Графы и их применения — различия между версиями

Материал из Кафедра математической кибернетики
Перейти к: навигация, поиск
(Программа курса)
м
 
(не показаны 25 промежуточные версии 2 участников)
Строка 1: Строка 1:
 +
[[Категория:Спецкурсы кафедры МК]]
 +
[[Категория:Лекционные курсы кафедры МК]]
 +
[[Категория:Магистерская программа Дискретные структуры и алгоритмы]]
 +
 
Обязательный курс магистерской программы "Дискретные структуры и алгоритмы"
 
Обязательный курс магистерской программы "Дискретные структуры и алгоритмы"
  
Курс читается в 1-м семестре магистратуры, 2 ч лекций, 1 ч семинаров
+
Курс читается в 1-м семестре магистратуры, 1 ч лекций, 1 ч семинаров
  
Лекторы: [[Селезнева Светлана Николаевна]], [[Бухман Антон Владимирович]]
+
Лектор: [[Бухман Антон Владимирович]]
  
==Программа курса==
 
  
'''Часть 1'''.
+
== Программа курса Графы и их применения. ==
  
[[Media:gip-l1-selezn.pdf|'''Лекция 1''']]. Графы. Основные определения. Простейшие свойства графов. Пути и цепи в графах. Связность, k-связность. Деревья, корневые деревья. Остовные деревья.
 
  
[[Media:gip-l2-selezn.pdf|'''Лекция 2''']]. Точки сочленения и мосты. Связность, k-связность. Двусвязные графы. Компоненты двусвязности (блоки) графа. Дерево блоков и точек сочленения графа.
+
'''Занятие 1.
 +
1. Введение. Обзор курса. - 20 минут
 +
2. Семинар. Задачи на повторение курса по графам.
  
[[Media:gip-l3-selezn.pdf|'''Лекция 3''']]. Деревья. Остовные деревья. Число остовных деревьев помеченного полного графа. Достижимость промежуточного числа висячих вершин в остовном дереве. Оценка числа висячих вершин в остовном дереве.
+
'''Занятие 2.
 +
1. Семинар. Задачи на повторение -- продолжение.
 +
2. Лекция. Алгоритмы на графах. Алгоритмическая модель. Сложность. Представление графов.
  
[[Media:gip-l4-selezn.pdf|'''Лекция 4''']]. Раскраски вершин графов. Хроматическое число графа. Критерий двуцветности графа. Верхние оценки хроматического числа графа. Существование графов без треугольников с произвольно большим хроматическим числом.
+
'''Занятие 3.
 +
1. Обходы графов.
 +
2. Поиск компонент вершинной двусвязности.
 +
3. Разбор задач на двусвязность.
  
[[Media:gip-l5-selezn.pdf|'''Лекция 5''']]. Раскраски ребер графов. Хроматический индекс графа. Хроматический индекс двудольных графов. Верхняя и нижняя оценки хроматического индекса графа.
+
'''Занятие 4.
 +
1. Поиск множества фундаментальных циклов
 +
2. Поиск компонент сильной связности.  
  
[[Media:gip-l6-selezn.pdf|'''Лекция 6''']]. Наследственные свойства графов. Наибольшее число ребер в графах с наследственным свойством. Наибольшее число ребер в планарных графах. Наибольшее число ребер в графах без полного подграфа с n вершинами.
+
'''Занятие 5.
 +
1. Матроиды и жадные алгоритмы.
 +
2. Минимальные остовные деревья. Алгоритмы Краскала, Прима.
  
[[Media:gip-l7-selezn.pdf|'''Лекция 7''']]. Числа Рамсея. Верхняя оценка числа Рамсея. Нижняя оценка числа Рамсея.
+
'''Занятие 6.
 +
1. Переборные алгоритмы для построения всех остовных деревьев.
 +
2. Коды Прюфера. Число остовных деревьев для полного графа
  
'''Часть 2'''.
+
'''Занятие 7.
 +
1. Числа Рамсея. Оценка чисел Рамсея.
 +
2. Обобщение чисел Рамсея. Применение чисел Рамсея.
  
