# Дополнительные главы дискретной математики и кибернетики

Презентации к лекциям по частям I, II: конечные автоматы, машины Тьюринга, рекурсивные функции и сложностные классы

Савицкий Игорь Владимирович

факультет ВМК МГУ

осень 2023

# Лекция 1 Конечные автоматы-распознаватели. Правоинвариантные отношения эквивалентности. Теоретико-множественные операции над автоматными множествами.

# Операции над словами

#### Определение

- Алфавит A это непустое множество символов.
- $A^*$  это множество слов (конечной длины) в алфавите A, включая пустое слово  $\Lambda$ .
- Длина |w| слова  $w \in A^*$  это количество символов в слове w. Длина пустого слова  $\Lambda$  есть нуль.

#### Определение

ullet Конкатенация слов  $u=a_{i_1}\dots a_{i_k}\in A^*$  и  $v=b_{j_1}\dots b_{j_l}\in A^*$  — это слово

$$u * v = uv = a_{i_1} \dots a_{i_k} b_{j_1} \dots b_{j_l} \in A^*.$$

При этом для любого  $w \in A^*$  определяем  $\Lambda w = w \Lambda = w.$ 

ullet Возведение в степень:  $a^n = \underbrace{a * \ldots * a}_{n \text{ pas}}$  при  $n \in \mathbb{N}; \ a^0 = \Lambda.$ 

 Конечный автомат-распознаватель — это абстрактное вычислительное устройство, предназначенное для распознавания множества слов.

#### Определение

Конечный автомат (распознаватель) — это  $\mathcal{A}=(A,Q,f,q_1,F)$ , где

- $A \neq \varnothing$  входной алфавит (часто задан заранее и не является частью автомата),
- $Q \neq \varnothing$  множество состояний,
- ullet  $f\colon A imes Q o Q$  функция переходов,
- $q_1 \in Q$  начальное состояние,
- $F \subseteq Q$  множество заключительных состояний.

#### Работа автомата

- На вход автомату подаётся слово  $x \in A^*$ . Через x(t) обозначаем t-й символ входного слова.
- Автомат работает в дискретном времени:  $t=1,2,\ldots$  На каждом такте t автомату подаётся очередной символ x(t).
- На каждом такте t автомат меняет своё состояние q(t) согласно каноническим уравнениям:

$$\begin{cases} q(t) = f(x(t), q(t-1)), \\ q(0) = q_1. \end{cases}$$

• После обработки всего слова x автомат останавливается в состоянии q(|x|). Если это состояние принадлежит F, то автомат допускает слово x. Иначе он отвергает это слово.

#### Диаграмма Мура

- Пусть A входной алфавит автомата, k = |A|.
- Каждому состоянию автомата соответствует вершина графа.
- Из каждой вершины исходит k дуг, помеченных символами алфавита A. Они показывают, куда переходит автомат из каждого состояния под действием каждого символа.
- Начальное состояние помечено \*. Заключительные состояния помечены f.

#### Пример

ullet  $A=\{0,1\},\ Q=\{q_1,\,q_2,\,q_3\},\ F=\{q_2\}$ , диаграмма Мура автомата:

$$1 \bigcirc_{q_1}^* \stackrel{0}{\stackrel{f}{q_2}} \stackrel{f}{\stackrel{q_2}{q_3}} \bigcirc 0, 1$$

• Автомат допускает слова вида  $1^n0, \ n \geqslant 0.$ 

#### Конечно-автоматные множества

- Пусть  ${\mathcal A}$  автомат с входным алфавитом A. Тогда  $D({\mathcal A})$  это множество всех слов из  $A^*$ , которые допускает автомат  ${\mathcal A}$ .
- Множества вида  $D(\mathcal{A})$  (где  $\mathcal{A}$  конечный автомат), называются конечно-автоматными.

#### Определение

Отношение  $\sim$   $\subseteq$   $A^* \times A^*$  — отношение эквивалентности, если

- $\bullet \ \forall a \in A^* \qquad a \sim a,$
- $\bullet \ \forall a, b \in A^* \qquad a \sim b \equiv b \sim a,$
- $\bullet \ \forall \, a,b,c \in A^* \quad (a \sim b) \, \& \, (b \sim c) \rightarrow a \sim c.$

#### Определение

- Множество  $A^*$  разбивается отношением  $\sim$  на классы эквивалентности: максимальные множества попарно эквивалентных элементов.
- Индекс отношения эквивалентности это число классов эквивалентности.

#### Отношение эквивалентности, связанное с автоматом

- ullet Пусть  $\mathcal{A}=(A,Q,f,q_1,F)$  автомат,  $Q=\{q_1,\ldots,q_r\}.$
- Тогда  $A^* = X_1 \cup \ldots \cup X_r$ , где  $X_i$  это множество слов, которые переводят автомат  $\mathcal A$  из состояния  $q_1$  в состояние  $q_i$ . Ясно, что множества  $X_i$  попарно не пересекаются. В частности,  $\Lambda \in X_1$ .
- ullet Пустые множества  $X_i$  исключаем из набора.
- По разбиению  $A^*$  на  $X_i$  обычным образом введём на  $A^*$  отношение эквивалентности  $\sim$ :  $a\sim b\iff (\exists i)(a,b\in X_i).$
- Это отношение называем отношением эквивалентности автомата  $\mathcal A$  и обозначаем  $\sim_{\mathcal A}$ . Оно обладает следующими свойствами:
  - 1. Отношение  $\sim_{\mathcal{A}}$  имеет конечный индекс (конечное число классов эквивалентности).
  - 2. Отношение  $\sim_{\mathcal{A}}$  правоинвариантно: если  $a\sim_{\mathcal{A}} b$  и  $c\in A^*$ , то  $ac\sim_{\mathcal{A}} bc$ .

#### Определение

- Отношение эквивалентности  $\sim$  имеет конечный индекс, если число его классов эквивалентности конечно.
- Отношение эквивалентности  $\sim$   $\subseteq$   $A^* \times A^*$  является правоинвариантным, если

$$\forall a, b, c \in A^* \quad (a \sim b) \to (ac \sim bc).$$

#### Построение автомата по правоинвариантной эквивалентности

- Пусть на  $A^*$  задано правоинвариантное отношение эквивалентности  $\sim$ , которое разбивает  $A^*$  на конечное число классов эквивалентности  $K_1,\ldots,K_r$ , причём  $\Lambda\in K_1$ .
- Определим автомат  $\mathcal{A} = (A, \{K_1, \dots, K_r\}, h, K_1, F)$ . Множество F определяется произвольно.
- Определим функцию переходов h: Для каждых класса  $K_i$  и  $a_j \in A$  выбираем любое  $a \in K_i$ . Тогда  $aa_j \in K_l$  для некоторого l. Задаём  $h(a_j, K_i) = K_l$ .
- За счёт правоинвариантности отношения класс  $K_l$  не зависит от выбора a: если  $a,b\in K_i$ , то  $aa_j$  и  $ba_j$  принадлежат одному и тому же классу  $K_l$ . Поэтому функция переходов задана корректно.
- Каждый класс  $K_i$  совпадает со множеством слов, которые переводят автомат  $\mathcal A$  из состояния  $K_1$  в состояние  $K_i$ .

- Отношение эквивалентности  $\sim_{\mathcal{A}}$  автомата  $\mathcal{A}$ , построенного по правоинвариантному отношению эквивалентности  $\sim$  конечного индекса, совпадает с отношением  $\sim$ .
- Результаты построений сформулируем в виде теоремы.

#### Теорема 1

- Отношение эквивалентности  $\sim_{\mathcal{A}}$  любого автомата  $\mathcal{A}$  является правоинвариантным и имеет конечный индекс.
- Для каждого правоинвариантного отношения эквивалентности  $\sim$  конечного индекса можно построить конечный автомат  $\mathcal{A},$  отношение эквивалентности  $\sim_{\mathcal{A}}$  которого совпадает с  $\sim$ .

