Дискретная математика (1-й поток) — различия между версиями

Материал из Кафедра математической кибернетики
Перейти к: навигация, поиск
Строка 6: Строка 6:
 
Лектор - [[Селезнева Светлана Николаевна]]
 
Лектор - [[Селезнева Светлана Николаевна]]
  
==Задания==
+
==Удаленное обучение==
  
 
1-я неделя: 17 марта-24 марта
 
1-я неделя: 17 марта-24 марта

Версия 12:49, 17 марта 2020

Дополнительная страница по курсу Дискретная математика (1й курс).

Основной курс для студентов 1-го курса, читается во 2-м семестре. Лекции - 3 ч в неделю, семинары - 2 ч в неделю, отчетность - экзамен.

Лектор - Селезнева Светлана Николаевна

Удаленное обучение

1-я неделя: 17 марта-24 марта

Задание 1.

Лекции

Алгебра логики

Лекция 1. Двоичный куб. Наборы, вес набора. Слой n-мерного куба. Частичный порядок на n-мерном кубе. Соседние и противоположные наборы, расстояние между наборами. Лексико-графический порядок на n-мерном кубе.

Лекция 2. Функции алгебры логики. Таблицы истинности. Существенные и несущественные переменные. Формулы. Тождества. Двойственность.

Лекция 3. Разложение функций по переменным. Теорема о совершенной ДНФ. Теорема о совершенной КНФ. Полиномы Жегалкина. Теорема Жегалкина. Быстрый способ построения полинома Жегалкина.

Лекция 4. Полные системы. Полнота некоторых систем. Замыкание множества. Замкнутые классы. Замкнутость классов T_0, T_1, L, S, M. Леммы о несамодвойственной, немонотонной и нелинейной функциях.

Лекция 5. Полные системы. Теорема Поста о полноте. Базис в P_2. Теореме о числе функций в базисе P_2. Предполные классы. Теорема о предполных классах в P_2.

Лекция 6. Функции k-значной логики. Таблицы значений. Представление функций k-значной логики в 1-й и 2-й формах. Представление функций k-значной логики полиномами по модулю k.

Графы

Лекция 7. Графы. Простейшие свойства графов. Пути и цепи. Циклы и связность. Леммы об удалении и добавлении ребер в связных графах. Теорема о числе вершин, числе ребер и числе компонент связности в графе. Орграфы.

Лекция 8. Деревья. Теорема о равносильных определениях дерева. Остовные деревья. Кратчайшие остовные деревья. Алгоритм построения кратчайшего остовного дерева. Корневые деревья. Упорядоченные корневые деревья. Оценка числа деревьев с q ребрами.

Лекция 9. Геометрическое представление графов. Планарные графы. Формула Эйлера для планарных графов. Критерий планарности Понтрягина-Куратовского. Раскраски графов. Раскраски графов в два цвета. Раскраски планарных графов.

Коды

Алгоритмы

Автоматы

Семинары

План семинарских занятий

Дополнительные задачи к семинарским занятиям