'''Лекция 8'''. Поиск в глубину и поиск в ширину в графе. Нахождение остовного дерева графа поиском в глубину и поиском в ширину. Отыскание фундаментального множества циклов в графе. Критерий разделяющей вершины на основе поиска в глубину. Нахождение компонент двусвязности графа.
+
'''Занятие 8.
 +
1. Паросочетания теорема Холла
 +
2. Совершенные п.с., Теорема Пуанкаре для них, латинский квадрат.
  
==Программа семинарских занятий==
+
'''Занятие 9.
 +
1. Семинар по пройденным темам.
  
'''Семинар 1'''. Простейшие свойства графов (повторение).
+
'''Занятие 10.
[5] Гл. 6: 1.3, 1.4, 1.5, 1.13, 1.16, 1.21, 1.22, 1.27, 1.28, 1.29, 1.31, 3.10, 3.14, задачи лекции 1.
+
1. Алгоритм Куна для поиска максимальных паросочетаний
 +
2. Вершинное покрытие двудольного графа. Взвешенные паросочетания.
 +
3. Венгерский алгоритм.
  
'''Семинар 2'''. Связность, двусвязность графов. Остовные деревья.
+
'''Занятие 11.
[5] Гл. 6: 1.24, 1.17, 3.15, задачи лекций 2 и 3.
+
1. Гамильтонов цикл. Достаточные признаки гамильтоновости графа.
 +
2. Задача коммивояжёра. ЗКНТ.
 +
2. Эйлеров цикл. Задача китайского почтальона.
  
'''Семинар 3'''. Раскраски графов. Хроматическое число и хроматический индекс графа.
+
'''Занятие 12.
[5] Гл. 6: 2.18, 2.19, 2.20, 2.21, задачи лекций 4 и 5.  
+
1. Последовательности деБрёйна.
 +
2. Теорема о числе последовательностей.
  
'''Семинар 4'''. Наследственные свойства графов. Числа Рамсея.
+
'''Занятие 13.
[5] Гл. 6: 2.7, 2.8, 2.9, 2.10, 2.13, 2.17, задачи лекций 6 и 7.  
+
1. Некоторые NP полные задачи на графах.
 +
2. Обзор пройденного материала.
  
==Литература==
+
'''Занятие 14.
 +
Семинар по пройденным темам.
  
'''Основная''':
+
'''Занятие 15.
 +
Итоговая контрольная работа по курсу
  
1. Емеличев В.А., Мельников О.И., Сарванов В.И., Тышкевич Р.И. Лекции по теории графов. М.: Либроком, 2009.
 
  
2. Bondy J.A., Murty U.S.R. Graph theory. Springer, 2008.
 
  
3. Харари Ф. Теория графов. М.: Мир, 1973.
+
== Вопросы к экзамену ==
  
4. Липский В. Комбинаторика для программистов. М.: Мир, 1988.
+
1. Точка сочленения, компонента двусвязности. Необходимое и достаточное условия для точки сочленения. Алгоритм поиска точек сочленения и компонент двусвязности.
 +
''В. Липский Комбинаторика для программистов. Раздел 2.6 Нахождение компонент двусвязности. С. 95-99''
  
5. Гаврилов Г.П., Сапоженко А.А. Задачи и упражнения по дискретной математике. М.: Физматлит, 2004.
+
2. Множество фундаментальных циклов. Теорема о построении множества фундаментальных циклов. Алгоритм построения множества фундаментальных циклов.
 +
''В. Липский. Комбинаторика для программистов. Раздел 2.5 Отысканиефундаментального множества циклов. С. 92-95''
  
'''Дополнительная''':
+
3. Компонента сильной связности. Линейный алгоритм построения компонент сильной связности.
 +
''Кормен и др. Алгоритмы построение и анализ. Раздел 23.1.5 Сильно связные компоненты. С. 473 - 477''
  
