
Formal methods for
software and hardware

verification

LECTURES:
Vladimir Anatolyevich Zakharov,
Vladislav Vasilyevich Podymov

http://mk.cs.msu.ru/

Lecture 4.

Properties of program computations

Classification of computational
properties

Fairness constraints

Computational Tree Logic CTL∗

Temporal Logics CTL and LTL

Properties of program computations

Reactive systems are such information processing
systems (circuits, protocols, embedded systems,
controllers, etc.) that operate in interaction with the
environment by receiving requests (control signals,
stimulos, etc) and outputting responses (actions,
instructions, etc.)
A behavior of a reactive system displays itself in the
events that occur in the course of its computation.
Many reactive systems never terminate.
Therefore, formal languages intended to specify
behavior of reactive systems must be able to describe
infinite sequences of events.

Properties of program computations

Crossroad with trafic lights

L1y i

L2

iy

Properties of program computations

Crossroad with trafic lights

L1i y

L2

yi

Properties of program computations

Crossroad with trafic lights

L1i y

L2

iy

Properties of program computations

Crossroad with trafic lights

L1y y

L2

ii

Properties of program computations

Crossroad with trafic lights

L1y i

L2

yi

Properties of program computations

Every state of a traffic control system is characterized
by a visible event — a set of active colours (colours of
those lights that are turned on) of traffic lights.

Every computation of a system is characterized by a
trace which is a sequence of events.

A behavior of a system is characterized by a property
which is a set of traces.

Properties of program computations

Every state of a traffic control system is characterized
by a visible event — a set of active colours (colours of
those lights that are turned on) of traffic lights.

Every computation of a system is characterized by a
trace which is a sequence of events.

A behavior of a system is characterized by a property
which is a set of traces.

Properties of program computations

Every state of a traffic control system is characterized
by a visible event — a set of active colours (colours of
those lights that are turned on) of traffic lights.

Every computation of a system is characterized by a
trace which is a sequence of events.

A behavior of a system is characterized by a property
which is a set of traces.

Properties of program computations

L1y ii i

L2

iy

Trace:
{red1, green2},

Properties of program computations

L1i y

L2

yi

Trace:
{red1, green2}, {green1, red2},

Properties of program computations

L1i y

L2

iy

Trace:

{red1, green2}, {green1, red2}, {green1, green2}

Properties of program computations

L1y y

L2

ii

Trace:

{red1, green2}, {green1, red2}, {green1, green2}{red1, green1},

Properties of program computations

L1i i

L2

ii

Trace:

{red1, green2}, {green1, red2}, {green1, green2}{red1, green1}, ???

Properties of program computations

L1

L2

Trace:

{red1, green2}, {green1, red2}, {green1, green2}{red1, green1}, ∅,

Properties of program computations

Properties of the traffic control system:

I Every traffic light always has exactly one active
colour;

I Every traffic light eventually turns green;
I Both traffic lights never turn green at the same

time;
I Every traffic lights changes colors infinitely often.

Properties of program computations

Properties of the traffic control system:
I Every traffic light always has exactly one active

colour;

I Every traffic light eventually turns green;
I Both traffic lights never turn green at the same

time;
I Every traffic lights changes colors infinitely often.

Properties of program computations

Properties of the traffic control system:
I Every traffic light always has exactly one active

colour;
I Every traffic light eventually turns green;

I Both traffic lights never turn green at the same
time;

I Every traffic lights changes colors infinitely often.

Properties of program computations

Properties of the traffic control system:
I Every traffic light always has exactly one active

colour;
I Every traffic light eventually turns green;
I Both traffic lights never turn green at the same

time;

I Every traffic lights changes colors infinitely often.

Properties of program computations

Properties of the traffic control system:
I Every traffic light always has exactly one active

colour;
I Every traffic light eventually turns green;
I Both traffic lights never turn green at the same

time;
I Every traffic lights changes colors infinitely often.

Properties of program computations

More formally, these notions are defined as follows.

Let AP be a set of atomic propositions.

