Графы и их применения — различия между версиями
(→Объявления) |
(→Программа курса) |
||
Строка 35: | Строка 35: | ||
'''Лекция 8'''. Поиск в глубину и поиск в ширину в графе. Нахождение остовного дерева графа поиском в глубину и поиском в ширину. Отыскание фундаментального множества циклов в графе. Критерий разделяющей вершины на основе поиска в глубину. Нахождение компонент двусвязности графа. | '''Лекция 8'''. Поиск в глубину и поиск в ширину в графе. Нахождение остовного дерева графа поиском в глубину и поиском в ширину. Отыскание фундаментального множества циклов в графе. Критерий разделяющей вершины на основе поиска в глубину. Нахождение компонент двусвязности графа. | ||
− | '''Лекция 9'''. Алгоритмы поиска кратчайшего остовного дерева. | + | '''Лекция 9'''. Алгоритмы поиска кратчайшего остовного дерева. Матроиды и жадные алгоритмы. Теорема Радо-Эдмонса. |
− | '''Лекция 10'''. Потоки в сетях. Максимальный поток в сети. Теорема о величине максимального потока в сети. Алгоритмы отыскания максимального потока. | + | '''Лекция 10'''. Потоки в сетях. Максимальный поток в сети. Теорема Форда-Фалкерсона о величине максимального потока в сети. Алгоритмы отыскания максимального потока. |
+ | |||
+ | '''Лекция 11'''. Паросочетания в графах. Теорема Холла. Паросочетания в двудольных графах. Алгоритм отыскания наибольшего паросочетания двудольного графа на основе построения максимального потока в сети. | ||
+ | |||
+ | '''Лекция 12'''. Паросочетания в графах. Теорема Куна. Теорема Эдмонса. Алгоритмы отыскания наибольших паросочетаний в двудольных графах и в произвольных графах. | ||
+ | |||
+ | '''Лекция 13'''. Эйлеровы пути и циклы в графах. Критерий эйлеровости графа. Задача китайского почтальона. Гамильтоновы пути и циклы в графах. Достаточные условия гамильтоновости графа. | ||
+ | |||
+ | '''Лекция 14'''. Гамильтоновы циклы в графах. Задача коммивояжера с неравенством треугольника и без него. Приближенные алгоритмы. Переборные алгоритмы, дерево решений. Алгоритм перебора всех остовных деревьев графа. | ||
+ | |||
+ | '''Лекция 15'''. Изоморфизм графов. Полиномиальный алгоритм проверки изоморфизма деревьев. Построение выпуклого n-угольника на достаточно большом множестве точек. | ||
==Программа семинарских занятий== | ==Программа семинарских занятий== |
Версия 12:21, 22 декабря 2017
Обязательный курс магистерской программы "Дискретные структуры и алгоритмы"
Курс читается в 1-м семестре магистратуры, 2 ч лекций, 1 ч семинаров
Лекторы: Селезнева Светлана Николаевна, Бухман Антон Владимирович
Объявления
Досрочный экзамен состоится 16 декабря (в субботу) в 11 ч в ауд. 503.
Консультация по курсу состоится в среду, 13 декабря, с 8-45 до 10-20 в ауд. по расписанию лекций.
Программа курса
Часть 1.
Лекция 1. Графы. Основные определения. Простейшие свойства графов. Пути и цепи в графах. Связность, k-связность. Деревья, корневые деревья. Остовные деревья.
Лекция 2. Точки сочленения и мосты. Связность, k-связность. Двусвязные графы. Компоненты двусвязности (блоки) графа. Дерево блоков и точек сочленения графа.
Лекция 3. Деревья. Остовные деревья. Число остовных деревьев помеченного полного графа. Достижимость промежуточного числа висячих вершин в остовном дереве. Оценка числа висячих вершин в остовном дереве.
Лекция 4. Раскраски вершин графов. Хроматическое число графа. Критерий двуцветности графа. Верхние оценки хроматического числа графа. Существование графов без треугольников с произвольно большим хроматическим числом.
Лекция 5. Раскраски ребер графов. Хроматический индекс графа. Хроматический индекс двудольных графов. Верхняя и нижняя оценки хроматического индекса графа.