6. Алексеев В.Б. Лекции по дискретной математике. М.: Инфра-М, 2012.
+
4. Матроиды определения, свойства. Примеры матроидов (универсальный, матричный, графовый, матроид трансверсалей) с обоснование.
 +
''Кормен и др. Алгоритмы построение и анализ. Раздел 17.4 С. 341-343''
  
7. Алексеев В.Б. Введение в теорию сложности алгоритмов. М.: Издательский отдел ф-та ВМК МГУ имени М.В. Ломоносова, 2002.
+
5. Матроиды и жадные алгоритмы
 +
''Кормен и др. Алгоритмы построение и анализ. Раздел 17.4 С. 343-345''
  
8. Гэри М., Джонсон Д. Вычислительные машины и труднорешаемые задачи. М.: Мир, 1982.
+
6. Минимальные остовные деревья. Алгоритм Краскала и Прима.
 +
''Кормен и др. Алгоритмы построение и анализ. Раздел 24 С. 482-490''
  
9. Оре О. Теория графов. М.: Наука, 1980.
+
7. Переборные алгоритмы для построения всех остовных деревьев.
 +
''Кристофидес Теория графов - Алгоритмический подход. раздел 7.2 Построение всех остовных деревьев графа. С. 148-158
 +
''
  
10. Робертс Ф.С. Дискретные математические модели с приложениями к социальным, биологическим и экологическим задачам. М.: Наука, 1986.
+
8. Числа Рамсея
 +
''Карпов. Теория графов. С. 477-479''
  
11. Форд Л.Р., Фалкерсон Д.Р. Потоки в сетях. М.: Мир, 1966.  
+
9. Оценки чисел Рамсея
 +
''Карпов. Теория графов С. 479-481''
  
12. Чашкин А.В. Лекции по дискретной математике. М.: Изд-во механико-математического ф-та МГУ имени М.В. Ломоносова, 2007.
+
10. Обобщение чисел Рамсея
 +
''Карпов. Теория графов С. 482-484''
  
13. Diestel R. Graph Theory. Springer, 2010.
+
11. Паросочетания, теорема Холла.
 
+
''А. Эвнин Вокруг теоремы Холла С.5-6''
  
[[Категория:Лекционные курсы кафедры МК]]
+
12. Совершенные п.с., Теорема Пуанкаре для них, латинский квадрат.
[[Категория:Магистерская программа Дискретные структуры и алгоритмы]]
+
''А. Эвнин Вокруг теоремы Холла С. 7,18''
 +
 
 +
13. Лемма Бержа. Алгоритм Куна для поиска максимальных паросочетаний
 +
''Claude Berge. Two theorems in graph theory // Proceedings of the National Academy of Sciences of the United States of America. — 1957. — September 15 (т. 43, вып. 9). — С. 842–844. — doi:10.1073/pnas.43.9.842
 +
Kuhn, H.W. (1955) The Hungarian Method for the assignment problem. Naval Research Logistics Quarterly, 2, 83-97.
 +
C 83-87''
 +
 
 +
14. Венгерский алгоритм. Покрытие единиц матрицы строками и столбцами
 +
''Kuhn, H.W. (1955) The Hungarian Method for the assignment problem. Naval Research Logistics Quarterly, 2, 83-97.
 +
C 887-91''
 +
 
 +
15. Последовательность де Брёйна. Оценка числа последовательностей деБрёйна.
 +
''de Bruijn N. G. A combinatorial problem // Koninklijke Nederlandse Akademie v. Wetenschappen. 1946. — v. 49. — pp. 758—764''
 +
16. Задача коммивояжёра и ЗКНТ.
 +
''Гэри, Джонсон Вычислительные машины и труднорешаемые задачи
 +
С 189-190''
 +
 
 +
17. Достаточные признаки гамильтоновости графа.
 +
 
 +
''R.Diestel Graph Theory. Springer 2000, C 213-216''
 +
 
 +
18. Эйлеровы графы и задача китайского почтальона.
 +
''Кристофидес Теория графов - Алгоритмический подход. раздел 7.2 Построение всех остовных деревьев графа. С. 227-239''
 +
 