Then
I an event is any set of atomic propositions, E , E ⊆ AP ;
I a trace is any infinite sequence of events, α, α ∈ (2AP)ω ,

α = E0,E1,E2, . . . ;

I a computational property is any set of traces, P, P ⊆ (2AP)ω .

Properties of program computations

Let M = (S , S0,R, L) be a Kripke model and let π = s0, s1, s2, . . .
be a path from an initial state s0, s0 ∈ S0 , in this model. Then a
trace of the path π is the sequence

α(π) = L(s0), L(s1), L(s2), . . .

of sets of those atomic propositions that are true in the states of
this path.

Denote by Tr(M) the set of all traces of a Kripke model M .

A model M satisfies a property P (in symbols: M |= P) if
Tr(M) ⊆ P holds.

Properties of program computations

Let M = (S , S0,R, L) be a Kripke model and let π = s0, s1, s2, . . .
be a path from an initial state s0, s0 ∈ S0 , in this model. Then a
trace of the path π is the sequence

α(π) = L(s0), L(s1), L(s2), . . .

of sets of those atomic propositions that are true in the states of
this path.

Denote by Tr(M) the set of all traces of a Kripke model M .

A model M satisfies a property P (in symbols: M |= P) if
Tr(M) ⊆ P holds.

Properties of program computations

A Kripke model M1 is called a refinement of a model M2 if
Tr(M1) ⊆ Tr(M2) holds.

Proposition 1.
If a Kripke model satisfies some property then every its refinement
satisfies the same property.

Proof.
Hometask .

Classification of computational properties

The most widely used properties of program
computations are divided into the following classes:
I safety properties ,
I liveness properties ,
I fairness constraints .

Classification of computational properties

Safety property: «nothing bad ever happens».

A computational property P is a safety property if it meets the
following requirement:

I every trace α, α ∈ (2AP)ω \ P , has such a finite prefix β that

βα′ /∈ P.

holds for every trace α′ .

Unsafe behavior means that «if error occurs it can not be fixed
later».

Classification of computational properties

Safety property: «nothing bad ever happens».

A computational property P is a safety property if it meets the
following requirement:

I every trace α, α ∈ (2AP)ω \ P , has such a finite prefix β that

βα′ /∈ P.

holds for every trace α′ .
Unsafe behavior means that «if error occurs it can not be fixed
later».

Classification of computational properties

Examples of safety property:
I A traffic light turns red only after it turns yellow.
I A printer is unavailable for other devices until it

finishes printing.
I Two processes can not access the same memory

page at the same time.
I Sliding window protocol never loses the first

transmitted data packet.

Classification of computational properties

Liveness property: «something good will eventually happens».

A computational property P is a liveness property if it meets the
following requirement:

I for every finite sequence β, β ∈ (2AP)∗ , the inclusion

βα ∈ P.

holds for some trace α, α ∈ (2AP)ω .

Liveness means that «the goal is achievable no matter what
happened earlier».

Classification of computational properties

Liveness property: «something good will eventually happens».

A computational property P is a liveness property if it meets the
following requirement:

I for every finite sequence β, β ∈ (2AP)∗ , the inclusion

βα ∈ P.

holds for some trace α, α ∈ (2AP)ω .
Liveness means that «the goal is achievable no matter what
happened earlier».

Classification of computational properties

Examples of liveness properties:
I A traffic light will eventually turn green.
I After printing is complete a printer clears the

content of its buffer.
I A process can access a certain memory page

infinitely often.
I Sliding window protocol always delivers the first

data packet to its destination.

Classification of computational properties

Proposition 2.
If P is both a liveness property and a safety property then
P = (2AP)ω .

Proof.
Hometask .

Proposition 3.
For every property P there exist such a liveness property Plive and
such a safety property Psafe that

P = Plive ∩ Psafe

Доказательство.
Hometask [Hard problem! Will be highly appreciated!] .

Classification of computational properties

Proposition 2.
If P is both a liveness property and a safety property then
P = (2AP)ω .

Proof.
Hometask .

