Избранные вопросы дискретной математики — различия между версиями
(→Лекции) |
(→О проведении экзамена) |
||
Строка 112: | Строка 112: | ||
На дом: [6] 3.6(2, 4, 6, 8), 3.8(2, 4, 6, 8), 3.9(2, 4, 6, 8), 3.10(2, 4, 6, 8), 3.11(2, 4, 6, 8). | На дом: [6] 3.6(2, 4, 6, 8), 3.8(2, 4, 6, 8), 3.9(2, 4, 6, 8), 3.10(2, 4, 6, 8), 3.11(2, 4, 6, 8). | ||
− | ==О проведении экзамена== | + | ==О проведении экзамена (2020-2021 уч. год)== |
− | + | ||
+ | Экзамен письменный. Экзаменационная работа содержит десять заданий разной сложности по содержанию курса. Первые четыре задания - стандартные задачи по курсу, они оцениваются в 3 балла каждое. Следующие четыре задания - формулировки определений или теорем с дополнительными вопросами. Вопросы проясняют понимание студентом определения или теоремы. Они оцениваются также в 3 балла каждое. Оставшиеся два задания - вопросы, связанные с доказательствами, или нестандартные задачи. Они показывают, может ли студент обосновывать утверждения и извлекать новые заключения из полученных знаний в курсе, оцениваются в 4 балла каждое. Продолжительность написания работы - 1 ч 45 мин (105 мин). | ||
[[Категория:Лекционные курсы кафедры МК]] | [[Категория:Лекционные курсы кафедры МК]] |
Версия 21:41, 22 ноября 2020
Курс читает Селезнева Светлана Николаевна
Курс "Избранные вопросы дискретной математики" читается в 5-м семестре (36 ч лекций и 18 ч семинаров). Отчетность - экзамен.
Объявления
Лекции
Часть 1. Конечные функции.
Лекция 1. Универсальная алгебра. Отношения на множестве. Отношение эквивалентности. Операции на множестве. Алгебра. Сохранение функцией отношения. Функции k-значной логики. Существенность переменных.
Лекция 2. Функции k-значной логики. Формулы. Нормальные формы: 1-я и 2-я формы, полиномы по модулю k. Полнота. Теорема о полноте системы Поста. Функция Вебба.
Лекция 3. Алгоритм распознавания полноты в k-значной логике. Замкнутые классы. Классы функций, сохраняющие множество, и функций, сохраняющие разбиение, их замкнутость. Теорема Кузнецова. Предполные классы.
Лекция 4. Существенные функции. Три леммы о существенных функциях. Критерий полноты Яблонского. Критерий полноты Слупецкого. Шефферовы функции.
Лекция 5. Предикаты. Классы функций, сохраняющих предикат, их замкнутость. Предполные классы. Предикатное описание предполных классов.
Лекция 6. Особенности многозначных логик. Замкнутый класс, базис замкнутого класса. Существование в многозначных логиках замкнутых классов без базиса и замкнутых классов со счетным базисом. Соответствие Галуа. Задача обобщенной выполнимости.
Коллоквиум по теме "Конечные функции".
Часть 2. Теория Пойа.
Лекция 7. Группы. Симметрическая группа перестановок S_n. Подгруппы. Теорема Кэли. Цикловой индекс группы перестановок.
Лекция 8. Подгруппы. Смежные классы, индекс подгруппы в группе. Теорема Лагранжа о порядке подгруппы конечной группы. Нормальные подгруппы. Фактор-группы. Действие группы на множестве. Орбита и стабилизатор элемента. Лемма Бернсайда.
Лекция 9. Раскраски. Эквивалентность раскрасок относительно группы. Теорема Пойа. Производящие функции. Перечисляющий ряд для цветов и перечисляющий ряд для раскрасок. Теорема Пойа (общий случай). Примеры.
Коллоквиум по теме "Теория Пойа".
Часть 3. Конечные поля.
Лекция 10. Кольца, поля. Теорема о конечном целостном кольце. Характеристика кольца. Кольцо многочленов. Деление с остатком многочленов над полем. Неприводимые многочлены над полем. Критерий неприводимости многочленов степени 2 и 3.
Лекция 11. Построение конечных полей из p^n элементов, где p - простое число, n \ge 1. Нахождение обратного элемента в конечном поле. Мультипликативная группа конечного поля. Примитивный элемент конечного поля.
Лекция 12. Число неприводимых многочленов над простым полем. Расширения полей. Существование и единственность конечного поля с p^n элементами, где p - простое число, n \ge 1.
Коллоквиум по теме "Конечные поля".
Литература
Основная:
- Яблонский С. В. Введение в дискретную математику. М.: Высшая школа, 2001.
- Чашкин А.В. Лекции по дискретной математике. М.: Изд-во механико-математического факультета МГУ, 2007.
- Лидл Р., Нидеррайтер Г. Конечные поля. Том 1. М.: Мир, 1988.
- Гаврилов Г.П., Сапоженко А.А. Задачи и упражнения по дискретной математике. М., Физматлит, 2004.
- Задачи для семинарских занятий по теме "Группы. Теория Пойа".