 +
== Список литературы ==
 +
 
 +
 
 +
В. Липский Комбинаторика для программистов. М.Мир, 1988
 +
 
 +
Кормен и др. Алгоритмы построение и анализ. Третье издание. Вильямс, 2013
 +
 
 +
Кристофидес Теория графов - Алгоритмический подход. М.Мир 1978
 +
 
 +
Д.В. Карпов Теория графов. https://logic.pdmi.ras.ru/~dvk/graphs_dk.pdf
 +
 
 +
А. Ю. Эвнин, Вокруг теоремы Холла, Матем. обр., 2005, выпуск 3(34), 2–23
 +
 
 +
Гери Джонсон Вычислительные машины и труднорешаемые задачи
 +
 
 +
== Темы задач ==
 +
 
 +
1. Поиск компонент двусвязности
 +
 
 +
2. Множество фундаментальных циклов
 +
 
 +
3. Компоненты сильной связности
 +
 
 +
4. Коды Прюфера
 +
 
 +
5. Алгоритм Куна.
 +
 
 +
6. Венгерский алгоритм
 +
 
 +
7. Покрытие матрицы
 +
 
 +
8. Задача китайского почтальона
 +
 
 +
9. Задача коммивояжёра, МВГ
 +
 
 +
10. Задачи на теорему Холла
 +
 
 +
11. Гамильтоновость
 +
 
 +
12. Теория Рамсея
 +
 
 +
13. Задачи теории сложности на графах
 +
 
 +
14. Матроиды, жадные алгоритмы

Текущая версия на 23:11, 7 октября 2024


Обязательный курс магистерской программы "Дискретные структуры и алгоритмы"

Курс читается в 1-м семестре магистратуры, 1 ч лекций, 1 ч семинаров

Лектор: Бухман Антон Владимирович


Программа курса Графы и их применения.

Занятие 1. 1. Введение. Обзор курса. - 20 минут 2. Семинар. Задачи на повторение курса по графам.

Занятие 2. 1. Семинар. Задачи на повторение -- продолжение. 2. Лекция. Алгоритмы на графах. Алгоритмическая модель. Сложность. Представление графов.

Занятие 3. 1. Обходы графов. 2. Поиск компонент вершинной двусвязности. 3. Разбор задач на двусвязность.

Занятие 4. 1. Поиск множества фундаментальных циклов 2. Поиск компонент сильной связности.

Занятие 5. 1. Матроиды и жадные алгоритмы. 2. Минимальные остовные деревья. Алгоритмы Краскала, Прима.

Занятие 6. 1. Переборные алгоритмы для построения всех остовных деревьев. 2. Коды Прюфера. Число остовных деревьев для полного графа

Занятие 7. 1. Числа Рамсея. Оценка чисел Рамсея. 2. Обобщение чисел Рамсея. Применение чисел Рамсея.

Занятие 8. 1. Паросочетания теорема Холла 2. Совершенные п.с., Теорема Пуанкаре для них, латинский квадрат.

Занятие 9. 1. Семинар по пройденным темам.

Занятие 10. 1. Алгоритм Куна для поиска максимальных паросочетаний 2. Вершинное покрытие двудольного графа. Взвешенные паросочетания. 3. Венгерский алгоритм.

Занятие 11. 1. Гамильтонов цикл. Достаточные признаки гамильтоновости графа. 2. Задача коммивояжёра. ЗКНТ. 2. Эйлеров цикл. Задача китайского почтальона.

Занятие 12. 1. Последовательности деБрёйна. 2. Теорема о числе последовательностей.

Занятие 13. 1. Некоторые NP полные задачи на графах. 2. Обзор пройденного материала.

Занятие 14. Семинар по пройденным темам.

