Избранные вопросы дискретной математики — различия между версиями
(→Семинары) |
(→Лекции) |
||
(не показаны 2 промежуточных версий 1 участника) | |||
Строка 4: | Строка 4: | ||
==Объявления== | ==Объявления== | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Лекции== | ==Лекции== | ||
Строка 35: | Строка 25: | ||
Коллоквиум по теме "Функции k-значной логики". | Коллоквиум по теме "Функции k-значной логики". | ||
− | '''Часть 2. Группы'''. | + | <!---'''Часть 2. Группы'''. |
− | '''Лекция | + | '''Лекция 8'''. Группы. Подгруппы. Смежные классы. Разложение группы по подгруппе. Нормальные подгруппы. Фактор-группы. |
− | '''Лекция | + | '''Лекция 9'''. Перестановки. Симметрическая группа перестановок. Теорема Кэли. Орбита и стабилизатор элемента. Лемма Бернсайда. |
− | '''Лекция | + | '''Лекция 10'''. Раскраски. Эквивалентность раскрасок по группе. Теорема Пойа. Примеры. |
Коллоквиум по теме "Группы". | Коллоквиум по теме "Группы". | ||
Строка 47: | Строка 37: | ||
'''Часть 3. Конечные поля'''. | '''Часть 3. Конечные поля'''. | ||
− | '''Лекция | + | '''Лекция 11'''. Кольца, поля. Теорема о конечном целостном кольце. Характеристика кольца. Кольцо многочленов. Деление с остатком многочленов над полем. Неприводимые многочлены над полем. Критерий неприводимости многочленов степени 2 и 3. |
− | '''Лекция | + | '''Лекция 12'''. Построение конечных полей из p^n элементов, где p - простое число, n \ge 1. Нахождение обратного элемента в конечном поле. Мультипликативная группа конечного поля. Примитивный элемент конечного поля. |
− | '''Лекция | + | '''Лекция 13'''. Число неприводимых многочленов над простым полем. Расширения полей. Существование и единственность конечного поля с p^n элементами, где p - простое число, n \ge 1. |
Коллоквиум по теме "Конечные поля". | Коллоквиум по теме "Конечные поля". | ||
+ | ---> | ||
'''Литература''' | '''Литература''' |
Текущая версия на 21:01, 6 сентября 2024
Курс читает Селезнева Светлана Николаевна
Курс "Избранные вопросы дискретной математики" читается в 5-м семестре (36 ч лекций и 18 ч семинаров). Отчетность - экзамен.
Содержание
Объявления
Лекции
Часть 1. Функции k-значной логики.
Лекция 1. Функции k-значной логики. Формулы. Тождества. Представимость функций k-значной логики в 1-й и 2-й формах.
Лекция 2. Полиномы. Теорема о представлении функций k-значной логики полиномами по модулю k. Полнота. Теорема о полноте системы Поста. Функция Вебба.
Лекция 3. Существенные функции. Три леммы о существенных функциях. Критерий полноты Яблонского. Критерий полноты Слупецкого. Шефферовы функции.
Лекция 4. Выразимость и полнота в P_k, их алгоритмическая разрешимость для конечных множеств. Алгоритм распознавания полноты в P_k.
Лекция 5. Замкнутые классы. Отношения. Сохранение функцией отношения. Замкнутость класса всех функций, сохраняющих заданное отношение. Классы функций, сохраняющих некоторые отношения.
Лекция 6. Предполные классы. Описание предполных классов. Теорема Кузнецова о предполных классах в P_k.
Лекция 7. Особенности многозначных логик. Замкнутый класс, базис замкнутого класса. Теорема Янова. Теорема Мучника. Мощность множества замкнутых классов в P_k.
Коллоквиум по теме "Функции k-значной логики".
Литература
Основная:
- Яблонский С. В. Введение в дискретную математику. М.: Высшая школа, 2001.
- Чашкин А.В. Лекции по дискретной математике. М.: Изд-во механико-математического факультета МГУ, 2007.
- Лидл Р., Нидеррайтер Г. Конечные поля. Том 1. М.: Мир, 1988.
- Гаврилов Г.П., Сапоженко А.А. Задачи и упражнения по дискретной математике. М., Физматлит, 2004.
Дополнительная:
- Марченков С.С. Избранные главы дискретной математики. М.: МАКС Пресс, 2016. Глава 1.
- Марченков С.С. Функциональные системы с операцией суперпозиции. М.: Физматлит, 2004. Глава 1.
- Яблонский С.В., Гаврилов Г.П., Набебин А.А. Предполные классы в многозначных логиках. М.: МЭИ, 1997. Часть 1.
- Lau D. Function Algebras on Finite Sets. Springer, 2006.
- Горшков С.П., Тарасов А.В. Сложность решения систем булевых уравнений. М.: Курс, 2017.