- Задачи для семинарских занятий по теме "Конечные поля".
Дополнительная:
- Марченков С.С. Избранные главы дискретной математики. М.: МАКС Пресс, 2016. Глава 1.
- Марченков С.С. Функциональные системы с операцией суперпозиции. М.: Физматлит, 2004. Глава 1.
- Яблонский С.В., Гаврилов Г.П., Набебин А.А. Предполные классы в многозначных логиках. М.: МЭИ, 1997. Часть 1.
- Lau D. Function Algebras on Finite Sets. Springer, 2006.
- Горшков С.П., Тарасов А.В. Сложность решения систем булевых уравнений. М.: Курс, 2017.
Семинары
Занятие 1. Тождества в k-значной логике. Представления k-значных функций в 1-й и 2-й формах и полиномами по модулю k.
[4] Гл. III 1.1(3, 6, 10, 12), 1.5, 1.11(2, 4, 8, 11), 2.7(1, 3, 6, 9), 2.12(1, 2), 2.8(1, 3).
На дом: [4] Гл. III 1.1(4, 7, 11, 13), 1.6, 1.11(5, 10), 1.12, 2.7(2, 8, 10), 2.12(3, 5), 2.8(2), 2.9, 2.11(1, 2).
Занятие 2. Функции, сохраняющие множество и сохраняющие разбиение. Сведение к заведомо полным системам.
[4] Гл. III 2.1(1 а, б, г, д), 2.2(1, 2), 2.13(1, 2, 5, 6), 2.16(1, 3), 2.19(1, 2, 3, 4).
На дом: [4] Гл. III 2.13(7, 8, 9, 10), 2.16(2, 4), 2.19(5, 9, 10, 11, 12), 2.14, 2.15.
Занятие 3. Распознавание полноты систем функций. Критерий полноты. Система полиномов. Базисы.
[4] Гл. III 2.20(1, 2, 3), 2.21(1, 2, 5, 7), 2.22(1, 3, 5), 2.23(1, 3, 4), 2.25(1, 3).
На дом: [4] Гл. III 2.20(4, 5, 7), 2.21(3, 4, 6, 8), 2.22(2, 4, 6), 2.23(5, 7), 2.25(2, 4).
Занятие 4. Группы, подгруппы, теорема Кэли. Цикловой индекс группы перестановок.
[5] 2.1(1, 2), 2.2(2, 4), 2.3(1, 3, 5, 7), 2.4(2, 4), 2.5(2, 4, 6, 8), 2.6(2, 3), 2.7(1).
На дом: [5] 2.1(3, 4), 2.2(1, 3), 2.3(2, 4, 6, 8), 2.4(1, 3, 5), 2.5(1, 3, 5, 7), 2.6(1, 4), 2.7(2).
Занятие 5. Раскраски. Теорема Пойа (частный случай).
[5] 2.8(2, 3, 6), 2.12(1, 2 (1-2)), 2.13(1, 2).
На дом: [5] 2.8(1, 4, 5, 7, 8), 2.12(2 (3-4)), 2.13(3), 2.14(2, 3), 2.15(2, 3).
Занятие 6. Раскраски. Теорема Пойа (общий случай).
[5] 2.9(1-4), 2.10(2, 4), 2.11(1, 2), 2.16(1, 3), 2.17(1,3).
На дом: [5] 2.9(5-8), 2.10(1, 3), 2.11(3, 4), 2.16(2, 4), 2.17(2, 4).
Занятие 7. Построение конечных полей.
[6] 3.1(1, 3, 5, 7), 3.3(1, 3, 5, 7), 3.4(1, 3, 5, 7), 3.5(1, 3), 3.7(1, 3).
На дом: [6] 3.1(2, 4, 6, 8), 3.3(2, 4, 6, 8), 3.4(2, 4, 6, 8), 3.5(2, 4), 3.7(2, 4).
Занятие 8. Вычисления в конечных полях.
[6] 3.6(1, 3, 5, 7), 3.8(1, 3, 5, 7), 3.9(1, 3, 5, 7), 3.10(1, 3, 5, 7), 3.11(1, 3, 5, 7).
На дом: [6] 3.6(2, 4, 6, 8), 3.8(2, 4, 6, 8), 3.9(2, 4, 6, 8), 3.10(2, 4, 6, 8), 3.11(2, 4, 6, 8).
О проведении экзамена (2020-2021 уч. год)
Экзамен письменный. Экзаменационная работа содержит десять заданий разной сложности по содержанию курса. Первые четыре задания - стандартные задачи по курсу, они оцениваются в 3 балла каждое. Следующие четыре задания - формулировки определений или теорем с дополнительными вопросами. Вопросы проясняют понимание студентом определения или теоремы. Они оцениваются также в 3 балла каждое. Оставшиеся два задания - вопросы, связанные с доказательствами, или нестандартные задачи. Они показывают, может ли студент обосновывать утверждения и извлекать новые заключения из полученных знаний в курсе, оцениваются в 4 балла каждое. Продолжительность написания работы - 1 ч 45 мин (105 мин).