Большие графы и модели сложных сетей — различия между версиями
(→Содержание курса) |
|||
Строка 22: | Строка 22: | ||
== Содержание курса == | == Содержание курса == | ||
* '''Лекция 1.''' Виды сложных сетей и примеры реальных графов. Разреженность, малый диаметр, гигантская компонента. Закон распределения степеней вершин. [https://disk.yandex.ru/i/cML3_hc7TiuYFA презентация], [https://disk.yandex.ru/i/wW2j76r_pwNUDg запись] | * '''Лекция 1.''' Виды сложных сетей и примеры реальных графов. Разреженность, малый диаметр, гигантская компонента. Закон распределения степеней вершин. [https://disk.yandex.ru/i/cML3_hc7TiuYFA презентация], [https://disk.yandex.ru/i/wW2j76r_pwNUDg запись] | ||
− | * '''Лекция 2.''' Устойчивость и уязвимость гигантской компоненты. Кластерные коэффициенты и ассортативность. Библиотеки для работы с графами. [https://disk.yandex.ru/i/pEf1A9aIK_ZokA запись] | + | * '''Лекция 2.''' Устойчивость и уязвимость гигантской компоненты. Кластерные коэффициенты и ассортативность. Библиотеки для работы с графами. [https://disk.yandex.ru/i/UM8lF8SLrv5Dzw презентация], [https://disk.yandex.ru/i/pEf1A9aIK_ZokA запись] |
== Предварительная программа курса == | == Предварительная программа курса == | ||
Строка 51: | Строка 51: | ||
* Алон Н. и Спенсер Дж. Вероятностный метод. – М.: БИНОМ. Лаборатория знаний, 2007. | * Алон Н. и Спенсер Дж. Вероятностный метод. – М.: БИНОМ. Лаборатория знаний, 2007. | ||
* Харари Ф. Теория графов. – М.: Мир, 1973. | * Харари Ф. Теория графов. – М.: Мир, 1973. | ||
+ | * L.Ostroumova, E.Samosvat. Global clustering coefficient in scale-free networks – [https://arxiv.org/abs/1410.1997 ссылка] | ||
+ | * L.Ostroumova. Global clustering coefficient in scale-free weighted and unweighted networks – [https://arxiv.org/abs/1507.00925 ссылка] | ||
== Полезные ссылки == | == Полезные ссылки == |
Версия 10:51, 24 февраля 2022
Записаться на спецкурс: здесь.
Спецкурс для студентов магистратуры. Лектор – Коноводов В.А.
Курс будет проходить дистанционно.
Zoom: link.
Первое занятие - 17.02 в 8:45. Предварительно спецкурс будет проводиться по четвергам, в 8:45.
Курс посвящен современным математическим моделям сложных сетей, состоящих из множества взаимодействующих объектов. У курса две цели. Первая – продемонстрировать, какими свойствами обладают графы, возникающие на практике в различных прикладных областях, а также показать, каким образом проводить анализ больших сетей. Это могут быть социальные, биологические, транспортные, коммуникационные сети, или весь Интернет. Вторая цель – рассмотреть существующие модели случайных графов и их свойства, и показать, какие из них наиболее близки к реальным сетям.
Для освоения курса достаточно иметь начальные знания по теории вероятностей и теории графов. Предполагается, что слушатель знаком с базовыми алгоритмами обработки данных и основами комбинаторики.
По курсу предполагается 2 домашних задания, включающие, в частности, работу с реальными графами и изучение практических аспектов теории сложных сетей.
Итоговая оценка по курсу формируется из баллов, полученных за домашние задания и баллов за экзамен.
Содержание
Содержание курса
- Лекция 1. Виды сложных сетей и примеры реальных графов. Разреженность, малый диаметр, гигантская компонента. Закон распределения степеней вершин. презентация, запись
- Лекция 2. Устойчивость и уязвимость гигантской компоненты. Кластерные коэффициенты и ассортативность. Библиотеки для работы с графами. презентация, запись
Предварительная программа курса
- Типичные свойства сложных сетей. Примеры больших графов из практики. Количество ребер, гигантская компонента, диаметр. Распределение степеней вершин. Различные меры центральности и PageRank. Вторые степени вершин, кластерные коэффициенты. Количество ребер между вершинами заданных степеней. Число копий фиксированного графа. Ассортативность.
- Подсчет характеристик графов программными средствами. Библиотека networkx для работы с графами в Python. Средства и алгоритмы визуализации графа. Силовые алгоритмы. Преодоление вычислительных сложностей. Платформа Gephi. Алгоритмы для вычисления PageRank и его модификаций. Метод PowerIteration и неприводимые матрицы. Алгоритм HITS.
- Модель Эрдеша-Реньи. Определение случайного графа. Распределение степеней вершин в модели. Теорема о гигантской компоненте. Диаметр в случайных графах. Число малых подграфов.
- Модель Боллобаша-Риордана. Идея предпочтительного присоединения. Модель Боллобаша-Риордана. Статическое и динамическое определение модели. Степенной закон распределения. Диаметр, устойчивость и уязвимость. Генерация случайных графов в модели. Вторые степени вершин.
- Модель Бакли-Остгуса. Определение модели и генерация графов в ней. Теоремы о характеристиках графов в модели Бакли-Остгуса. Проверка соответствия модели и хост-графа Интернета.
- Другие модели случайных графов. Модель Чаейс—Боргса. Модели на основе копирования. Модель Купера-Фриза. Модели, учитывающие возраст. Динамические модели.
- Поиск сообществ. Базовые определения сообществ. Кластеризация данных. Методы оценивания алгоритмов. Алгоритм Кернигана-Лина. Модулярность. Иерархическая кластеризация. Алгоритм Гирвана-Ньюмана.
Литература
Основная
- Райгородский А. М. Модели интернета. – ИД Интеллект, 2019, – 64 с.
- Менцер Ф., Фортунато С., Дэвис К. А. Наука о сетях. Вводный курс. – ДМК-Пресс, 2021, – 338 с.
- Райгородский А. М. Модели случайных графов. – М. МЦНМО, 2011, – 136 с.
- Remco van der Hofstad. Random Graphs and Complex Networks. Vol 1,2 – 2016.
Дополнительная
- Blum A. Random Graphs – CS 598 Topics in Algorithms (UIUC), 2015.
- Dorogovtsev S. Lectures on Complex Networks. – Oxford University Press, 2010.
- Алон Н. и Спенсер Дж. Вероятностный метод. – М.: БИНОМ. Лаборатория знаний, 2007.
- Харари Ф. Теория графов. – М.: Мир, 1973.
- L.Ostroumova, E.Samosvat. Global clustering coefficient in scale-free networks – ссылка
- L.Ostroumova. Global clustering coefficient in scale-free weighted and unweighted networks – ссылка
Полезные ссылки
- Туториал по Gephi
- Библиотека networkx для Python
- Библиотека igraph
- konect.cc/statistics/diameff90 Статистики некоторых графов
- hoaxy.osome.iu.edu Визуализатор распространения информации в Twitter