Proposition 3.
For every property P there exist such a liveness property Plive and
such a safety property Psafe that

P = Plive ∩ Psafe

Доказательство.
Hometask [Hard problem! Will be highly appreciated!] .

Classification of computational properties

What is the type of a property:

«After opening a file a process can read from it
infinitely often»?

It is neither safety, nor liveness property.

Classification of computational properties

What is the type of a property:

«After opening a file a process can read from it
infinitely often»?

It is neither safety, nor liveness property.

Fairness constraints

When we deal with an information processing system composed of
several parallel processes then we use the (interleaving assumption)
to model in sequential way a behavior of such a system:
computation of parallel runs of several processes

run1 = a1, a2, a3, . . .
‖
run2 = b1, b2, b3, . . .

is represented by the set of interleaved sequences comp1 and
comp2 — all possible shuffles that preserve the order of actions
from the same run.
An example of an interleaving: a1, b1, b2, a2, b3, a3, a4,
Another example: b1, a1, a2, b2, a3, a4, b3, . . .

Fairness constraints

However, the interleaving assumption does not fully capture the
actual behavior of parallel compositions.

Consider a pair of Kripke models for processes P1 and P2.

����

����
�
�
�
�-

�P1 s1

s2

a1 a2
����

����
�
�
�
�-

� P2r1

r2

b1 b2

Fairness constraints

However, the interleaving assumption does not fully capture the
actual behavior of parallel compositions.

Consider a pair of Kripke models for processes P1 and P2.

����

����
�
�
�
�-

�P1 s1

s2

a1 a2
����

����
�
�
�
�-

� P2r1

r2

b1 b2‖

Parallel asynchronous composition of these processes does not have
such a run as

comp(P1 ‖ P2) = a1, a2, a1, a2, . . . etc.

since it can not be represented as an interleaving of any two runs
of these processes.

Fairness constraints
But if we build a Kripke model for the parallel asynchronous
composition of processes P1 ‖ P2,�� ��(s1, r1)

�
��	

a1 @
@@R
b1�� ��(s2, r1)

�
���
a2

@
@@R

b1

�� ��(s1, r2)
@

@@I
b2

�
��	

a1�� ��(s2, r2)
@

@@I
b2 �

���
a2

then could find in it a path

π = a1, a2, a1, a2, . . . etc.

Hence, we need some additional means to avoid these
«unrealistic», «unjust» paths in Kripke models.

Fairness constraints

Fairness constraints are additional requirements for
distinguishing interleaving paths among all paths in
Kripke models.

Each fairness constraint refers to some action
(transition) in the model and requires this action to
be performed on each computation, depending on
how often the conditions for its execution are met.

Fairness constraints

Two types of fairness constraints are distinguished.
I Weak fairness : if a path almost always passes via a state

that enables an action act then the action act must be
performed infinitely often.

I Strong fairness : if a path infinitely often passes via a state
that enables an action act then the action act must be
performed infinitely often.

Fairness constraints

Thus, a Kripke model for parallel asynchronous composition P1 ‖ P2�� ��(s1, r1)

�
��	

a1 @
@@R
b1�� ��(s2, r1)

�
���
a2

@
@@R

b1

�� ��(s1, r2)
@

@@I
b2

�
��	

a1�� ��(s2, r2)
@

@@I
b2 �

���
a2

has a path
π = a1, a2, a1, a2, . . .и.т.д.

which does not satisfies weak fairness constraint on the action b1 ,
and, therefore, it does not model any actual run.

Fairness constraints
A fair Kripke model is a Labeled Transition System
M = (S , S0,R, L,Act) supplied with Fairness Constraints
Fair = (WeakFair , StrongFair) , where
I Act is a set of actions,
I R is a transition relation, R ⊆ S × Act × S

I WeakFair is a subset of actions subjected to the weak fairness
constraints, WeakFair ⊆ Act ;

I StrongFair is a subset of actions subjected to the strong
fairness constraints, StrongFair ⊆ Act .

Denote by Tr(M,Fair) the set of all those initial paths in a Kripke
model M that satisfy fairness constraints Fair .