#### Теорема 2

- Всякое непустое конечно-автоматное множество есть объединение некоторого числа классов подходящего правоинвариантного отношения эквивалентности конечного индекса.
- Обратно, объединение любого числа классов произвольного правоинвариантного отношения эквивалентности конечного индекса является конечно-автоматным множеством.

#### Доказательство (автоматность $\Rightarrow$ классы эквивалентности)

- Пусть имеется непустое конечно-автоматное множество  $D(\mathcal{A})$ . Автомат  $\mathcal{A}$  всегда можно выбрать так, чтобы в нём не было недостижимых из  $q_1$  состояний.
- Пусть  $\mathcal{A}=(A,Q,f,q_1,F)$  автомат,  $Q=\{q_1,\ldots,q_r\}$ , а  $F=\{q_{i_1},\ldots,q_{i_s}\}.$
- $A^*=X_1\cup\ldots\cup X_r$ , где  $X_i$  это множество слов, которые переводят автомат  $\mathcal A$  из состояния  $q_1$  в состояние  $q_i$ .
- $X_1,\ldots,X_r$  классы эквивалентности отношения эквивалентности  $\sim_{\mathcal{A}}$  автомата  $\mathcal{A}.$  По теореме 1 отношение  $\sim_{\mathcal{A}}$  правоинвариантно.
- Ясно, что  $D(\mathcal{A}) = X_{i_1} \cup \ldots \cup X_{i_s}$ . То есть конечно-автоматное множество является объединением некоторых классов эквивалентности некоторого правоинвариантного отношения эквивалентности конечного индекса.

# Доказательство (классы эквивалентности $\Rightarrow$ автоматность)

- Пусть имеется правоинварантное отношение эквивалентности  $\sim$  конечного индекса на  $A^*$  с классами эквивалентности  $K_1,\ldots,K_r$  и  $X=K_{i_1}\cup\ldots\cup K_{i_s}$  объединение некоторых классов эквивалентности.
- Тогда по теореме 1 мы можем построить конечный автомат  $\mathcal{A}$ , отношение эквивалентности  $\sim_{\mathcal{A}}$  которого совпадает с  $\sim$ .
- Автомат будет иметь состояния  $K_1, \ldots, K_r$ , причём  $K_i$  совпадает со множеством слов, которые переводят автомат  $\mathcal A$  из состояния  $K_1$  в состояние  $K_i$ .
- Тогда выберем множество заключительных состояний  $F = \{K_{i_1}, \dots, K_{i_s}\}$ . Получится, что  $D(\mathcal{A}) = K_{i_1} \cup \ldots \cup K_{i_s}$ , то есть множество X конечно-автоматно.

 Правоинвариантные отношения эквивалентности можно использовать для доказательства того, что множество не является конечно-автоматным.

# Пример

- ullet Докажем, что  $X=\{a_1^na_2^n\mid n\in\mathbb{N}\}$ , где  $a_1,a_2\in A$ , не является конечно-автоматным. От противного.
- Пусть X конечно-автоматное множество. Тогда оно является объединением некоторых классов эквивалентности правоинвариантного отношения  $\sim$  конечного индекса.
- Выберем такие  $i \neq j$ , что  $a_1^i \sim a_1^j$ . Это возможно, так как классов эквивалентности конечное число.
- ullet Тогда  $a_1^ia_2^i\sim a_1^ja_2^i.$  Но это невозможно, т. к.  $a_1^ia_2^i\in X,\ a_1^ja_2^i\notin X.$
- ullet Значит X не конечно-автоматно.

# Операция дополнения $\overline{X}$

- ullet Дополнение:  $\overline{X} = A^* \setminus X$ .
- Пусть X конечно-автоматное множество.  $X = D(\mathcal{A}), \ \mathcal{A} = (A, Q, f, q_1, F).$
- Тогда  $\overline{X} = D(\mathcal{A}')$ , где  $\mathcal{A}' = (A, Q, f, q_1, Q \setminus F)$ .
- ullet Поэтому  $\overline{X}$  конечно-автоматное множество.
- Операция дополнения сохраняет конечную автоматность множеств.

#### Операция пересечения $X \cap Y$

- Пусть  $X, Y \subseteq A^*$  конечно-автоматны. Тогда существуют два правоинвариантных отношения эквивалентности конечного индекса  $\sim_1, \sim_2$  такие, что  $K_1,\ldots,K_n$  — классы эквивалентности  $\sim_1$  и  $X=K_{i_1}\cup\ldots\cup K_{i_s}$ 
  - а  $L_1,\ldots,L_v$  классы эквивалентности  $\sim_2$  и  $Y=L_{i_1}\cup\ldots\cup L_{i_t}$ .
- ullet Введём отношение эквивалентности  $\sim_3$  с классами эквивалентности  $M_1, \ldots, M_p$  — всеми непустыми пересечениями вида  $K_i \cap L_i$ . Оно правоинвариантно.
- Тогда  $X \cap Y$  объединение всех непустых пересечений вида  $K_{i_m} \cap L_{i_n}$ , то есть некоторых классов  $\sim_3$ .
- Поэтому  $X \cap Y$  конечно-автоматно. Операция пересечения сохраняет конечную автоматность множеств.

# Иллюстрация пересечений классов

|       | $K_1$          | $K_2$          | $K_3$          |
|-------|----------------|----------------|----------------|
| $L_1$ | $K_1 \cap L_1$ | $K_2 \cap L_1$ | $K_3 \cap L_1$ |
| $L_2$ | $K_1 \cap L_2$ | $K_2 \cap L_2$ | $K_3 \cap L_1$ |
| $L_3$ | $K_1 \cap L_3$ | $K_2 \cap L_3$ | $K_3 \cap L_1$ |

•  $X \cup Y = \overline{X} \cap \overline{Y}$ . Поэтому операция объединения тоже сохраняет конечную автоматность множеств.

• Сформулируем полученные результаты в виде теоремы.

#### Теорема 3

Класс всех конечно-автоматных множеств замкнут относительно теоретико-множественных операций дополнения, объединения и пересечения.

- Другие теоретико-множественные операции выражаются с помощью операций объединения, пересечения и дополнения и тоже сохраняют конечную автоматность множеств.
- Например,  $X \setminus Y = X \cap \overline{Y}$ .

#### Лекция 2

Недетерминированные конечные автоматы. Операции произведения и итерации автоматных множеств. Регулярные выражения и регулярные множества.

• В отличие от обычного конечного автомата, недетерминированный конечный автомат из одного и того же состояния под действием одной и той же буквы может переходить в разные состояния.

#### Определение

Недетерминированный конечный автомат — это  $(A,Q,f,q_1,F)$ , где

- ullet  $A 
  eq \emptyset$  входной алфавит,
- $Q \neq \varnothing$  множество состояний,
- $f\colon A\times Q\to 2^Q\setminus\{\varnothing\}$  функция переходов (по символу и состоянию выбирается подмножество состояний),
- $q_1 \in Q$  начальное состояние,
- $F \subseteq Q$  множество заключительных состояний.

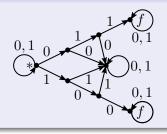
#### Работа недетерминированного автомата

- На вход автомату подаётся слово  $x \in A^*$ . На каждом такте t автомату подаётся очередной символ x(t).
- На каждом такте t автомат меняет своё состояние q(t) согласно следующим условиям:

$$\begin{cases} q(t) \in f(x(t), q(t-1)), \\ q(0) = q_1. \end{cases}$$

- После обработки слова x автомат останавливается в состоянии q(|x|). Автомат может обработать одно и то же слово разными способами в зависимости от выбора q(t) на каждом шаге.
- Если хотя бы один способ обработки слова x приводит к состоянию из F, то автомат допускает слово x. Иначе он отвергает это слово.

#### Пример недетерминированного автомата



На диаграмме Мура из одного состояния может исходить несколько стрелок с одним и тем же символом.

• Обычный автомат является частным случаем недетерминированного.