Лекция 6. Наследственные свойства графов. Наибольшее число ребер в графах с наследственным свойством. Наибольшее число ребер в планарных графах. Наибольшее число ребер в графах без полного подграфа с n вершинами.
Лекция 7. Числа Рамсея. Верхняя оценка числа Рамсея. Нижняя оценка числа Рамсея.
Часть 2.
Лекция 8. Поиск в глубину и поиск в ширину в графе. Нахождение остовного дерева графа поиском в глубину и поиском в ширину. Отыскание фундаментального множества циклов в графе. Критерий разделяющей вершины на основе поиска в глубину. Нахождение компонент двусвязности графа.
Лекция 9. Алгоритмы поиска кратчайшего остовного дерева. Матроиды и жадные алгоритмы. Теорема Радо-Эдмонса.
Лекция 10. Потоки в сетях. Максимальный поток в сети. Теорема Форда-Фалкерсона о величине максимального потока в сети. Алгоритмы отыскания максимального потока.
Лекция 11. Паросочетания в графах. Теорема Холла. Паросочетания в двудольных графах. Алгоритм отыскания наибольшего паросочетания двудольного графа на основе построения максимального потока в сети.
Лекция 12. Паросочетания в графах. Теорема Куна. Теорема Эдмонса. Алгоритмы отыскания наибольших паросочетаний в двудольных графах и в произвольных графах.
Лекция 13. Эйлеровы пути и циклы в графах. Критерий эйлеровости графа. Задача китайского почтальона. Гамильтоновы пути и циклы в графах. Достаточные условия гамильтоновости графа.
Лекция 14. Гамильтоновы циклы в графах. Задача коммивояжера с неравенством треугольника и без него. Приближенные алгоритмы. Переборные алгоритмы, дерево решений. Алгоритм перебора всех остовных деревьев графа.
Лекция 15. Изоморфизм графов. Полиномиальный алгоритм проверки изоморфизма деревьев. Построение выпуклого n-угольника на достаточно большом множестве точек.
Программа семинарских занятий
Семинар 1. Простейшие свойства графов (повторение). [5] Гл. 6: 1.3, 1.4, 1.5, 1.13, 1.16, 1.21, 1.22, 1.27, 1.28, 1.29, 1.31, 3.10, 3.14, задачи лекции 1.
Семинар 2. Связность, двусвязность графов. Остовные деревья. [5] Гл. 6: 1.24, 1.17, 3.15, задачи лекций 2 и 3.
Семинар 3. Раскраски графов. Хроматическое число и хроматический индекс графа. [5] Гл. 6: 2.18, 2.19, 2.20, 2.21, задачи лекций 4 и 5.
Семинар 4. Наследственные свойства графов. Числа Рамсея. [5] Гл. 6: 2.7, 2.8, 2.9, 2.10, 2.13, 2.17, задачи лекций 6 и 7.
Литература
Основная:
1. Емеличев В.А., Мельников О.И., Сарванов В.И., Тышкевич Р.И. Лекции по теории графов. М.: Либроком, 2009.
2. Bondy J.A., Murty U.S.R. Graph theory. Springer, 2008.
3. Харари Ф. Теория графов. М.: Мир, 1973.
4. Липский В. Комбинаторика для программистов. М.: Мир, 1988.
5. Гаврилов Г.П., Сапоженко А.А. Задачи и упражнения по дискретной математике. М.: Физматлит, 2004.
Дополнительная:
6. Алексеев В.Б. Лекции по дискретной математике. М.: Инфра-М, 2012.
7. Алексеев В.Б. Введение в теорию сложности алгоритмов. М.: Издательский отдел ф-та ВМК МГУ имени М.В. Ломоносова, 2002.
8. Гэри М., Джонсон Д. Вычислительные машины и труднорешаемые задачи. М.: Мир, 1982.
9. Оре О. Теория графов. М.: Наука, 1980.
10. Робертс Ф.С. Дискретные математические модели с приложениями к социальным, биологическим и экологическим задачам. М.: Наука, 1986.
11. Форд Л.Р., Фалкерсон Д.Р. Потоки в сетях. М.: Мир, 1966.
12. Чашкин А.В. Лекции по дискретной математике. М.: Изд-во механико-математического ф-та МГУ имени М.В. Ломоносова, 2007.
13. Diestel R. Graph Theory. Springer, 2010.