Then Model Checking Problem is that of checking the inclusion

Tr(M,Fair) ⊆ P,

which is denoted as M,Fair |= P .

Fairness constraints
A fair Kripke model is a Labeled Transition System
M = (S , S0,R, L,Act) supplied with Fairness Constraints
Fair = (WeakFair , StrongFair) , where
I Act is a set of actions,
I R is a transition relation, R ⊆ S × Act × S

I WeakFair is a subset of actions subjected to the weak fairness
constraints, WeakFair ⊆ Act ;

I StrongFair is a subset of actions subjected to the strong
fairness constraints, StrongFair ⊆ Act .

Denote by Tr(M,Fair) the set of all those initial paths in a Kripke
model M that satisfy fairness constraints Fair .

Then Model Checking Problem is that of checking the inclusion

Tr(M,Fair) ⊆ P,

which is denoted as M,Fair |= P .

Temporal Logics

Temporal Logics are intended for the specification of computational
properties of reactive systems, i.e. sets of traces in the Labeled
Transition Systems (Kripke structures).
Temporal Logics do not explicitly refer to time; instead they only
allow one to speak and reason about a relative order in which the
events occur. Temporal formulas make it possible, for example, to
assert without mentioning any specific moments of time that
certain critical states will be eventually passed or that some
erroneous states will be never achieved while some guard conditions
are met, and so on
To this end, special temporal operators are used.
Temporal logics differ in the set of used temporal operators and the
semantics of these operators.
We will focus on the very expressive temporal logic called CTL∗.

Computational Tree Logic CTL∗

Formulas of CTL∗ describe the properties of computational trees .
Such a tree is formed by choosing some state in a Kripke structure
as the initial state and by unfolding the transitions system into an
infinite tree rooted in this state.

����a b

����b c ����c
�
�
�
���

A
A
A
AAU
-

-

��
�
�6

Transition system,
or, Kripke structure

����a b
�
�
�
���

A
A
A
AAU����b c ����c

�
�
�
���

A
A
A
AAU

A
A
A
AAU����с����a b ����c

��� AAU ? ?

Unfolding of the transition system in the infinite tree

Computational Tree Logic CTL∗

Formulas of CTL∗ are built of path quantifiers and temporal
operators .

Path quantifiers A («for every computational path») and E («for
some computational path») are used to specify a branching
structure in the computational tree. These quantifiers are used
when one asserts that all computations (paths) or some
computations (paths) that begin in certain states have the
prescribed property.

Temporal operators are used to describe the properties of a path in
a tree.

Computational Tree Logic CTL∗

There are three unary temporal operators.
I Nexttime operator X («at the next moment of time»): XP

asserts that the property P has to hold at the next state of the
computational path.

I Eventuality operator F («sometimes in future»): FP asserts
that the property P has to hold at some state of the
subsequent computational path.

I Globality operator G («always»): GP asserts that the
property P holds at every state of the subsequent
computational path.

Computational Tree Logic CTL∗

There are also two binary temporal operators.
I Conditional awaiting U (Until): P1 U P2 asserts that the

property P1 has to hold at least until P2 becomes true, which
must hold at the current or a future moment of time.

I Emancipation R (Release): P1 R P2 asserts that the property
P1 has to be true until and including the moment of time
where P2 first becomes true; if P2 never becomes true, P1

must remain true forever.

Computational Tree Logic CTL∗

There are formulas of two types in CTL∗: state formulas (which are
interpreted at certain states of a model) and path formulas (which
are interpreted on a certain computational path of a model).

State formulas are defined as follows:
I If p ∈ AP , then p is a state formula.
I If f1 and f2 are state formulas, then ¬f1 , f1 ∧ f2 and f1 ∨ f2

are state formulas.
I If f is a path formula, then E f and A f are state formulas.

Path formulas are defined as follows:
I If f is a state formuls, then f is a path formula.
I If g1 and g2 are path formulas, then ¬g1 , g1 ∧ g2 , g1 ∨ g2 ,

X g1 , F g1 , G g1 , g1 U g2 , and g1 R g2 are path formulas.