#### Теорема 4

Класс множеств, допускаемых недетерминированными конечными автоматами, совпадает с классом конечно-автоматных множеств.

#### Доказательство

- Если множество конечно-автоматно, то оно допускается недетерминированным конечным автоматом, так как обычный автомат является частным случаем недетерминированного.
- ullet Пусть  $\mathcal{A}=(A,Q,f,q_1,F)$  недетерминированный автомат,  $X=D(\mathcal{A}).$  Обозначим r=|Q|.
- Построим конечный автомат  $\mathcal{A}'$ , который допускает множество X. Выберем  $\mathcal{A}'=(A,\,2^Q\setminus\{\varnothing\},\,h,\,\{q_1\},\,F').$
- F' это множество всех подмножеств Q, которые пересекаются с F.

#### Доказательство (продолжение)

- Задаём  $h \colon h(a_i, \{q_{j_1}, \dots, q_{j_s}\}) = f(a_i, q_{j_1}) \cup \dots \cup f(a_i, q_{j_s}).$
- ullet Моделирование автоматом  $\mathcal{A}'$  работы  $\mathcal{A}$ :
  - 1. В начальный момент  $\mathcal{A}'$  находится в состоянии  $\{q_1\}$ .
  - 2. Во второй момент времени  $\mathcal{A}'$  находится в состоянии  $f(x(1),\,q_1).$
  - 3. В каждый момент времени  $\mathcal{A}'$  находится в состоянии U, которое состоит из всех состояний  $q_i$ , в которые  $\mathcal{A}$  мог бы прийти к этому моменту времени.
  - 4. В конце работы автомат  $\mathcal{A}'$  попадает в некоторое состояние V. Если V пересекается с F, то хотя бы в одном способе обработке слова  $\mathcal{A}$  попадает в состояние из F, и входное слово входит в  $X=D(\mathcal{A})$ . В противном случае входное слово не входит в X.
- Таким образом, построен конечный автомат  $\mathcal{A}'$  такой, что  $X = D(\mathcal{A}')$ . Значит, X конечно-автоматно.

# Операция произведения множеств

#### Определение

ullet Пусть  $X,Y\subseteq A^*$ . Произведение X и Y есть

$$X \cdot Y = \{ xy \mid x \in X, \ y \in Y \}, \quad X \cdot \varnothing = \varnothing \cdot X = \varnothing.$$

#### Теорема 5

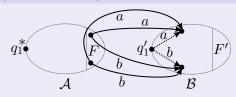
Класс конечно-автоматных множеств замкнут относительно операции произведения.

#### Доказательство

- Пусть  $\mathcal{A} = (A,Q,f,q_1,F), \mathcal{B} = (A,Q',f',q_1',F')$  конечные автоматы,  $X = D(\mathcal{A}), \ Y = D(\mathcal{B}), \ Q \cap Q' = \varnothing.$
- Строим недетерминированный конечный автомат  $\mathcal{C} = (A,\, Q \cup Q',\, h,\, q_1,\, \tilde{F})$ , допускающий множество  $X\cdot Y.$

# Операция произведения множеств

#### Доказательство (продолжение)



• 
$$h(a_i, q) = \begin{cases} \{f(a_i, q)\}, & q \in Q \setminus F, \\ \{f(a_i, q), f'(a_i, q'_1)\}, & q \in F, \\ \{f'(a_i, q)\}, & q \in Q'. \end{cases}$$

- ullet Если  $q_1' 
  otin F'$ , то  $ilde{F} = F'$ . Если  $q_1' \in F'$ , то  $ilde{F} = F \cup F'$ .
- Автомат на состояниях Q распознаёт слово из X, а на состояниях Q' слово из Y. Поскольку переход из Q в Q' обязателен и однократен, итоговый автомат распознаёт слова из XY. Если  $\Lambda \in Y$ , то  $X \subseteq X \cdot Y$ , поэтому  $F \subseteq \tilde{F}$ .



# Операция итерации множества

#### Определение

- Пусть  $X \subseteq A^*$ .  $X^n = \underbrace{X \cdot X \cdot \ldots \cdot X}_n, \ X^0 = \{\Lambda\}.$
- ullet Пусть  $X\subseteq A^*$ . Итерация X есть

$$X^* = X^0 \cup X^1 \cup X^2 \cup \dots, \quad \varnothing^* = \varnothing.$$

#### Особенности итерации

- $\bullet \ \varnothing^* = \varnothing, \ \{\Lambda\}^* = \{\Lambda\}.$
- ullet Если  $a 
  eq \Lambda, \ a \in X$ , то  $\Lambda, a, a^2, \ldots \in X^*$  и  $X^*$  бесконечное множество.

# Операция итерации множества

#### Теорема 6

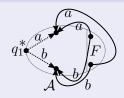
Класс конечно-автоматных множеств замкнут относительно операции итерации.

#### Доказательство

- $\bullet$  Если  $X=\varnothing$ , то утверждение теоремы очевидно. Далее считаем  $X\neq\varnothing$  .
- ullet Пусть  $\mathcal{A}=(A,Q,f,q_1,F)$  конечный автомат,  $X=D(\mathcal{A}).$
- Строим недетерминированный конечный автомат  $\mathcal{C} = (A,\,Q,\,h,\,q_1,\,F)$ , допускающий множество  $X^1 \cup X^2 \cup \dots$
- $h(a_i, q) = \begin{cases} \{f(a_i, q)\}, & q \in Q \setminus F, \\ \{f(a_i, q), f(a_i, q_1)\}, & q \in F. \end{cases}$

# Операция итерации множества

# Доказательство (продолжение)



- Автомат на состояниях Q распознаёт слово из X. Когда слово распознано, он может продолжить распознавать слово из X или начать новую итерацию и распознавать слово из X сначала.
- Если автомат  $\mathcal C$  не использует новые «обратные» переходы, то он допускает слова из X. Если он использует их один раз, то допускает слова из  $X^2$  и т. д. Поэтому  $\mathcal C$  допускает  $X^1 \cup X^2 \cup \ldots$
- ullet Очевидно,  $\{\Lambda\}$  конечно-автоматно. Тогда  $X^*$  конечно-автоматно как объединение  $X^1 \cup X^2 \cup \dots$  и  $\{\Lambda\}$ .

# Промежуточные итоги

- Класс конечно-автоматных множеств можно охарактеризовать в терминах правоинвариантных отношений эквивалентности.
- Класс конечно-автоматных множеств замкнут относительно операций  $\overline{\phantom{m}}$ ,  $\cup$ ,  $\cap$ ,  $\cdot$ , \*.

# Регулярные выражения и множества

#### Определение

Пусть  $A = \{a_1, \dots, a_m\}$  — конечный алфавит.

- ullet  $\varnothing$ ,  $\{\Lambda\}$ ,  $\{a_i\}$ ,  $i=\overline{1,m}$  регулярные множества, обозначаемые регулярными выражениями  $\varnothing$ ,  $\Lambda$ ,  $a_i$ ,  $i=\overline{1,m}$  соответственно.
- Если X,Y регулярные множества, обозначаемые регулярными выражениями  $\alpha,\beta$ , то  $X\cup Y,\ X\cdot Y,\ X^*$  регулярные множества, обозначаемые регулярными выражениями  $(\alpha\cup\beta),\ (\alpha\cdot\beta),\ (\alpha)^*.$

#### Схема задания регулярных выражений и множеств

| Регулярное выражение                                  | Регулярное множество         |  |
|-------------------------------------------------------|------------------------------|--|
| Ø                                                     | пустое множество             |  |
| Λ                                                     | $\{\Lambda\}$                |  |
| $a_i, i = \overline{1,m}$                             | $\{a_i\},\ i=\overline{1,m}$ |  |
| $\alpha, \beta$ — регулярные выражения                | X,Y — регулярные множества   |  |
| $\alpha^*, \ \alpha \cdot \beta, \ \alpha \cup \beta$ | $X^*, X \cdot Y, X \cup Y$   |  |

# Регулярные выражения и множества

#### Запись регулярных выражений

- Скобки можно опускать с учётом приоритета операций:  $*,\cdot,\cup$  (перечислены в порядке убывания приоритета).
- Знак · можно опускать.
- Регулярное выражение является формулой, то есть строкой из символов, записанных по определённым правилам. Регулярное множество является подмножеством  $A^{*}$ .
- Регулярное выражение можно рассматривать как «шаблон», показывающий устройство слов в регулярном множестве.
- Например, выражение  $1^*(010 \cup 0110)1^*$  задаёт слова, в которых сначала присутствует некоторое (возможно, нулевое) количество единиц, далее следует подслово 010 или 0110, после чего снова следует некоторое количество единиц.

