Большие графы и модели сложных сетей — различия между версиями
Строка 2: | Строка 2: | ||
Спецкурс для студентов магистратуры. Лектор – [[Участник:KonovodovV|Коноводов В.А.]] | Спецкурс для студентов магистратуры. Лектор – [[Участник:KonovodovV|Коноводов В.А.]] | ||
− | Курс будет проходить дистанционно. Первое занятие будет | + | Курс будет проходить дистанционно. Первое занятие - '''17.02''' в '''8:45''', ссылка на zoom будет на этой странице. |
'''Проголосовать за время спецкурса''' можно [https://forms.yandex.ru/u/5fe71c5e0d66e7278d7a445f/ здесь]. Предварительно спецкурс будет проводиться по четвергам, в 8:45. | '''Проголосовать за время спецкурса''' можно [https://forms.yandex.ru/u/5fe71c5e0d66e7278d7a445f/ здесь]. Предварительно спецкурс будет проводиться по четвергам, в 8:45. |
Версия 13:33, 9 февраля 2022
Спецкурс для студентов магистратуры. Лектор – Коноводов В.А.
Курс будет проходить дистанционно. Первое занятие - 17.02 в 8:45, ссылка на zoom будет на этой странице.
Проголосовать за время спецкурса можно здесь. Предварительно спецкурс будет проводиться по четвергам, в 8:45.
Курс посвящен современным математическим моделям сложных сетей, состоящих из множества взаимодействующих объектов. У курса две цели. Первая – продемонстрировать, какими свойствами обладают графы, возникающие на практике в различных прикладных областях, а также показать, каким образом проводить анализ больших сетей. Это могут быть социальные, биологические, транспортные, коммуникационные сети, или весь Интернет. Вторая цель – рассмотреть существующие модели случайных графов и их свойства, и показать, какие из них наиболее близки к реальным сетям.
Для освоения курса достаточно иметь начальные знания по теории вероятностей и теории графов. Предполагается, что слушатель знаком с базовыми алгоритмами обработки данных и основами комбинаторики.
По курсу предполагается 2 домашних задания, включающие, в частности, работу с реальными графами и изучение практических аспектов теории сложных сетей.
Итоговая оценка по курсу формируется из баллов, полученных за домашние задания и баллов за экзамен.
Содержание
Предварительная программа курса
- Типичные свойства сложных сетей. Примеры больших графов из практики. Количество ребер, гигантская компонента, диаметр. Распределение степеней вершин. Различные меры центральности и PageRank. Вторые степени вершин, кластерные коэффициенты. Количество ребер между вершинами заданных степеней. Число копий фиксированного графа. Ассортативность.
- Подсчет характеристик графов программными средствами. Библиотека networkx для работы с графами в Python. Средства и алгоритмы визуализации графа. Силовые алгоритмы. Преодоление вычислительных сложностей. Платформа Gephi. Алгоритмы для вычисления PageRank и его модификаций. Метод PowerIteration и неприводимые матрицы. Алгоритм HITS.
- Модель Эрдеша-Реньи. Определение случайного графа. Распределение степеней вершин в модели. Теорема о гигантской компоненте. Диаметр в случайных графах. Число малых подграфов.
- Модель Боллобаша-Риордана. Идея предпочтительного присоединения. Модель Боллобаша-Риордана. Статическое и динамическое определение модели. Степенной закон распределения. Диаметр, устойчивость и уязвимость. Генерация случайных графов в модели. Вторые степени вершин.
- Модель Бакли-Остгуса. Определение модели и генерация графов в ней. Теоремы о характеристиках графов в модели Бакли-Остгуса. Проверка соответствия модели и хост-графа Интернета.
- Другие модели случайных графов. Модель Чаейс—Боргса. Модели на основе копирования. Модель Купера-Фриза. Модели, учитывающие возраст. Динамические модели.
- Поиск сообществ. Базовые определения сообществ. Кластеризация данных. Методы оценивания алгоритмов. Алгоритм Кернигана-Лина. Модулярность. Иерархическая кластеризация. Алгоритм Гирвана-Ньюмана.
Литература
Основная
- Райгородский А. М. Модели интернета. – ИД Интеллект, 2019, – 64 с.
- Менцер Ф., Фортунато С., Дэвис К. А. Наука о сетях. Вводный курс. – ДМК-Пресс, 2021, – 338 с.
- Райгородский А. М. Модели случайных графов. – М. МЦНМО, 2011, – 136 с.
- Remco van der Hofstad. Random Graphs and Complex Networks. Vol 1,2 – 2016.
Дополнительная
- Blum A. Random Graphs – CS 598 Topics in Algorithms (UIUC), 2015.
- Dorogovtsev S. Lectures on Complex Networks. – Oxford University Press, 2010.
- Алон Н. и Спенсер Дж. Вероятностный метод. – М.: БИНОМ. Лаборатория знаний, 2007.
- Харари Ф. Теория графов. – М.: Мир, 1973.
Полезные ссылки
- Туториал по Gephi
- Библиотека networkx для Python
- Библиотека igraph
- konect.cc/statistics/diameff90 Статистики некоторых графов
- hoaxy.osome.iu.edu Визуализатор распространения информации в Twitter