Formulas of CTL∗ are all state formulas built according to the
above rules.

Computational Tree Logic CTL∗

There are formulas of two types in CTL∗: state formulas (which are
interpreted at certain states of a model) and path formulas (which
are interpreted on a certain computational path of a model).
State formulas are defined as follows:
I If p ∈ AP , then p is a state formula.
I If f1 and f2 are state formulas, then ¬f1 , f1 ∧ f2 and f1 ∨ f2

are state formulas.
I If f is a path formula, then E f and A f are state formulas.

Path formulas are defined as follows:
I If f is a state formuls, then f is a path formula.
I If g1 and g2 are path formulas, then ¬g1 , g1 ∧ g2 , g1 ∨ g2 ,

X g1 , F g1 , G g1 , g1 U g2 , and g1 R g2 are path formulas.

Formulas of CTL∗ are all state formulas built according to the
above rules.

Computational Tree Logic CTL∗

There are formulas of two types in CTL∗: state formulas (which are
interpreted at certain states of a model) and path formulas (which
are interpreted on a certain computational path of a model).
State formulas are defined as follows:
I If p ∈ AP , then p is a state formula.
I If f1 and f2 are state formulas, then ¬f1 , f1 ∧ f2 and f1 ∨ f2

are state formulas.
I If f is a path formula, then E f and A f are state formulas.

Path formulas are defined as follows:
I If f is a state formuls, then f is a path formula.
I If g1 and g2 are path formulas, then ¬g1 , g1 ∧ g2 , g1 ∨ g2 ,

X g1 , F g1 , G g1 , g1 U g2 , and g1 R g2 are path formulas.

Formulas of CTL∗ are all state formulas built according to the
above rules.

Computational Tree Logic CTL∗

There are formulas of two types in CTL∗: state formulas (which are
interpreted at certain states of a model) and path formulas (which
are interpreted on a certain computational path of a model).
State formulas are defined as follows:
I If p ∈ AP , then p is a state formula.
I If f1 and f2 are state formulas, then ¬f1 , f1 ∧ f2 and f1 ∨ f2

are state formulas.
I If f is a path formula, then E f and A f are state formulas.

Path formulas are defined as follows:
I If f is a state formuls, then f is a path formula.
I If g1 and g2 are path formulas, then ¬g1 , g1 ∧ g2 , g1 ∨ g2 ,

X g1 , F g1 , G g1 , g1 U g2 , and g1 R g2 are path formulas.

Formulas of CTL∗ are all state formulas built according to the
above rules.

Computational Tree Logic CTL∗

Formulas of CTL∗ are interpreted on Kripke structures
M = (S , S0,R, L) .
A path in M is any such infinite sequence of states π = s0, s1, . . . ,
that (si , si+1) ∈ R holds for every i ≥ 0 .
A path is just an infinite branch in the computational tree of a
model M .
We will write πi to denote a suffix of π which begins with the
state si .
If f is a state formula, then by writing M, s |= f we indicate that f
is satisfied in a state s of a Kripke structure M . Analogously, if g
is a path formula, then M, π |= g means that g is satisfied on a
path π in a Kripke model M .

Computational Tree Logic CTL∗

Semantics for state formulas
1). M, s |= p ⇔ p ∈ L(s) ;
2). M, s |= ¬f1 ⇔ M, s 6|= f1 ;
3). M, s |= f1 ∨ f2 ⇔ M, s |= f1 or M, s |= f2 ;
4). M, s |= f1 ∧ f2 ⇔ M, s |= f1 and M, s |= f2 ;
5). M, s |= E f ⇔ there exists such a path π from a state s in a

model M that M, π |= f ;
6). M, s |= A f ⇔ M, π |= f for every path π from a state s in a

model M .