# Лекция 3

Теорема Клини. Детерминированные функции. Конечные автоматы-преобразователи.

# Теорема Клини

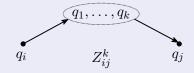
#### Теорема 7 (Клини)

Класс конечно-автоматных множеств совпадает с классом регулярных множеств.

#### Доказательство

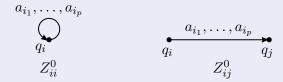
- $\supseteq$ . Множества  $\varnothing$ ,  $\{\Lambda\}$ ,  $\{a_i\}$ ,  $i=\overline{1,m}$  конечно-автоматны. Ранее было доказано, что операции  $\cup,\cdot,*$  сохраняют конечную автоматность множеств. Поэтому все регулярные множества конечно-автоматны.
- $\subseteq$ . Пусть  $\mathcal{A}=(A,Q,f,q_1,F)$  произвольный конечный автомат. Будем доказывать, что множество  $D(\mathcal{A})$  регулярно.
- ullet Пусть  $Q=\{q_1,\ldots,q_r\},\; F=\{q_{j_1},\ldots,q_{j_s}\}.$  Тогда  $D(\mathcal{A})=X_1\cup\ldots\cup X_s$ , где  $X_l=D((A,\,Q,\,f,\,q_1,\,\{q_{j_l}\})).$
- Достаточно доказать регулярность каждого множества  $X_l$ : тогда  $D(\mathcal{A})$  будет регулярным как объединение регулярных множеств.

## Теорема Клини



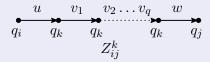
- Пусть  $i,j=\overline{1,r},\ k=\overline{0,r}.$  Обозначим  $Z_{ij}^k$  множество слов, по которым автомат  $\mathcal A$  переходит из  $q_i$  в  $q_j$  используя качестве промежуточных состояний только элементы  $\{q_1,\ldots,q_k\}.$
- Если k=0, то допускается только переход из  $q_i$  в  $q_j$  напрямую, без использования промежуточных состояний.
- Заметим, что  $X_l = Z_{1j_l}^r$ . Докажем, что все множества  $Z_{ij}^k$  регулярны, с помощью индукции по k.

## Теорема Клини



- Базис индукции: k = 0
  - i=j. Если нет переходов из  $q_i$  в  $q_i$ , то  $Z^0_{ii}=\{\Lambda\}$ . Если есть переходы из  $q_i$  в  $q_i$  по символам  $a_{i_1},\ldots,a_{i_p}$ , то  $Z^0_{ii}=\{\Lambda,a_{i_1},\ldots,a_{i_p}\}$ . В обоих случаях множество регулярно.
  - 2.  $i \neq j$ . Если нет переходов из  $q_i$  в  $q_j$ , то  $Z^0_{ij} = \varnothing$ . Если есть переходы из  $q_i$  в  $q_j$  по символам  $a_{i_1},\ldots,a_{i_p}$ , то  $Z^0_{ij} = \{a_{i_1},\ldots,a_{i_p}\}$ . В обоих случаях множество регулярно.
- Предположим, что все множества  $Z_{ij}^{k-1}$  регулярны. Шаг индукции: докажем регулярность  $Z_{ij}^k$ .

## Теорема Клини



- ullet Пусть  $a\in Z_{ij}^k\setminus Z_{ij}^{k-1}$ . Тогда  $a=uv_1\dots v_qw$ , где  $q\geqslant 0$  и  $u\in Z_{ik}^{k-1},\ v_1,\dots,v_q\in Z_{kk}^{k-1},\ w\in Z_{kj}^{k-1}$ .
- ullet Тогда  $Z_{ij}^k = Z_{ij}^{k-1} \cup Z_{ik}^{k-1} (Z_{kk}^{k-1})^* Z_{kj}^{k-1}.$
- ullet Поскольку множества  $Z_{ij}^{k-1},\,Z_{ik}^{k-1},\,Z_{kk}^{k-1},\,Z_{kj}^{k-1}$  регулярны, множество  $Z_{ij}^k$  тоже регулярно.
- Получаем, что  $X_l = Z_{1j_l}^r$  тоже регулярно, а значит и  $D(\mathcal{A})$  регулярно. Таким образом, любое конечно-автоматное множество является регулярным.



## Регулярные выражения

#### Практическое использование

- Во многих текстовых редакторах и файловых менеджерах есть опция поиска/фильтра по регулярным выражениям.
- Эти регулярные выражения основаны на регулярных выражениях Клини, но в них добавлены дополнительные операции для сокращения записи.
- Например, <[^<>] \*> ищет пару угловых скобок с произвольным текстом (не содержащим других угловых скобок) внутри.
- Существует стандартный язык регулярных выражений, который несложно изучить. Он описан, например, в документации языка Python [5] или на Википедии [6].
- Обработчики регулярных выражений иногда поддерживают возможности, выходящие за рамки возможностей регулярных выражений Клини. Но наиболее эффективно реализуемые возможности используют регулярные выражения Клини.

## Регулярные выражения

#### Реализация в программах

- По любому регулярному выражению можно построить конечный автомат, который распознаёт слова, соответствующие данному регулярному выражению.
- Конечный автомат работает очень быстро: он проходит по символам текста только один раз, и для каждого символа совершает простую операцию изменения состояния.
- Память автомата конечна: она зависит только от регулярного выражения, но не от текста, по которому идёт поиск. Поэтому автомат может работать с очень большими текстами.
- Теорема Клини гарантирует, что всё, что может быть найдено быстрым поиском с помощью автомата, можно задать регулярными выражениями.

#### Бесконечные последовательности

Пусть A — непустое множество.

- $A^{\infty}$  это множество счётно-бесконечных последовательностей вида  $a_{i_1}a_{i_2}\dots$ , где  $a_{i_n}\in A$  при  $n\in \mathbb{N}$ .
- ullet Пусть  $a=a_{i_1}a_{i_2}\ldots\in A^\infty.$  Обозначим  $a(t)=a_{i_t}$  при  $t\in\mathbb{N}.$
- ullet Для введения индексации с нуля пишем  $a=a(0)a(1)\ldots\in A^\infty.$
- ullet Конкатенация слова  $u=u_1\dots u_k\in A^*$  и последовательности  $a=a(1)a(2)\dots\in A^\infty$  это последовательность

$$u * a = ua = u_1 \dots u_k a(1)a(2) \dots \in A^{\infty}.$$

При этом для любого  $a \in A^{\infty}$  определяем  $\Lambda a = a$ .

