Графы и их приложения — различия между версиями
PodymovVV (обсуждение | вклад) (Новая страница: «Категория:Спецкурсы кафедры МК Спецкурс для аспирантов. Лекторы: Селезнева Светлан…») |
|||
Строка 3: | Строка 3: | ||
Спецкурс для аспирантов. | Спецкурс для аспирантов. | ||
− | + | Лектор - [[Селезнева Светлана Николаевна]] | |
+ | |||
+ | '''Лекции''' | ||
+ | |||
+ | [[Media:gip-asp-l1-selezn.pdf|'''Лекция 1''']]. Графы. Основные определения. Простейшие свойства графов. Пути и цепи в графах. Связность, k-связность. Деревья, корневые деревья. Остовные деревья. | ||
+ | |||
+ | [[Media:gip-asp-l2-selezn.pdf|'''Лекция 2''']]. Точки сочленения и мосты. Связность, k-связность. Двусвязные графы. Компоненты двусвязности (блоки) графа. Дерево блоков и точек сочленения графа. | ||
+ | |||
+ | [[Media:gip-asp-l3-selezn.pdf|'''Лекция 3''']]. Деревья. Остовные деревья. Достижимость промежуточного числа висячих вершин в остовном дереве. Оценка числа висячих вершин в остовном дереве. | ||
+ | |||
+ | [[Media:gip-asp-l4-selezn.pdf|'''Лекция 4''']]. Раскраски вершин графов. Хроматическое число графа. Критерий двуцветности графа. Верхние оценки хроматического числа графа. Существование графа без треугольников с произвольно большим хроматическим числом. | ||
+ | |||
+ | [[Media:gip-asp-l5-selezn.pdf|'''Лекция 5''']]. Раскраски ребер графов. Хроматический индекс графа. Хроматический индекс двудольных графов. Верхняя и нижняя оценки хроматического индекса графа. | ||
+ | |||
+ | [[Media:gip-asp-l6-selezn.pdf|'''Лекция 6''']]. Наследственные свойства графов. Экстремальные графы. Наибольшее число ребер в графах с наследственным свойством. Наибольшее число ребер в планарных графах. Наибольшее число ребер в графах без полного подграфа с n вершинами. | ||
+ | |||
+ | [[Media:gip-asp-l7-selezn.pdf|'''Лекция 7''']]. Числа Рамсея. Верхняя оценка числа Рамсея. Нижняя оценка числа Рамсея. | ||
+ | |||
+ | [[Media:gip-asp-l8-selezn.pdf|'''Лекция 8''']]. Сеть. Поток в сети. Теорема о величине максимального потока в сети. Нахождение максимального потока в сети. | ||
+ | |||
+ | [[Media:gip-asp-l9-selezn.pdf|'''Лекция 9''']]. Труднорешаемые графовые задачи распознавания. NP-полнота задачи k-раскраски графов при каждом заданном числе k \ge 3. | ||
+ | |||
+ | '''Литература''' | ||
+ | |||
+ | '''Основная''': | ||
+ | |||
+ | 1. Емеличев В.А., Мельников О.И., Сарванов В.И., Тышкевич Р.И. Лекции по теории графов. М.: Либроком, 2009. | ||
+ | |||
+ | 2. Bondy J.A., Murty U.S.R. Graph theory. Springer, 2008. | ||
+ | |||
+ | '''Дополнительная''': | ||
+ | |||
+ | 3. Diestel R. Graph Theory. Springer, 2010. | ||
+ | |||
+ | 4. Карпов Д.В. Теория графов | ||
+ | |||
+ | 5. Харари Ф. Теория графов. М.: Мир, 1973. | ||
+ | |||
+ | 6. Оре О. Теория графов. М.: Наука, 1980. | ||
+ | |||
+ | 7. Гэри М., Джонсон Д. Вычислительные машины и труднорешаемые задачи. М.: Мир, 1982. | ||
+ | |||
+ | 8. Липский В. Комбинаторика для программистов. М.: Мир, 1988. | ||
+ | |||
+ | 9. Дасгупта С., Пападимитриу Х., Вазирани У. Алгоритмы. М.: МЦНМО, 2014. | ||
+ | |||
+ | 10. Форд Л.Р., Фалкерсон Д.Р. Потоки в сетях. М.: Мир, 1966. | ||
+ | |||
+ | 11. Гаврилов Г.П., Сапоженко А.А. Задачи и упражнения по дискретной математике. М.: Физматлит, 2004. |
Версия 13:38, 8 октября 2019
Спецкурс для аспирантов.
Лектор - Селезнева Светлана Николаевна
Лекции
Лекция 1. Графы. Основные определения. Простейшие свойства графов. Пути и цепи в графах. Связность, k-связность. Деревья, корневые деревья. Остовные деревья.
Лекция 2. Точки сочленения и мосты. Связность, k-связность. Двусвязные графы. Компоненты двусвязности (блоки) графа. Дерево блоков и точек сочленения графа.
Лекция 3. Деревья. Остовные деревья. Достижимость промежуточного числа висячих вершин в остовном дереве. Оценка числа висячих вершин в остовном дереве.
Лекция 4. Раскраски вершин графов. Хроматическое число графа. Критерий двуцветности графа. Верхние оценки хроматического числа графа. Существование графа без треугольников с произвольно большим хроматическим числом.
Лекция 5. Раскраски ребер графов. Хроматический индекс графа. Хроматический индекс двудольных графов. Верхняя и нижняя оценки хроматического индекса графа.
Лекция 6. Наследственные свойства графов. Экстремальные графы. Наибольшее число ребер в графах с наследственным свойством. Наибольшее число ребер в планарных графах. Наибольшее число ребер в графах без полного подграфа с n вершинами.
Лекция 7. Числа Рамсея. Верхняя оценка числа Рамсея. Нижняя оценка числа Рамсея.
Лекция 8. Сеть. Поток в сети. Теорема о величине максимального потока в сети. Нахождение максимального потока в сети.
Лекция 9. Труднорешаемые графовые задачи распознавания. NP-полнота задачи k-раскраски графов при каждом заданном числе k \ge 3.
Литература
Основная:
1. Емеличев В.А., Мельников О.И., Сарванов В.И., Тышкевич Р.И. Лекции по теории графов. М.: Либроком, 2009.
2. Bondy J.A., Murty U.S.R. Graph theory. Springer, 2008.
Дополнительная:
3. Diestel R. Graph Theory. Springer, 2010.
4. Карпов Д.В. Теория графов
5. Харари Ф. Теория графов. М.: Мир, 1973.
6. Оре О. Теория графов. М.: Наука, 1980.
7. Гэри М., Джонсон Д. Вычислительные машины и труднорешаемые задачи. М.: Мир, 1982.
8. Липский В. Комбинаторика для программистов. М.: Мир, 1988.
9. Дасгупта С., Пападимитриу Х., Вазирани У. Алгоритмы. М.: МЦНМО, 2014.
10. Форд Л.Р., Фалкерсон Д.Р. Потоки в сетях. М.: Мир, 1966.
11. Гаврилов Г.П., Сапоженко А.А. Задачи и упражнения по дискретной математике. М.: Физматлит, 2004.