Computational Tree Logic CTL∗

Semantics for path formulas

7). M, π |= g1 ⇔ M, s |= g1 holds for the first state s on the
path π in the model M ;

8). M, π |= ¬g1 ⇔ M, π 6|= g1 ;
9). M, π |= g1 ∨ g2 ⇔ M, π |= g1 or M, π |= g2 ;
10). M, π |= g1 ∧ g2 ⇔ M, π |= g1 and M, π |= g2 ;
11). M, π |= X g1 ⇔ M, π1 |= g1 ;
12). M, π |= F g1 ⇔ there exists such k > 0 that M, πk |= g1 ;
13). M, π |= G g1 ⇔ M, πk |= g1 holds for every k > 0 ;
14). M, π |= g1 U g2 ⇔ there exists such k > 0 that M, πk |= g2

and M, πj |= g1 holds for every 0 6 j < k ;
15). M, π |= g1 R g2 ⇔ for every j > 0 , if M, πi 6|= g1 holds for

every i < j , then M, πj |= g2 .

Computational Tree Logic CTL∗

It is easy to see that every assertion expressible by a formula of
CTL∗ can be as well expressed by means of the set of Boolean
connectives ∨ , ¬ , and temporal operators X , U , E :
I f ∧ g ≡ ¬(¬f ∨ ¬g) ,
I f R g ≡ ¬(¬f U ¬g) ,
I F f ≡ True U f ,
I G f ≡ ¬F¬f ,
I A(f) ≡ ¬E(¬f) .

CTL and LTL

Two subsets of CTL∗ are commonly used: one of them is called
branching time logic, and the other — linear time logic.

The difference between these logics is in the way they relate to
branching in the computation trees.

In the branching time logic every temporal operator immediately
follows some path quantifier.

Formulas of linear time logic are used to specify properties of paths
in computational trees.

CTL and LTL

Computational Tree Logic (CTL) is such a fragment of CTL∗ in
which every temporal operator X , F , G , U and R must
immediately follow some path quantifier. More formally, CTL is a
subset of CTL∗ in which path formulas are defined as follows.
I If f and g are state formulas, then X f , F f , G f , f U g , and

f R g are path formulas.

Examples.

AG p1 → (p2 EU (AF p3)) ,

EF p ∨ AG(p ∧ q) .

CTL and LTL

Linear Temporal Logic (LTL) includes only such formulas A f ,
where f is a quantifier-free path formula. More formally, the
definition of LTL path formulas is as follows.
I If p ∈ AP , then f is a path formula.
I If f and g are path formulas, then ¬f , f ∧ g , f ∨ g , X f , F f

, G f , f U g , f R g are path formulas as well.

Example.

A(FG enabled → GF fired) — weak fairness constraint;

AG(passive → (active UX passive)) .

CTL and LTL

These three logics CTL∗, CTL, and LTL have different expressive
power.

Proposition 4.
There does not exist such a CTL-formula which is equivalent to
LTL-formula A (FG stable) .

This formula specifies a liveness requirement: in all possible
computations the system will sooner or later stabilize and will
continue to remain stable.

Proof.
Hometask [Hard problem! Will be highly appreciated!] .

CTL and LTL

Proposition 5.
There does not exist such a LTL-formula which is equivalent to
CTL-formula AG (EF restart) .

This formula specifies the following property: in every computation
the system is always capable to restart.

Proof.
Hometask [Hard problem! Will be highly appreciated!] .

A disjunction of these two formulas A (FG p) ∨ AG (EF p) is an
example of a computational property which can not be expressed
neither in CTL, nor in LTL.

CTL and LTL

Proposition 5.
There does not exist such a LTL-formula which is equivalent to
CTL-formula AG (EF restart) .

This formula specifies the following property: in every computation
the system is always capable to restart.

Proof.
Hometask [Hard problem! Will be highly appreciated!] .

A disjunction of these two formulas A (FG p) ∨ AG (EF p) is an
example of a computational property which can not be expressed
neither in CTL, nor in LTL.

CTL

Now we confine ourselves with the consideration of CTL.

There are 10 basic operators in CTL:
I AX и EX ,
I AF и EF ,
I AG и EG ,
I AU и EU ,
I AR и ER .

CTL
Computational Tree Logic CTL

I , s0 |= AGp

ys0��
���

����

HH
HHH

HHHjy ys1 s2

?