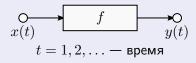
ullet Бесконечное повторение слова  $u=u_1\dots u_k\in A^*$ ,  $u
eq \Lambda$  есть

$$u^{\omega} = u_1 \dots u_k u_1 \dots u_k \dots \in A^{\infty}.$$

#### Основные обозначения

- $E_2 = \{0, 1, \}, \quad E_2^n = \underbrace{E_2 \times \ldots \times E_2}_n$
- ullet Мы будем рассматривать алфавит  $A=E_2$  и бесконечные слова  $a(1)a(2)\ldots\in E_2^\infty$ , где  $a(t)\in E_2.$
- ullet Если  $x=(x_1,\dots,x_n)\in (E_2^\infty)^n$ , то  $x(t)=(x_1(t),\dots,x_n(t))\in E_2^n$ .
- Будем рассматривать функции  $y = f(x_1, \dots, x_n) \colon (E_2^\infty)^n \to E_2^\infty.$
- $P_2^\infty$  множество всех функций  $f\colon (E_2^\infty)^n \to E_2^\infty$  при  $n\geqslant 1.$

#### Содержательное понимание детерминированности



- Можно считать, что функция y=f(x) над бесконечными словами действует не сразу, а растянуто во времени: в каждый момент  $t\geqslant 1$  функция получает на вход символ x(t) и выдаёт символ y(t).
- Детерминированная функция «не может заглядывать в будущее»: её выход в момент t зависит только от входов  $x(1),\dots,x(t)$ , которые были получены ранее, и не зависит от будущих входов  $x(t+1),x(t+2),\dots$

#### Определение

• Функция  $y=f(x_1,\dots,x_n)\colon (E_2^\infty)^n\to E_2^\infty$  является детерминированной, если для каждого  $t\geqslant 1$  существует такая булева функция  $\varphi_t(x_1^1,\dots,x_n^1,\dots,x_1^t,\dots,x_n^t)$ , что

$$y(t) = \varphi_t(x_1(1), \dots, x_n(1), \dots, x_1(t), \dots, x_n(t)).$$

ullet  $P_{\mathrm{A},2}$  — множество всех детерминированных функций на  $E_2^\infty$  (т. е. из  $P_2^\infty$ ).

## Примеры

Рассматриваем функции  $f\colon E_2^\infty \to E_2^\infty, \quad f(x)=y.$ 

• f детерминированная:

$$y(t) = \begin{cases} 0, & t = 1, \\ x(t-1) \oplus x(t), & t = \overline{2, \infty}. \end{cases}$$

• f детерминированная:

$$y(t)=egin{cases} 1, & ext{слово } x(1)\dots x(t) \ ext{симметрично}, \ 0 & ext{в ином случае}, \end{cases} \quad t=\overline{1,\infty}.$$

• f не детерминированная:

$$y(t) = x(t+1).$$

• f не детерминированная:

$$f(x) = \begin{cases} 0^{\infty}, & x = 0^{\infty}, \\ 1^{\infty} & \text{в ином случае.} \end{cases}$$

#### Определение

Конечный автомат (преобразователь) — это  $\mathcal{A} = (A,B,Q,F,G,q_1)$ , где

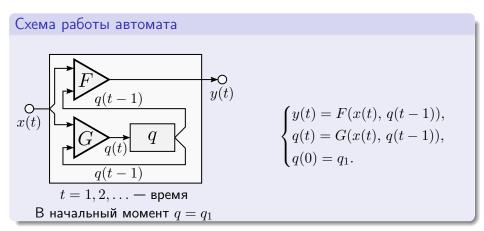
- ullet  $A 
  eq \varnothing$  входной алфавит,
- ullet  $B 
  eq \emptyset$  выходной алфавит,
- $Q \neq \varnothing$  множество состояний,
- ullet  $F\colon A imes Q o B$  функция выходов,
- ullet  $G\colon A imes Q o Q$  функция переходов,
- $q_1 \in Q$  начальное состояние.
- В качестве алфавитов A,B мы будем рассматривать множества  $E_2$  или  $E_2^n$ .

#### Работа автомата

- На вход автомату подаётся бесконечное слово  $x \in A^{\infty}$ . На выходе получается бесконечное слово  $y \in B^{\infty}$ .
- Автомат работает в дискретном времени:  $t=1,2,\ldots$  На каждом такте t автомату подаётся очередной символ x(t).
- На каждом такте t автомат меняет своё состояние q(t) и выдаёт символ выхода y(t) согласно каноническим уравнениям:

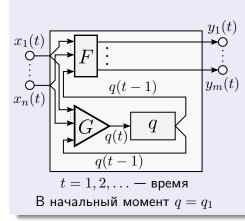
$$\begin{cases} y(t) = F(x(t), q(t-1)), \\ q(t) = G(x(t), q(t-1)), \\ q(0) = q_1. \end{cases}$$

• Автомат  $\mathcal{A}$  реализует функцию  $\varphi \colon A^{\infty} \to B^{\infty} \colon \varphi(x) = y$ .



- ullet Если  $A=E_2^n$ , то у автомата несколько входов  $x_1,\dots,x_n\in E_2^\infty.$
- ullet Если  $B=E_2^m$ , то у автомата несколько входов  $y_1,\ldots,y_m\in E_2^\infty.$

## Автомат с несколькими входами и выходами



$$x(t) = (x_1(t), \dots, x_n(t))$$

$$y(t) = (y_1(t), \dots, y_m(t))$$

$$\begin{cases} y(t) = F(x(t), q(t-1)), \\ q(t) = G(x(t), q(t-1)), \\ q(0) = q_1. \end{cases}$$

#### Конечно-автоматные функции

- Функция  $f\colon (E_2^\infty)^n \to E_2^\infty$  называется конечно-автоматной (ограниченно-детерминированной), если она реализуется некоторым автоматом с входным алфавитом  $E_2^n$  и выходным алфавитом  $E_2$ .
- $P_{\mathsf{ka},2}$  множество всех конечно-автоматных функций  $f\colon (E_2^\infty)^n \to E_2^\infty, \ n\in\mathbb{N}.$
- Автомат с несколькими выходами реализует одновременно несколько функций из  $P_{\mathsf{ka},2}$ , используя одни и те же состояния.
- Любая конечно-автоматная функция является детерминированной.

#### Моделирование реальных систем

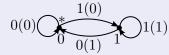
- Машина Тьюринга это модель алгоритма: процесса, который по входным данным за конечное число шагов выдаёт результат.
- Автомат-преобразователь это модель системы, которая работает неопределённо долгое время, в каждый момент получает определённый входные сигналы и выдаёт некоторые результаты.
- Процессор компьютера является автоматом-преобразователем:
  - Состояния (конечная память) регистры.
  - ▶ Входные сигналы данные из оперативной памяти и с внешних устройств (клавиатуры, мыши).
  - Выходные сигналы данные для записи в оперативную память, позиция чтения/записи в оперативной памяти, вывод на внешние устройства (дисплей).
- Автомат вычислительно слабое устройство, так как имеет лишь конечную память. Компьютер является универсальным за счёт наличия (условно) бесконечной оперативной памяти.

## Диаграмма Мура

- Диаграмма Мура автомата-преобразователя строится аналогично диаграмме Мура автомата-распознавателя.
- ullet На каждой дуге, помимо входа, подписывается (в скобках) выход y(t). Заключительных состояний нет.

## Пример

ullet  $A=B=E_2,\ Q=\{q_1,\,q_2\}$ , диаграмма Мура автомата:



• Реализуемая автоматом функция называется единичной задержкой.  $\mathfrak{z}\colon E_2^\infty\to E_2^\infty$ ,  $\mathfrak{z}(x)=0x$ .

