
Математические модели
последовательных вычислений

mk.cs.msu.ru → Лекционные курсы
→ Математические модели последовательных вычислений

Блок 12

Проблема эквивалентности программ
Схемы программ

Лектор:
Подымов Владислав Васильевич

E-mail:
valdus@yandex.ru

ВМК МГУ, 2022/2023, весенний семестр
Блок 12 1/13

https://mk.cs.msu.ru

Проблема эквивалентности программ

В широком смысле проблема эквивалентности программ формулируется
так:

Для заданной произвольной пары программ выяснить, имеют ли эти
программы одинаковое поведение

Чтобы задать конкретный (строго поставленный) вариант проблемы
эквивалентности, требуется определить,
I какого вида программы рассматриваются,
I что имено считается их поведением и
I какие поведения считаются одинаковыми,

Блок 12 2/13

Проблема эквивалентности программ
Чтобы поставить проблему эквивалентности программ, достаточно
определить только
I синтаксис рассматриваемых программ

I (то, как они записываются)
I и их семантику

I (то, какой смысл они имеют)

(Теоретическая) трудность или простота проблемы эквивалентности
может служить индикатором трудности или простоты устройства
программ в целом: сложность проблемы эквивалентности — это
сложность определения смысла программы по её форме, и схожий
уровень сложности можно ожидать для других задач анализа поведения
программ

Например, проблема R-эквивалентности сетей Петри неразрешима, и
многие другие проблемы анализа их поведения оказались если и
разрешимы, то всё равно очень трудны

Блок 12 3/13

Проблема эквивалентности программ

При этом проблема эквивалентности лежит в основе многих
прикладных задач программирования — например:

I Трансляция (компиляция)

I Оптимизация

I Рефакторинг (реорганизация)

I Распараллеливание

I Верификация

I Обфускация

I Обнаружение вредоносных программ

Блок 12 4/13

Проблема эквивалентности программ
Теорема Райса-Успенского (1953). В каждой «естественной»
системе программирования любое нетривиальное семантическое
свойство программ неразрешимо

«Естественная» = «как машины Тьюринга»: алгоритмически полная,
эффективно интерпретируемая и допускающая трансляцию в неё любых
эффективно интерпретируемых программ

Нетривиальное = хотя бы одна программа обладает этим свойством и
хотя бы одна не обладает

Семантическое = зависящее только от семантики программы
(вычисляемой ей функции преобразования входных данных в
выходные), но не от её структуры

Функциональная эквивалентность программ означает равенство
функций, вычисляемых этими программами

Следствие. В каждой «естественной» системе программирования
функциональная эквивалентность программ неразрешма
Блок 12 5/13

Проблема эквивалентности программ

Два естественных способа «обойти» неразрешимость функциональной
эквивалентности устроены так:

1. Решить проблему эквивалентности не для всех программ, а только
для некоторого подкласса, устроенного согласно синтаксическим
ограничениям, делающим рассматриваемый класс программ
алгоритмически неполным

2. Исследовать другие виды эквивалентности, взаимосвязанные с
функциональной, но при этом устроенные проще

Увы, способ 1 применим только к очень узким классам программ

Блок 12 6/13

Проблема эквивалентности программ

Например, если под программмой понимать машину Тьюринга, то вот
такая очень маленькая машина очень трудна для анализа, так как в
некотором смысле способна моделировать поведение произвольной
машины Тьюринга на произвольном слове (Wolfram, Smithm, 2007 и
2020):

a b
q0 q1,b,L q2, a,R
q1 q2, a,R q2,b,L
q2 q1, a,R q0, a,L

То есть проверка эквивалентности даже маленьких машин Тьюринга, не
содержащих ничего «сверхъестественного», очень трудна

Блок 12 7/13

Проблема эквивалентности программ
Другой пример

integer f(positive_integer x) {
A[0] = 0; A[1] = 0; A[2] = x; i = 2;
do
if (A[i] % 2 == 0) A[i + 1] = A[i] / 2;
else A[i + 1] = 3 * A[i] + 1;
i++; while (A[i] != A[i-3]);

return A[i];
}

integer g(positive_integer x) {
if (x == 1 || x == 2) return x;
else return 4;

}

Проверка эквивалентности этих двух программ — это проверка
справедливости гипотезы Коллатца, которую математики не могут ни
доказать, ни опровергнуть уже 80 лет
Блок 12 8/13

Проблема эквивалентности программ

Второй подход: не ограничивать класс программ, но упростить понятие
эквивалентности, — можно расценивать как нахождение приближённого
решения задачи

Этот подход широко применяется при решении вычислительных задач:
если невозможно найти точное решение задачи, то можно, внеся
достаточно небольшую погрешность, достаточно точно оценить это
решение

На таком способе проверки эквивалентности — внесении погрешности в
семантику программ и проверки получившейся приближённой
эквивалентности, основан раздел математики, изначально посвящённый
решению проблемы эквивалентности программ:

теория схем программ

Блок 12 9/13

Схемы программ

Исследование проблемы эквивалентности в теории схем программ
обычно следует такой схеме

Этап 1

Формируется семействоM(σ) моделей программ, параметризованное
семантикой σ базовых (примитивных) компонентов программ

Объекты этого семейства называются схемами программ

На основе семантики σ вводится понятие вычисления схемы и
отношение эквивалентности ∼σ

Блок 12 10/13

Схемы программ

Этап 2

Вводится отношение v аппроксимации на семействах моделей
программ, такое что

M(σ1) vM(σ2)
⇔

для любых схем программ π1, π2 верно (π1 ∼σ1 π2 ⇐ π1 ∼σ2 π2)

Этап 3

Выделяется класс семантик Σ, такой что проверка эквивалентности ∼σ
в моделиM(σ) для любой семантики σ ∈ Σ имеет достаточно
эффективное решение

Для моделей рассматриваемых классов разрабатываются эффективные
алгоритмы проверки эквивалентности схем программ

Блок 12 11/13

Схемы программ
Тогда для разработки приближённого решения проблемы
эквивалентности в программной системе S достаточно сделать так:
I Описать модельM(σ0), в точности соответствующую системе S :
M(σ0) = S

I Выбрать модельM(σ1), такую чтоM(σ0) vM(σ1)

I Использовать алгоритм проверки эквивалентности схем программ в
M(σ1)

I Если схемы эквивалентны вM(σ1), то они обязательно
эквивалентны и в S
I Но обратное неверно, и погрешность состоит именно в этом

Для этого следует научиться
I строить семейства моделейM(σ)

I проверять соотношениеM(σ0) vM(σ1)

I выделять классы моделей с разрешимой проблемой
эквивалентности

I решать проблему эквивалентности для моделей этих классов
Блок 12 12/13

Схемы программ
Впервые этот подход был предложили и применили Алексей Андреевич
Ляпунов и Юрий Иванович Янов в 1956–58 гг.

При применении этого подхода была придумана первая математическая
модель программ (известная сейчас под названием «схемы
Ляпунова-Янова») и показано, как можно применить методы алгебры и
математической логики для анализа поведения программ

Затем в 1968 г. Майк Патерсон предложил более общую модель
императивных программ, совместив схемы Ляпунова-Янова с
понятиями логики предикатов первого порядка

Параллельно с этим Андрей Петрович Ершов привносит в схемы
программ графовую нотацию (1968), давшую начало привычному
сейчас графовому изображению программ (блок-схемы, граф потока
управления, ...), успешно применяет схемы Ляпунова-Янова и Патерсона
для оптимизирующей трансляции (компиляции) и предлагает для
модели Патерсона название «стандартные схемы программ»

Блок 12 13/13