�
�

�
��	

@
@
@
@@Rys3 ys4 ys5

�
�

�
��	 ?

@
@
@
@@R ?

�
�

�
��	 ?y y ys6 s7 s8 ys9 ys10 ys11

p = true

p = true p = true

p = true p = true p = true

p = true p = true p = true p = true p = true p = true

CTL
Computational Tree Logic CTL

I , s0 |= EGp

ys0��
���

����

HH
HHH

HHHjy ys1 s2

?

�
�

�
��	

@
@
@
@@Rys3 ys4 ys5

�
�

�
��	 ?

@
@
@
@@R ?

�
�

�
��	 ?y y ys6 s7 s8 ys9 ys10 ys11

p = true

p = true

p = true

p = true

CTL
Computational Tree Logic CTL

I , s0 |= AFp

ys0��
���

����

HH
HHH

HHHjy ys1 s2

?

�
�

�
��	

@
@
@
@@Rys3 ys4 ys5

�
�

�
��	 ?

@
@
@
@@R ?

�
�

�
��	 ?y y ys6 s7 s8 ys9 ys10 ys11

p = true p = true

p = true p = true

CTL
Computational Tree Logic CTL

I , s0 |= EFp

ys0��
���

����

HH
HHH

HHHjy ys1 s2

?

�
�

�
��	

@
@
@
@@Rys3 ys4 ys5

�
�

�
��	 ?

@
@
@
@@R ?

�
�

�
��	 ?y y ys6 s7 s8 ys9 ys10 ys11

p = true

Computational Tree Logic CTL

But every temporal operator in CTL can be expressed by means of
only three operator EX , EG и EU :
I AX f ≡ ¬EX(¬f) ;
I EF f ≡ E[True U f] ;
I AG f ≡ ¬EF(¬f) ;
I AF f ≡ ¬EG(¬f) ;
I A[f U g] ≡ ¬E[¬g U (¬f ∧ ¬g)] ∧ ¬EG¬g ;
I A[f R g] ≡ ¬E[¬f U ¬g] ;
I E[f R g] ≡ ¬A[¬f U ¬g] .

Computational Tree Logic CTL

Some typical CTL formulas that arise in verification of computing
systems with finitely many states are given below:

I EF (Start ∧ ¬Ready) : it is possible to reach such a
computational state when the condition Start is satisfied,
whereas the condition Ready is not;

I AG (Req → AFAck) : whenever a request is received sooner
or later it will be confirmed;

I AG (AFDeviceEnabled) : condition DeviceEnabled is
satisfied infinitely often in every computation;

I AG (EFRestart) : the Restart state is reachable from every
state in every computation.

Computational Tree Logic CTL

Some typical CTL formulas that arise in verification of computing
systems with finitely many states are given below:
I EF (Start ∧ ¬Ready) : it is possible to reach such a

computational state when the condition Start is satisfied,
whereas the condition Ready is not;

I AG (Req → AFAck) : whenever a request is received sooner
or later it will be confirmed;

I AG (AFDeviceEnabled) : condition DeviceEnabled is
satisfied infinitely often in every computation;

I AG (EFRestart) : the Restart state is reachable from every
state in every computation.

Computational Tree Logic CTL

Some typical CTL formulas that arise in verification of computing
systems with finitely many states are given below:
I EF (Start ∧ ¬Ready) : it is possible to reach such a

computational state when the condition Start is satisfied,
whereas the condition Ready is not;

I AG (Req → AFAck) : whenever a request is received sooner
or later it will be confirmed;

I AG (AFDeviceEnabled) : condition DeviceEnabled is
satisfied infinitely often in every computation;

I AG (EFRestart) : the Restart state is reachable from every
state in every computation.

Computational Tree Logic CTL

Some typical CTL formulas that arise in verification of computing
systems with finitely many states are given below:
I EF (Start ∧ ¬Ready) : it is possible to reach such a

computational state when the condition Start is satisfied,
whereas the condition Ready is not;

I AG (Req → AFAck) : whenever a request is received sooner
or later it will be confirmed;

I AG (AFDeviceEnabled) : condition DeviceEnabled is
satisfied infinitely often in every computation;

I AG (EFRestart) : the Restart state is reachable from every
state in every computation.