## Истинностные функции

• Пусть  $\varphi\colon E_2^n \to E_2$  — булева функция. Ей соответствует истинностная функция  $f_{\varphi}\colon (E_2^{\infty})^n \to E_2^{\infty}$  такая, что

$$f_{\varphi}(x_1,\ldots,x_n)=\varphi(x_1(1),\ldots,x_n(1))\varphi(x_1(2),\ldots,x_n(2))\ldots$$

- Иными словами, если  $y=f_{\varphi}(x_1,\dots,x_n)$ , то  $y(t)=\varphi(x_1(t),\dots,x_n(t))$  при всех  $t\geqslant 1$ .
- Истинностная функция является конечно-автоматной и задаётся каноническими уравнениями:

$$\begin{cases} y(t) = \varphi(x_1(t), \dots, x_n(t)), \\ q(t) = q_1, \\ q(0) = q_1. \end{cases}$$

## Канонические уравнения в скалярной форме

- ullet Пусть |Q|=r. Выбираем наименьшее l такое, что  $2^l\geqslant r$ .
- Кодируем состояния из Q векторами из  $E_2^l$ . Код состояния q(t) обозначим  $(q_1(t),\ldots,q_l(t))\in E_2^l$ . Код  $q_1$  есть  $(0,\ldots,0)$ .
- Тогда канонические уравнения можно переписать в скалярной форме:

$$\begin{cases} y_1(t) = f_1(x_1(t), \dots, x_n(t), q_1(t-1), \dots, q_l(t-1)), \\ \dots \\ y_m(t) = f_m(x_1(t), \dots, x_n(t), q_1(t-1), \dots, q_l(t-1)), \\ q_1(t) = g_1(x_1(t), \dots, x_n(t), q_1(t-1), \dots, q_l(t-1)), \\ \dots \\ q_l(t) = g_l(x_1(t), \dots, x_n(t), q_1(t-1), \dots, q_l(t-1)), \\ q_1(0) = \dots = q_l(0) = 0. \end{cases}$$

## Канонические уравнения в скалярной форме (продолжение)

- В полученных канонических уравнениях функции  $f_1, \ldots, f_m, g_1, \ldots, g_l$  являются булевыми функциями.
- Эти функции определяются по исходным функциям F,G и по кодированию состояний.
- Если  $r < 2^l$ , то на части наборов функции  $f_i, g_i$  окажутся не определены. Мы доопределяем их произвольным образом.

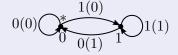
## Канонические уравнения в скалярной форме (пример 1)

- ullet  $y=f_{\&}(x_{1},x_{2})$  истинностная функция на  $E_{2}^{\infty}$ ,  $y(t)=x_{1}(t)x_{2}(t)$ .
- Её можно задать следующими каноническими уравнениями в скалярной форме:

$$\begin{cases} y(t) = x_1(t)x_2(t), \\ q(t) = 0, \\ q(0) = 0. \end{cases}$$

## Канонические уравнения в скалярной форме (пример 2)

- $y = \mathfrak{z}(x)$  единичная задержка.
- Диаграмма Мура:



• Канонические уравнения в скалярной форме:

$$\begin{cases} y(t) = q(t-1), \\ q(t) = x(t), \\ q(0) = 0. \end{cases}$$

## Лекция 4

Операции суперпозиции и введения обратной связи. Полные системы конечно-автоматных функций. Машина Тьюринга.

#### Операция суперпозиции

- Операция суперпозиции включает в себя
  - 1. Подстановку функции вместо переменной:  $f(g(x_1,...,x_n), y_2,...,y_m)$ .
  - 2. Перестановку и отождествление переменных.
  - 3. Добавление и удаление фиктивных переменных.
- Операцию суперпозиции можно определить с помощью формул, как для булевых функций.
- Обычно рассматривается регулярная суперпозиция:

$$h(\bar{x}) = f(g_1(\bar{x}), \dots, g_m(\bar{x})),$$

где 
$$\bar{x} = (x_1, \dots, x_n)$$
.

 Если некоторое утверждение доказано для регулярной суперпозиции, обычно оно легко переносится и на общий случай.

#### Теорема 8

Класс  $P_{\kappa a,2}$  замкнут относительно операции суперпозиции.

## Доказательство

$$f(\bar{x}) = f_0(f_1(\bar{x}), \dots, f_m(\bar{x}))$$

ullet Пусть все функции  $f_0, f_1, \dots, f_m$  конечно-автоматны:

$$f_0: \begin{cases} y(t) = F_0(y_1(t), \dots, y_m(t), q_0(t-1)), \\ q_0(t) = G_0(y_1(t), \dots, y_m(t), q_0(t-1)), \\ q_0(0) = q'_0; \end{cases}$$

$$f_i: \begin{cases} y(t) = F_i(\bar{x}(t), q_i(t-1)), \\ q_i(t) = G_i(\bar{x}(t), q_i(t-1)), & i = \overline{1, m}. \\ q_i(0) = q_i', \end{cases}$$

## Доказательство (продолжение)

• Составим канонические уравнения для суперпозиции:

```
\begin{cases} y(t) = F_0(F_1(\bar{x}(t), q_1(t-1)), \dots, F_m(\bar{x}(t), q_m(t-1)), q_0(t-1)), \\ q_0(t) = G_0(F_1(\bar{x}(t), q_1(t-1)), \dots, F_m(\bar{x}(t), q_m(t-1)), q_0(t-1)), \\ q_1(t) = G_1(\bar{x}(t), q_1(t-1)), \\ \dots \\ q_m(t) = G_m(\bar{x}(t), q_m(t-1)), \\ q_i(0) = q_i', \quad i = \overline{1, m}. \end{cases}
```

- Если обозначить  $q(t) = (q_0(t), \dots, q_m(t))$ , то эти уравнения можно переписать в стандартной форме.
- Получаем, что функция f конечно-автоматна.

# $ar{x}(t)$ $ar{f_1}$ $ar{f_0}$ y(t) $t=1,2,\ldots$ — время

- Если автомат, реализующий  $f_i$ , имел  $r_i$  состояний  $(i=\overline{0,m})$ , то автомат для суперпозиции будет иметь  $r_0\cdot r_1\cdot\ldots\cdot r_m$  состояний.
- Некоторые из этих состояний могут оказаться недостижимыми или эквивалентными, но бывают примеры функций, для суперпозиции которых число состояний нельзя уменьшить.

#### Определение

Детерминированная функция  $y=f(x_1,\dots,x_n)$  зависит с запаздыванием от  $x_i$ , если y(t) не зависит от  $x_i(t)$  при любом  $t\geqslant 1$ .

ullet При зависимости с запаздыванием y(t) может зависеть от  $x_i(1),\dots,x_i(t-1)$ , а также от  $x_j(1),\dots,x_j(t)$  при  $j \neq i$ .

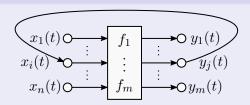
## Пример

ullet Единичная задержка  ${\mathfrak z}\colon E_2^\infty o E_2^\infty$ ,  ${\mathfrak z}(x)=0x$ .

$$\begin{cases} y(t) = q(t-1), \\ q(t) = x(t), \\ q(0) = 0. \end{cases}$$

• При любом  $t\geqslant 2$  верно  $(\mathfrak{z}(x))(t)=x(t-1).$  Она зависит с запаздыванием от x.

#### Иллюстрация



- $y_1, \ldots, y_m$  выходы, на которых реализуются детерминированные функции  $f_1, \ldots, f_m$ .
- ullet  $y_j$  (т. е.  $f_j$ ) зависит с запаздыванием от  $x_i$ .
- На рисунке изображено введение обратной связи по переменным  $x_i, y_j$ .
- У получившейся конструкции вход  $x_i$  и выход  $y_j$  пропадают. Теперь она реализует m-1 функцию от n-1 переменных.

# Работа набора функций, полученного в результате обратной связи

- ullet  $y_j(t)$  не зависит от  $x_i(t)$ . Мы хотим выразить все  $y_k(t),\,k 
  eq j$  через  $x_k(1),\dots x_k(t),\,k 
  eq i$  при всех t.
- В начале  $y_j(1) = \varphi_1^j(x_1(1), \dots, x_{i-1}(1), x_{i+1}(1), \dots, x_n(1)).$
- Для получения  $y_k(1), \, k \neq j$  подставляем в их выражение через  $x_k(1), \, k = \overline{1,n}$  вместо  $x_i(1)$  выражение для  $y_j(1)$ .
- ullet Пусть для момента времени t-1 получены  $y_k(1),\dots,y_k(t-1)$  при всех  $k=\overline{1,m}$  (зависят от  $x_k(1),\dots,x_k(t-1),\ k\neq i$ ).
- Тогда  $y_j(t)$  определяется через  $x_k(1), \ldots, x_k(t)$  при  $k \neq i$  и через  $x_i(1) = y_j(1), \ldots, x_i(t-1) = y_j(t-1)$ .
- Остальные  $y_k(t)$  определяются через  $x_k(1), \ldots, x_k(t), k = \overline{1, n}$ , где вместо  $x_i(1), \ldots, x_i(t)$  подставлены выражения  $y_j(1), \ldots, y_j(t)$ .
- Таким образом, в полученном наборе все функции детерминированные.

