Дискретные модели — различия между версиями
Материал из Кафедра математической кибернетики
(→Лекции) |
(→Программа курса) |
||
Строка 12: | Строка 12: | ||
*'''Лекция 2''': Функции алгебры логики. Замкнутый класс и полная система. Теорема Поста о функциональной полноте. Базис замкнутого класса. Теорема о максимальном числе функций алгебры логики. Предполный класс. Теорема о предполных классах алгебры логики. Результаты Э. Поста о замкнутых классах алгебры логики. | *'''Лекция 2''': Функции алгебры логики. Замкнутый класс и полная система. Теорема Поста о функциональной полноте. Базис замкнутого класса. Теорема о максимальном числе функций алгебры логики. Предполный класс. Теорема о предполных классах алгебры логики. Результаты Э. Поста о замкнутых классах алгебры логики. | ||
*'''Лекция 3''': Функции k-значной логики. Теоремы о представлении функций k-значной логики в 1-й и 2-й формах и полиномами по модулю k. Полная система. Теорема о полноте системы Поста и следствия из нее. Функция Вебба. | *'''Лекция 3''': Функции k-значной логики. Теоремы о представлении функций k-значной логики в 1-й и 2-й формах и полиномами по модулю k. Полная система. Теорема о полноте системы Поста и следствия из нее. Функция Вебба. | ||
− | *'''Лекция 4''': Алгоритм распознавания полноты конечных систем функций k-значной логики. Теоремы Янова и Мучника о существовании замкнутых классов многозначных логик без базиса и со счетным базисом. Особенности многозначных логик. | + | *'''Лекция 4''': Функции k-значной логики. Алгоритм распознавания полноты конечных систем функций k-значной логики. Теоремы Янова и Мучника о существовании замкнутых классов многозначных логик без базиса и со счетным базисом. Особенности многозначных логик. |
*'''Лекция 5''': Графы. Деревья, остовные деревья. Алгоритм построения остовного дерева связного графа. Теорема о числе остовных деревьев полного графа. Теорема о двух остовных деревьях графа. Теоремы об оценках числа висячих вершин в остовном дереве графа. | *'''Лекция 5''': Графы. Деревья, остовные деревья. Алгоритм построения остовного дерева связного графа. Теорема о числе остовных деревьев полного графа. Теорема о двух остовных деревьях графа. Теоремы об оценках числа висячих вершин в остовном дереве графа. | ||
*'''Лекция 6''': Графы. Раскраски графов. Хроматическое число графа. Критерий Кёнига двураскрашиваемости графа. Теоремы об оценках хроматического числа графа. | *'''Лекция 6''': Графы. Раскраски графов. Хроматическое число графа. Критерий Кёнига двураскрашиваемости графа. Теоремы об оценках хроматического числа графа. |
Версия 12:54, 16 февраля 2015
Программа обязательного курса для студентов магистратуры, 1-й курс, 2-й семестр.
Лектор - доцент Селезнева Светлана Николаевна.
Объявления
Вопросы к экзамену
Программа курса
- Лекция 1: Выборки. Размещения, перестановки, размещения с повторениями, сочетания, сочетания с повторениями, их число и рекуррентные формулы для них. Примеры. Свойства комбинаторных чисел.
- Лекция 2: Функции алгебры логики. Замкнутый класс и полная система. Теорема Поста о функциональной полноте. Базис замкнутого класса. Теорема о максимальном числе функций алгебры логики. Предполный класс. Теорема о предполных классах алгебры логики. Результаты Э. Поста о замкнутых классах алгебры логики.
- Лекция 3: Функции k-значной логики. Теоремы о представлении функций k-значной логики в 1-й и 2-й формах и полиномами по модулю k. Полная система. Теорема о полноте системы Поста и следствия из нее. Функция Вебба.
- Лекция 4: Функции k-значной логики. Алгоритм распознавания полноты конечных систем функций k-значной логики. Теоремы Янова и Мучника о существовании замкнутых классов многозначных логик без базиса и со счетным базисом. Особенности многозначных логик.
- Лекция 5: Графы. Деревья, остовные деревья. Алгоритм построения остовного дерева связного графа. Теорема о числе остовных деревьев полного графа. Теорема о двух остовных деревьях графа. Теоремы об оценках числа висячих вершин в остовном дереве графа.
- Лекция 6: Графы. Раскраски графов. Хроматическое число графа. Критерий Кёнига двураскрашиваемости графа. Теоремы об оценках хроматического числа графа.
- Лекция 7: Графы. Наследственные свойства графов. Экстремальные графы. Теорема о максимальном числе ребер в графе без треугольников. Теорема Турана о максимальном числе ребер в графе без полного графа с n вершинами. Числа Рамсея и их оценки.
Литература
- Яблонский С.В. Введение в дискретную математику. М.: Высшая школа, 2001.
- Гаврилов Г.П., Сапоженко А.А. Задачи и упражнения по дискретной математике. М.: Физматлит, 2004.
- Форд Л.Р., Фалкерсон Д.Р. Потоки в сетях. М.: Мир, 1966.
- Робертс Ф.С. Дискретные математические модели с приложениями к социальным, биологическим и экологическим задачам. М.: Наука, 1986.