Дискретные модели управляющих систем — различия между версиями

Материал из Кафедра математической кибернетики
Перейти к: навигация, поиск
(Содержимое страницы заменено на «Обязательный курс для аспирантов 1 г/о кафедр ИО, МК, ММП Категория:Лек…»)
 
(не показаны 76 промежуточные версии 1 участника)
Строка 1: Строка 1:
 
Обязательный курс для аспирантов 1 г/о кафедр ИО, МК, ММП
 
Обязательный курс для аспирантов 1 г/о кафедр ИО, МК, ММП
 
   
 
   
Курс читает доцент [[Селезнева Светлана Николаевна|Селезнева Светлана Николаевна]]
 
 
==Лекции==
 
 
Лекция 1. Основные комбинаторные числа. Оценки и асимптотики комбинаторных чисел.
 
 
Размещения, перестановки, размещения с повторениями, сочетания, их число рекуррентные формулы для них. Сочетания с повторениями. Теорема о числе сочетаний с повторениями. Оценки и асимптотики биномиальных коэффициентов. Оценки и асимптотики сумм биномиальных коэффициентов.
 
 
Лекция 2. Графы и сети. Оценки графов и сетей различных типов. Планарные графы. Формула Эйлера для планарных графов. Теорема Понтрягина-Куратовского.
 
 
Графы и сети. Оценка числа деревьев с h ребрами. Оценка числа псевдографов с h ребрами. Оценка числа π-сетей с h ребрами. Планарные графы. Формула Эйлера для планарных графов. Непланарность графов K5 и K3,3. Теорема Понтрягина-Куратовского.
 
 
Лекция 3. Экстремальная теория графов. Теорема Турана. Теорема Рамсея.
 
 
Наследственные свойства графов. Теорема о числе ребер в графах с наследственным свойством. Теорема о числе ребер в графе без треугольников. Теорема Турана о числе ребер в графе без полного графа с n вершинами. Числа Рамсея. Оценки чисел Рамсея.
 
 
Лекция 4. Проблема полноты. Теорема о полноте систем функций двузначной логики. Алгоритм распознавания полноты систем функций k-значной логики.
 
 
Лекция 5. Теорема Слупецкого. Особенности k-значных логик.
 
 
Лекция 6. Эксперименты с автоматами. Алгоритмическая неразрешимость проблемы полноты для автоматов.
 
 
Лекция 7. Проблема минимизации ДНФ. Локальные алгоритмы. Построение ДНФ сумма тупиковых в классе локальных алгоритмов. Невозможность построения ДНФ сумма минимальных в классе локальных алгоритмов.
 
 
Лекция 8. Асимптотически наилучший метод синтеза СФЭ. Инвариантные классы и их свойства. Синтез СФЭ для функций из некоторых инвариантных классов.
 
 
Лекция 9. Нижние оценки сложности реализации функций алгебры логики π-схемами и формулами.
 
 
Лекция 10. Эквивалентные преобразования формул двузначной логики. Пример Линдона.
 
 
Лекция 11. Логический подход к контролю исправности и диагностике неисправностей управляющих систем. Тесты.
 
 
Лекция 12. Конечные поля и их основные свойства. Коды Боуза-Чоудхури-Хоквингема.
 
 
==Вопросы к экзамену==
 
'''(весенний  семестр 2014/2015 учебного года, аспиранты 1 г/о кафедр ИО, МК, ММП, лектор — доцент С.Н. Селезнева)'''
 
 
 
 
'''Литература'''
 
 
* Яблонский С. В. Введение в дискретную математику. М.: Высшая школа, 2001.
 
* Лидл Р., Нидеррайтер Г. Конечные поля. Том 1. М.: Мир, 1988.
 
 
 
 
[[Категория:Лекционные курсы кафедры МК]]
 
[[Категория:Лекционные курсы кафедры МК]]

Текущая версия на 14:05, 24 мая 2021

Обязательный курс для аспирантов 1 г/о кафедр ИО, МК, ММП