Лекция 5. Доказательство теорем о связности случайного графа Эрдёша-Реньи. Предпочтительное присоединение и модель Боллобаша-Риордана, статическое и динамическое определение.
- Лекция 6. Диаметр, устойчивость и уязвимость гигантской компоненты в графах Боллобаша-Риордана. Степенной закон распределения степеней вершин и его доказательство в простейшем случае.
- Лекция 7. Модель Бакли-Остгуса. Соответствие модели хост-графу интернета. Число рёбер между вершинами заданных степеней. Число копий заданного графа и кластерные коэффициенты в графах Боллобаша-Риордана и Бакли-Остгуса.
- Лекция 8. Различные модели на основе предпочтительного присоединения и PA-класс. Модель копирования. Модель Купера-Фриза.
- Лекция 9. Линковый факторы на графах. PageRank и HITS. Алгоритм PowerIteration и его сходимость.
- Лекция 10. Виды центральностей. Поиск сообществ в графах. Модулярность. Алгоритмы кластеризации.
Литература
Основная
- Райгородский А. М. Модели интернета. – ИД Интеллект, 2019, – 64 с.
- Менцер Ф., Фортунато С., Дэвис К. А. Наука о сетях. Вводный курс. – ДМК-Пресс, 2021, – 338 с.
- Райгородский А. М. Модели случайных графов. – М. МЦНМО, 2011, – 136 с.
- Remco van der Hofstad. Random Graphs and Complex Networks. Vol 1,2 – 2016.
- A.Noack. Modularity clustering is force-directed layout. - ссылка
- A. Langville, C. D. Meyer. A Survey of Eigenvector Methods for Web Information Retrieval. – ссылка
Дополнительная
- Blum A. Random Graphs – CS 598 Topics in Algorithms (UIUC), 2015.
- Dorogovtsev S. Lectures on Complex Networks. – Oxford University Press, 2010.
- Алон Н. и Спенсер Дж. Вероятностный метод. – М.: БИНОМ. Лаборатория знаний, 2007.
- Харари Ф. Теория графов. – М.: Мир, 1973.
- L.Ostroumova, E.Samosvat. Global clustering coefficient in scale-free networks – ссылка
- L.Ostroumova. Global clustering coefficient in scale-free weighted and unweighted networks – ссылка
- M. Jacomy, M. Bastian. ForceAtlas2, A Graph Layout Algorithm for Handy Network Visualization. - ссылка
- B. Bollobás, O. Riordan, J. Spencer, G. Tusnády. The Degree Sequence of a Scale-Free Random Graph Process. – Random Structures Algorithms. 2001. V.18, №3, P.279–290.
- Grechnikov E. A., Gusev G. G., Ostroumova L. A., Pritykin Yu. L., Raigorodskii A. M., Serdyukov P., Vinogradov D. V., Zhukovskiy M. E. Empirical Validation of the Buckley–Osthus Model for the Web Host Graph. 2012. – ссылка
- Рябченко А. А., Самосват Е. А. О числе подграфов в случайном графе Барабаши–Альберт, Изв. РАН. Сер. матем., 76:3 (2012), 183–202 – ссылка
- Тильга С. Д., О распределении малых подграфов в случайном графе Бакли–Остгуса, Изв. РАН. Сер. матем., 81:2 (2017), 161–214 – ссылка
- S. Dereich, P. Mörters. Random networks with sublinear preferential attachment: degree evolutions. Electron. J. Probab. 14 (2009), no. 43, 1222–1267.
- S. Bhamidi. Universal techniques to analyze preferential attachment trees: Global and Local analysis. 2007. ссылка
- G. Ergün, G. J. Rodgers. Growing random networks with fitness. Physica A-statistical Mechanics and Its Applications, 2002, v.303, p. 261-272. ссылка
- P. L. Krapivsky, S. Redner. Organization of Growing Random Networks. 2001. – ссылка
- S. Fortunato. Community detection in graphs. 2010. – ссылка
Полезные ссылки
- Gephi. Открытая платформа по визуализации графов.
- Туториал по Gephi
- Библиотека networkx для Python
- Библиотека igraph
- konect.cc/statistics/diameff90 Статистики некоторых графов
- hoaxy.osome.iu.edu Визуализатор распространения информации в Twitter