Участник:SeleznevaSN — различия между версиями
Материал из Кафедра математической кибернетики
(→Полиномы над конечными полями) |
|||
Строка 5: | Строка 5: | ||
− | == [[Области научных интересов]] == | + | == [[Области научных интересов]] и публикации == |
===Полиномиальные представления булевых и многозначных функций=== | ===Полиномиальные представления булевых и многозначных функций=== | ||
Строка 21: | Строка 21: | ||
'''Публикации''' | '''Публикации''' | ||
− | + | *Полиномиальный алгоритм распознавания принадлежности функций k-значных логик, представленных полиномами, к предполным классам линейных функций // Вестник МГУ. Серия 15. Вычислительная математика и математическая кибернетика (2001), вып. 3, с. 40-43. | |
− | + | *Полиномиальный алгоритм для распознавания принадлежности реализованной полиномом функции k-значной логики предполным классам самодвойственных функций. ([[Media:selezn-dm1998.pdf|Полный текст работы]]) // Дискретная математика. Т. 10. № 3. 1998. С. 64-72. | |
− | + | *О сложности распознавания полноты множеств булевых функций, реализованных полиномами Жегалкина. ([[Media:selezn-dm1997.pdf|Полный текст работы]]) // Дискретная математика. Т. 9. № 4. 1997. С. 24-31. | |
− | + | ||
===Полиномы над конечными полями=== | ===Полиномы над конечными полями=== | ||
Строка 53: | Строка 52: | ||
[[Media:ok-2.pdf|Алексеев В.Б., Вороненко А.А., Ложкин С.А., Романов Д.С., Сапоженко А.А., Селезнева С.Н. Задачи по курсу "Основы кибернетики"]], 2-е изд. М.: МАКС Пресс, 2011. | [[Media:ok-2.pdf|Алексеев В.Б., Вороненко А.А., Ложкин С.А., Романов Д.С., Сапоженко А.А., Селезнева С.Н. Задачи по курсу "Основы кибернетики"]], 2-е изд. М.: МАКС Пресс, 2011. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
== Аспиранты и студенты == | == Аспиранты и студенты == |
Версия 11:26, 3 февраля 2014
Файл:Selezneva.jpg
Селезнева Светлана Николаевна
e-mail: selezn@cs.msu.su
Содержание
[убрать]Области научных интересов и публикации
Полиномиальные представления булевых и многозначных функций
Исследуется сложность представления булевых и многозначных функций полиномиальными формами различных видов.
Публикации
- О сложности представления функций многозначных логик поляризованными полиномами // Дискретная математика (2002), т. 14, вып. 2, с. 48-53.
Алгоритмическая сложность распознавания свойств булевых и многозначных функций
Исследуется сложность алгоритмов распознавания свойств булевых и многозначных функций, заданных в определенном языке.
Публикации
- Полиномиальный алгоритм распознавания принадлежности функций k-значных логик, представленных полиномами, к предполным классам линейных функций // Вестник МГУ. Серия 15. Вычислительная математика и математическая кибернетика (2001), вып. 3, с. 40-43.
- Полиномиальный алгоритм для распознавания принадлежности реализованной полиномом функции k-значной логики предполным классам самодвойственных функций. (Полный текст работы) // Дискретная математика. Т. 10. № 3. 1998. С. 64-72.
- О сложности распознавания полноты множеств булевых функций, реализованных полиномами Жегалкина. (Полный текст работы) // Дискретная математика. Т. 9. № 4. 1997. С. 24-31.
Полиномы над конечными полями
Изучаются свойства полиномов над конечными полями во взаимосвязи с полиномиальными представлениями конечнозначных функций.
Публикации
- О некоторых свойствах полиномов над конечным полем. (PostScript) // Дискретная математика (2001), т. 13, вып. 2, с. 111-119.
Спецсеминары
Сложность решения дискретных задач
Лекционные курсы
Избранные вопросы дискретной математики
Дискретная математика 2 (группа 141)
Дискретные модели (магистратура, 1-й курс)
Булевы функции и полиномы (спецкурс)
Учебные пособия
Селезнева С.Н. Основы дискретной математики. М.: МАКС Пресс, 2010.
Алексеев В.Б., Вороненко А.А., Ложкин С.А., Романов Д.С., Сапоженко А.А., Селезнева С.Н. Задачи по курсу "Основы кибернетики", 2-е изд. М.: МАКС Пресс, 2011.
Аспиранты и студенты
Заметки
20.01.2014 г. О вечере кафедры математический кибернетики