#### Теорема 9

Класс  $P_{\mathsf{ka},2}$  замкнут относительно операции введения обратной связи.

#### Доказательство

• Имеем набор функций из  $P_{\kappa a,2}$  с каноническими уравнениями:

$$\begin{cases} y_1(t) = F_1(x_1(t), \dots, x_n(t), q(t-1)), \\ \dots \\ y_m(t) = F_m(x_1(t), \dots, x_n(t), q(t-1)), \\ q(t) = G(x_1(t), \dots, x_n(t), q(t-1)), \\ q(0) = q_0. \end{cases}$$

• Пусть выход  $y_j$  зависит от входа  $x_i$  с запаздыванием:  $y_j(t) = F_j(x_1(t), \dots, x_{i-1}(t), x_{i+1}(t), \dots, x_n(t), q(t-1)).$ 

- Применим операцию обратной связи по переменным  $x_i, y_j$ : подставим выражение для  $y_j(t)$  вместо  $x_i(t)$
- Функции из полученного набора конечно-автоматны, их канонические уравнения:

$$\begin{cases} y_k(t) = F_k(x_1(t), \dots, x_{i-1}(t), \\ F_j(x_1(t), \dots, x_{i-1}(t), x_{i+1}(t), \dots, x_n(t), q(t-1)), \\ x_{i+1}(t), \dots, x_n(t), q(t-1)), & k \neq i, k = \overline{1, m}, \\ q(t) = G(x_1(t), \dots, x_{i-1}(t), \\ F_j(x_1(t), \dots, x_{i-1}(t), x_{i+1}(t), \dots, x_n(t), q(t-1)), \\ x_{i+1}(t), \dots, x_n(t), q(t-1)), \\ q(0) = q_0. \end{cases}$$

#### Истинностные функции

• Пусть  $\varphi\colon E_2^n \to E_2$  — булева функция. Ей соответствует истинностная функция  $f_\varphi\colon (E_2^\infty)^n \to E_2^\infty$  такая, что если  $y=f_\varphi(x_1,\dots,x_n)$ , то  $y(t)=\varphi(x_1(t),\dots,x_n(t))$  при всех  $t\geqslant 1$ .

## Задержка

• Единичная задержка  $\mathfrak{z} \colon E_2^\infty \to E_2^\infty$ ,  $\mathfrak{z}(x) = 0x$  реализуется автоматом с 2 состояниями  $(Q = E_2)$ :

$$\begin{cases} y(t) = q(t-1), \\ q(t) = x(t), \\ q(0) = 0. \end{cases}$$

#### Исходные функции

Полная в P<sub>2</sub>:

$$\{\&, \lor, \neg\}.$$

• Рассмотрим систему конечно-автоматных функций, состоящую из истинностных функций и единичной задержки:

$$\{f_{\&}, f_{\lor}, f_{\neg}, \mathfrak{z}\}.$$

#### Теорема 10

Система  $\{f_\&, f_\lor, f_\lnot, \mathfrak{z}\}$  полна в классе  $P_{\kappa a,2}$  относительно операций суперпозиции и введения обратной связи.

#### Доказательство

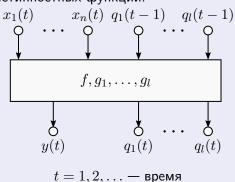
• Пусть функция входит в класс  $P_{\kappa a,2}$ . Тогда она реализуется системой канонических уравнений:

$$\begin{cases} y(t) = f(x_1(t), \dots, x_n(t), q_1(t-1), \dots, q_l(t-1)), \\ q_1(t) = g_1(x_1(t), \dots, x_n(t), q_1(t-1), \dots, q_l(t-1)), \\ \dots \\ q_l(t) = g_l(x_1(t), \dots, x_n(t), q_1(t-1), \dots, q_l(t-1)), \\ q_1(0) = \dots = q_l(0) = 0. \end{cases}$$

• Здесь  $f, g_1, \ldots, g_l \in P_2$ .

## Доказательство (продолжение)

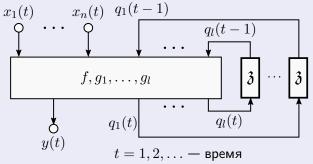
• Моделируем работу функций  $f, g_1, \dots, g_l$  с помощью суперпозиции истинностных функций:



### Полная система конечно-автоматных функций

#### Доказательство (продолжение)

• Соединяем выходы  $q_i(t)$  со входами  $q_i(t-1)$  через задержки. Используем для этого операцию обратной связи. Зависимость с запаздыванием обеспечивается задержками.



• Таким образом, построена нужная функция.

## Базис из одной конечно-автоматной функции

### Шефферовы функции

- Штрих Шеффера:  $x \mid y = \overline{xy} = \overline{x} \lor \overline{y}$ .
- ullet  $[x\mid y]=P_2$ , так как  $\neg x=x\mid x,\; xy=\overline{x\mid y},\; x\vee y=\overline{x}\mid \overline{y}.$

#### Теорема 11

В классе  $P_{\kappa a,2}$  существует полная система, состоящая из одной функции.

#### Доказательство

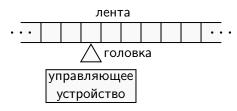
- Рассмотрим функцию  $F(x_1, x_2, x_3, x_4) = ((x_1 \oplus x_3)x_4 \oplus x_3) \mid x_2.$
- $F(x_1, x_2, x_1, x_4) = x_1 \mid x_2$ .
- $\bullet$   $\overline{F}(1,1,0,x_4) = x_4.$

### Базис из одной конечно-автоматной функции

- Теперь рассмотрим функцию  $f(x_1,x_2,x_3,x_4)=f_F(x_1,\,x_2,\,x_3,\,\mathfrak{z}(x_4))$  и докажем, что  $[f]=P_{\mathsf{ka},2}.$
- $f_{||}(x_1,x_2)=f(x_1,x_2,x_1,x_4)$ . С помощью  $f_{||}$  получаем  $f_{\neg}(x),\,f_0(x),\,f_1(x)$ .
- $\mathfrak{z}(x) = f_{\neg}(f(f_1(x), f_1(x), f_0(x), x)).$
- Получили систему из истинностных функций, соответствующих полной в  $P_2$  системе, и функцию задержки. Значит, система  $\{f\}$  полна в  $P_{\mathrm{Ka},2}$ .



- В середине 1930-х годов математикам удалось формализовать понятие алгоритма.
- Разными математиками практически в одно время было предложено несколько формализаций, основанных на разных идеях.
- Одна из них (предложенная независимо Тьюрингом и Постом) основана на представлении алгоритма как программы для абстрактного вычислительного устройства определённого вида.
- Эта формализация и по сей день является одной из самых используемых и пригодных для анализа алгоритмов.



- Машина Тьюринга состоит из бесконечной в обе стороны ленты, разделённой на ячейки, считывающе-записывающей головки и управляющего устройства.
- Ячейки ленты содержат символы это бесконечная память машины.
- Головка в каждый момент обозревает какую-то ячейку и может двигаться по ленте влево и вправо.
- Управляющее устройство содержит программу, которая управляет поведением головки.

#### Определение

Машина Тьюринга  $\mathcal{M}$  — это набор  $(A,Q,f,q_1,q_0)$ , где

- ullet  $A = \{a_0, \dots, a_k\}, \; k \geqslant 1$  рабочий алфавит.  $a_0$  пустой символ.
- $Q \neq \varnothing$  множество состояний.
- $q_1 \in Q$  начальное состояние.
- ullet  $q_0 \in Q, \ q_0 
  eq q_1$  заключительное состояние.
- ullet  $f\colon A imes Q o A imes \{L,R,S\} imes Q$  программа машины.
- Программу машины можно считать набором команд вида  $a_iq_j \to a_r Dq_s, \ j \neq 0.$  В программе имеется ровно одна команда с каждой допустимой левой частью.