Занятие 15. Итоговая контрольная работа по курсу


Вопросы к экзамену

1. Точка сочленения, компонента двусвязности. Необходимое и достаточное условия для точки сочленения. Алгоритм поиска точек сочленения и компонент двусвязности. В. Липский Комбинаторика для программистов. Раздел 2.6 Нахождение компонент двусвязности. С. 95-99

2. Множество фундаментальных циклов. Теорема о построении множества фундаментальных циклов. Алгоритм построения множества фундаментальных циклов. В. Липский. Комбинаторика для программистов. Раздел 2.5 Отысканиефундаментального множества циклов. С. 92-95

3. Компонента сильной связности. Линейный алгоритм построения компонент сильной связности. Кормен и др. Алгоритмы построение и анализ. Раздел 23.1.5 Сильно связные компоненты. С. 473 - 477

4. Матроиды определения, свойства. Примеры матроидов (универсальный, матричный, графовый, матроид трансверсалей) с обоснование. Кормен и др. Алгоритмы построение и анализ. Раздел 17.4 С. 341-343

5. Матроиды и жадные алгоритмы Кормен и др. Алгоритмы построение и анализ. Раздел 17.4 С. 343-345

6. Минимальные остовные деревья. Алгоритм Краскала и Прима. Кормен и др. Алгоритмы построение и анализ. Раздел 24 С. 482-490

7. Переборные алгоритмы для построения всех остовных деревьев. Кристофидес Теория графов - Алгоритмический подход. раздел 7.2 Построение всех остовных деревьев графа. С. 148-158

8. Числа Рамсея Карпов. Теория графов. С. 477-479

9. Оценки чисел Рамсея Карпов. Теория графов С. 479-481

10. Обобщение чисел Рамсея Карпов. Теория графов С. 482-484

11. Паросочетания, теорема Холла. А. Эвнин Вокруг теоремы Холла С.5-6

12. Совершенные п.с., Теорема Пуанкаре для них, латинский квадрат. А. Эвнин Вокруг теоремы Холла С. 7,18

13. Лемма Бержа. Алгоритм Куна для поиска максимальных паросочетаний Claude Berge. Two theorems in graph theory // Proceedings of the National Academy of Sciences of the United States of America. — 1957. — September 15 (т. 43, вып. 9). — С. 842–844. — doi:10.1073/pnas.43.9.842 Kuhn, H.W. (1955) The Hungarian Method for the assignment problem. Naval Research Logistics Quarterly, 2, 83-97. C 83-87

14. Венгерский алгоритм. Покрытие единиц матрицы строками и столбцами Kuhn, H.W. (1955) The Hungarian Method for the assignment problem. Naval Research Logistics Quarterly, 2, 83-97. C 887-91

15. Последовательность де Брёйна. Оценка числа последовательностей деБрёйна. de Bruijn N. G. A combinatorial problem // Koninklijke Nederlandse Akademie v. Wetenschappen. 1946. — v. 49. — pp. 758—764 16. Задача коммивояжёра и ЗКНТ. Гэри, Джонсон Вычислительные машины и труднорешаемые задачи С 189-190

17. Достаточные признаки гамильтоновости графа.

R.Diestel Graph Theory. Springer 2000, C 213-216

18. Эйлеровы графы и задача китайского почтальона. Кристофидес Теория графов - Алгоритмический подход. раздел 7.2 Построение всех остовных деревьев графа. С. 227-239

Список литературы

В. Липский Комбинаторика для программистов. М.Мир, 1988

Кормен и др. Алгоритмы построение и анализ. Третье издание. Вильямс, 2013

Кристофидес Теория графов - Алгоритмический подход. М.Мир 1978

Д.В. Карпов Теория графов. https://logic.pdmi.ras.ru/~dvk/graphs_dk.pdf

А. Ю. Эвнин, Вокруг теоремы Холла, Матем. обр., 2005, выпуск 3(34), 2–23

Гери Джонсон Вычислительные машины и труднорешаемые задачи

Темы задач

1. Поиск компонент двусвязности

2. Множество фундаментальных циклов

3. Компоненты сильной связности

4. Коды Прюфера

5. Алгоритм Куна.

6. Венгерский алгоритм

7. Покрытие матрицы

8. Задача китайского почтальона

9. Задача коммивояжёра, МВГ

10. Задачи на теорему Холла

11. Гамильтоновость

12. Теория Рамсея

13. Задачи теории сложности на графах

14. Матроиды, жадные алгоритмы