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Вступление
Проблема эквивалентности — это ключевая (фундаментальная)
проблема, формулирующаяся для модели вычислений после её
разработки и имеющая такую неформальную постановку:
I Задаётся класс вычислительных объектов:

I Синтаксис: запись объектов
I Семантика: смысл объектов (реализуемая функция, распознаваемый

язык, ...)
I Вводится понятие схожести (эквивалентности) семантик
I Проблема состоит в проверке эквивалентности семантик двух

произвольных объектов заданного класса
Если семантика вычислительного объекта представляет собой
множество (например, распознаваемый язык), то тесно связанной с
проблемой эквивалентности оказывается проблема включения: для
произвольных заданных объектов проверить теоретико-множественное
включение семантики первого объекта в семантику второго объекта
Тогда проверку эквивалентности объектов π1, π2 можно устроить как
проверку включения π1 в π2 и π2 в π1
Блок 9 2/9



Проблема R-включения
Множество R(π) достижимых разметок сети Петри можно понимать
как распознаваемый ей язык
Тогда проблема R-включения для сетей Петри формулируется так: для
произвольных заданных маркированных сетей Петри π1, π2 с равными
множествами позиций проверить включение R(π1) ⊆ R(π2)

Теорема. Проблема включения для диофантовых многочленов
m-сводится к проблеме R-включения для сетей Петри
Доказательство.
Достаточно показать, как для заданной пары диофантовых многочленов
P, Q с неотрицательными коэффициентами построить маркированные
сети Петри ΠP , ΠQ с равными множествами позиций, такие что

P ≤ Q ⇔ R(ΠP) ⊆ R(ΠQ)

Вспомнив теорему из блока 8, начнём с сетей πP , πQ , таких что
C(P) = {(M(p1), . . . ,M(pn)) | M ∈ R(πP)} и
C(Q) = {(M(p1), . . . ,M(pn)) | M ∈ R(πQ)}
Без ограничения общности будем считать, что помимо p1, . . . , pn в этих
сетях содержатся одни и те же позиции q1, . . . , qm
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Проблема R-включения
Доказательство.
Сеть ΠP устроим как πP с такой надстройкой:

. . .

p1

πP : . . .

pn q1

. . .

qm

r1 r2

Тогда R(ΠP) ⊆ C(P)×Nm
0 × {(1, 0)}

Сеть ΠQ устроим как πQ с такой надстройкой:

. . .

p1

πQ : . . .

pn q1

. . .

qm

r1 r2

Тогда R(ΠQ) ⊇ C(Q)×Nm
0 × {(1, 0)}

Следовательно, C(P) ⊆ C(Q) ⇔ R(πP) ⊆ R(πQ) H
Следствие. Проблема R-включения для сетей Петри неразрешима
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Проблема R-эквивалентности

Проблема R-эквивалентности для сетей Петри формулируется так: для
произвольных заданных сетей Петри π1, π2 с равными множествами
позиций проверить соотношение R(π1) = R(π2)

Теорема. Проблема R-включения для сетей Петри m-сводима к
проблеме R-эквивалентности для сетей Петри

Доказательство.

Достаточно показать, как для произвольной пары сетей π1, π2
построить пару сетей Π1, Π2, такую что

R(π1) ⊆ R(π2) ⇔ R(Π1) = R(Π2)

Для ясности положим, что {p1, . . . , pn} — множество позиций π1 и π2,
M1 и M2 — их начальные разметки, и что множества переходов π1 и π2
не пересекаются
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Проблема R-эквивалентности
Доказательство.
Сеть Π1 устроим так:
I Позиции: p1, . . . , pn, q0, q1, q2

I Начальная разметка: в q0 лежит одна фишка, больше фишек нет
I Выполнение Π1:

I Недетерминированно выбирается одна из исходных сетей π1, π2, этот
выбор отмечается фишкой в q1 или q2

I В p1, . . . , pn кладутся фишки согласно начальной разметки
выбранной сети πi

I Активируются и выполняются переходы выбранной сети πi
I Можно произвольно завершить выполнение, удалив фишку из qi

. . . . . .

переходы π1 переходы π2p1

M1(p1) M2(p1)

. . .

pn

M1(pn)
M2(pn)
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Проблема R-эквивалентности
Доказательство.

. . . . . .

переходы π1 переходы π2

Π1:

p1

M1(p1) M2(p1)

. . .

pn

M1(pn)
M2(pn)

Достижимые разметки этой сети, помимо начальной, — это

I достижимые разметки π1 с фишкой в q1 (R+
1 ) и без неё (R−1 ) и

I достижимые разметки π2 с фишкой в q2 (R+
2 ) и без неё (R−2 )

Блок 9 7/9



Проблема R-эквивалентности
Доказательство.

. . . . . .

переходы π1 переходы π2

Π1:

p1

M1(p1) M2(p1)

. . .

pn

M1(pn)
M2(pn)

В сети Π2 устроим всё то же самое, но без возможности удалить фишку
из q1:

. . . . . .

переходы π1 переходы π2p1

M1(p1) M2(p1)

. . .

pn

M1(pn)
M2(pn)

Достижимые разметки этой сети, кроме начальной, — это R+
1 ∪R+

2 ∪R−2
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Проблема R-эквивалентности
Доказательство.

Если R(π1) ⊆ R(π2), то R−1 ⊆ R−2

Значит, R+
1 ∪ R−1 ∪ R+

2 ∪ R−2 = R+
1 ∪ R+

2 ∪ R−2

То есть R(Π1) = R(Π2)

Иначе R−1 6⊆ R−2 , и тогда верно R−1 ∪ R−2 6= R−2

Так как (R+
1 ∪ R+

2 ) ∩ (R−1 ∪ R−2 ) = ∅, то верно
R+

1 ∪ R−1 ∪ R+
2 ∪ R−2 6= R+

1 ∪ R+
2 ∪ R−2

Следовательно, R(π) 6= R(π̃)

Итог: R(π1) ⊆ R(π2) ⇔ R(Π1) = R(Π2) H

Следствие. Проблема R-эквивалентности для сетей Петри
неразрешима
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