Computational Tree Logic CTL

Some typical CTL formulas that arise in verification of computing
systems with finitely many states are given below:
I EF (Start ∧ ¬Ready) : it is possible to reach such a

computational state when the condition Start is satisfied,
whereas the condition Ready is not;

I AG (Req → AFAck) : whenever a request is received sooner
or later it will be confirmed;

I AG (AFDeviceEnabled) : condition DeviceEnabled is
satisfied infinitely often in every computation;

I AG (EFRestart) : the Restart state is reachable from every
state in every computation.

Check the satisfiability of CTL formulas in the
given Kripke structure..

��
��

s1 p, t, r

?

��
��

s3p, q

�
�

�
�
�
�	

��
��

s0

r

@
@
@
@
@
@R

�
�

�
�
�
�	

$
%

'
& �

��
��

s2q, r

6

1. M1, s0 |= AF t

Check the satisfiability of CTL formulas in the
given Kripke structure..

��
��

s1 p, t, r

?

��
��

s3p, q

�
�

�
�
�
�	

��
��

s0

r

@
@
@
@
@
@R

�
�

�
�
�
�	

$
%

'
& �

��
��

s2q, r

6

2. M1, s0 |= E[t U q]

Check the satisfiability of CTL formulas in the
given Kripke structure..

��
��

s1 p, t, r

?

��
��

s3p, q

�
�

�
�
�
�	

��
��

s0

r

@
@
@
@
@
@R

�
�

�
�
�
�	

$
%

'
& �

��
��

s2q, r

6

3. M1, s2 |= E[t U q]

Check the satisfiability of CTL formulas in the
given Kripke structure..

��
��

s1 p, t, r

?

��
��

s3p, q

�
�

�
�
�
�	

��
��

s0

r

@
@
@
@
@
@R

�
�

�
�
�
�	

$
%

'
& �

��
��

s2q, r

6

4. M1, s0 |= AG(r ∨ q)

Check the satisfiability of CTL formulas in the
given Kripke structure..

��
��

s1 p, t, r

?

��
��

s3p, q

�
�

�
�
�
�	

��
��

s0

r

@
@
@
@
@
@R

�
�

�
�
�
�	

$
%

'
& �

��
��

s2q, r

6

5. M1, s2 |= AG(r ∨ q)

Check the satisfiability of CTL formulas in the
given Kripke structure.

��
��

s0 p, q s

?

��
��

s3q, r
k

��
��

s2p, t

6

@
@

@
@
@

@
@
@I

��
��

s1
r�

&%6
-

6. M1, s0 |= AG(AF(p ∨ r))

Check the satisfiability of CTL formulas in the
given Kripke structure.

��
��

s0 p, q s

?

��
��

s3q, r
k

��
��

s2p, t

6

@
@

@
@
@

@
@
@I

��
��

s1
r�

&%6
-

7. M1, s2 |= AG(AF(p ∨ r))

Write down temporal formulas that adequately
express the following propositions.

I A failed elevator will remain faulty unless it is repaired.
I Always after receiving a request, sooner or later a response will

be issued, unless the request is canceled.
I If an event q occurs after an event p, then an event r will not

occur until an event t occurs.
I In all computations an event q precedes events p and r .
I In all computations an event r never occurs between events p

and q.
I In all computations an event p occurs at most twice.
I In all computations an event p occurs finitely often.

Which pairs of formulas are equivalent?
I EFϕ и EGϕ;
I EFϕ ∨ EFψ и EF(ϕ ∨ ψ);
I AFϕ ∨ AFψ и AF(ϕ ∨ ψ);
I AF¬ϕ и ¬EGϕ;
I EF¬ϕ и ¬AFϕ;
I A[ϕ1 UA[ϕ2 U ϕ3]] и A[A[ϕ1 U ϕ2]U ϕ3];
I true и AFϕ → EGϕ.

END OF LECTURE 4.