#### Работа машины

- В каждой ячейке ленты записан символ алфавита A. Ячейки с символом  $a_0$  считаем пустыми.
- В каждый момент времени головка машины обозревает некоторую ячейку ленты и машина находится в одном из состояний Q.
- ullet В начальный момент времени машина находится в состоянии  $q_1.$
- В каждый момент времени машина считывает символ a из обозреваемой головкой ячейки. По этому символу и текущему состоянию  $q_i$  машина с помощью своей программы получает набор  $f(a,q_i)=(b,D,q_j)\in A\times\{R,S,L\}\times Q.$
- После этого машина записывает в текущую ячейку символ b, передвигает головку на другую ячейку ленты (L на 1 влево, R на 1 вправо, S не передвигает) и переходит в состояние  $q_j$ .
- Машина останавливается при переходе в состояние  $q_0$ . Если этого не происходит, машина работает бесконечно.

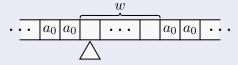
#### Запись программ машин Тьюринга

• Записываем программы машин Тьюринга в виде таблиц:

|   | 1*  | 2   | 3   | 4       |
|---|-----|-----|-----|---------|
| 0 | 0R1 | 0L3 |     | $0Rq_0$ |
| 1 | 1R2 | 1R2 | 0L4 | 1L1     |

- Состояния (кроме  $q_0$ ) обозначаем цифрами или другим удобным образом. Начальное состояние (если оно не обозначено  $q_1$ ) отмечаем звёздочкой.
- Ячейки таблицы, которые не могут выполниться, оставляем пустыми. Для определённости считаем, что указанная там команда не меняет символ в ячейке, не двигает головку и переходит в  $q_0$ .

#### Выполнение преобразований в общем случае



- Считаем, что в начальный момент на ленте находится слово w в алфавите  $A\setminus\{a_0\}$ , а все остальные символы пусты. Головка машины обозревает самый левый непустой символ.
- Машина работает в дискретном времени согласно программе.
- Если машина остановилась, то результат её работы это участок ленты от самого левого непустого символа до самого правого. В противном случае результат не определён.

### Лекция 5

Вычислимые функции. Композиция и итерация машин Тьюринга. Вычислимость простейших функций.

#### Базовые понятия

- $\mathbb{N}_0 = \{0,1,2,\ldots\}$  множество натуральных чисел с добавлением нуля.
- ullet  $f\colon \mathbb{N}_0^n o \mathbb{N}_0$  функции натурального аргумента.
- Мы расширяем понятие функции до частичной функции:
   частичная функция может быть определена не на всех элементах базового множества.

### Примеры

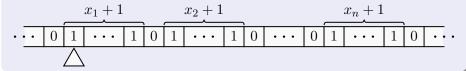
- ullet x+y всюду определённая функция.
- ullet Функция x-y определена при  $x\geqslant y$  и не определена при x< y.
- ullet Усечённая разность  $x \doteq y = egin{cases} x y, & x \geqslant y, \\ 0, & x < y. \end{cases}$  всюду определена.
- ullet x/2 определена только при чётных x, а  $\lfloor x/2 \rfloor$  всюду определена.

- Будем использовать машины Тьюринга с алфавитом  $A=\{0,1,a_2,\dots,a_k\}.$  При этом считаем  $a_0=0$  пустой символ.
- Для записи входных значений на ленте машины Тьюринга будем использовать основной код.

### Основной код

• Кодируем число  $x \in \mathbb{N}_0$  в виде  $1^{x+1}$ .

ullet Кодируем набор  $(x_1,\dots,x_k)$  из  $\mathbb{N}_0^n$  в виде  $1^{x_1+1}01^{x_2+1}0\dots01^{x_n+1}$ .



#### Определение

Машина Тьюринга  $\mathcal M$  вычисляет частичную функцию  $f(\bar x)$ , если, начиная работу на первой единице основного кода набора  $\bar x$  (остальные символы ленты — нули) в состоянии  $q_1$ , машина:

- 1. Если  $f(\bar{x})$  определено, то  $\mathcal M$  через конечное число тактов останавливается, и в этот момент на ленте представлено значение  $f(\bar{x})$  в основном коде (остальные символы ленты нули, головка может находиться где угодно).
- 2. Если  $f(\bar{x})$  не определено, то  $\mathcal{M}$  либо не останавливается, либо останавливается, но на ленте не оказывается основной код числа из  $\mathbb{N}_0$  (либо все символы ленты нули, либо на ленте несколько массивов из единиц).

#### Определение

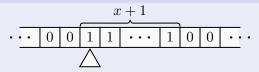
Машина Тьюринга  $\mathcal M$  правильно вычисляет частичную функцию  $f(\bar x)$ , если, начиная работу на первой единице основного кода набора  $\bar x$  (остальные символы ленты — нули) в состоянии  $q_1$ , машина:

- 1. Если  $f(\bar{x})$  определено, то  $\mathcal{M}$  через конечное число тактов останавливается, и в этот момент на ленте представлено значение  $f(\bar{x})$  в основном коде (остальные символы ленты нули), причём головка машина находится на первом символе этого основного кода.
- 2. Если  $f(\bar{x})$  не определено, то  ${\mathcal M}$  не останавливается.
- Если машина вычисляет некоторую функцию, то можно изменить её так, чтобы она правильно вычисляла эту функцию.
- В дальнейшем мы будем не будем ссылаться на простое вычисление функций, а будем использовать только правильные вычисления.

#### Определение

Частичная функция называется вычислимой (на машинах Тьюринга), если существует машина Тьюринга, правильно вычисляющая эту функцию.

#### Примеры



| 1*                                                             | 1*                                                   | 1*   2                                                                    |
|----------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------|
| $0 \mid 1Sq_0$                                                 | $0 \mid 1Sq_0$                                       | $0 	 1Sq_0$                                                               |
| $ \begin{array}{c c} \hline 0 & 1Sq_0 \\ 1 & 1L1 \end{array} $ | $egin{array}{ c c c c c c c c c c c c c c c c c c c$ | $ \begin{array}{c cccc} \hline 0 & 1Sq_0 \\ 1 & 0R2 & 1Sq_0 \end{array} $ |
| x + 1                                                          | 0                                                    | $x \doteq 1$                                                              |

#### Безусловная композиция

• Имеем две машины Тьюринга  $\mathcal{M}_1 = (A,Q_1,f_1,q_1',q_0')$  и  $\mathcal{M}_2 = (A,Q_2,f_2,q_1'',q_0'')$ . Хотим построить машину  $\mathcal{M}$ , которая сначала работает как машина  $\mathcal{M}_1$ , а когда  $\mathcal{M}_1$  останавливается, на полученном содержимом ленты запускается работа  $\mathcal{M}_2$ , и результат её работы будет результатом машины  $\mathcal{M}$ .

$$\mathcal{M}_1,\mathcal{M}_2\to\mathcal{M}$$

- ullet Считаем, что  $Q_1\cap Q_2=\varnothing$ . В качестве множества состояний  $\mathcal M$  выбираем  $Q_1\cup Q_2$ . Начальное состояние  $q_1'$ , заключительное  $-q_0''$ .
- ullet В программе  $\mathcal{M}_1$  заменяем переходы к  $q_0'$  на переходы к  $q_1''$ .
- ullet Объединяем программы  $\mathcal{M}_1$  и  $\mathcal{M}_2$ , получаем программу  $\mathcal{M}_2$ .

#### Иллюстрация

• Имеем

- ullet В  $\mathcal{M}_1$  заменяем ячейки:  $a_r D q_0' ullet a_r D q_1''$  .
- Объединяем программы  $\mathcal{M}_1$  и  $\mathcal{M}_2$ . Начальное состояние  $q_1'$ , заключительное  $q_0''$ .

#### Условная композиция

- Имеем две машины Тьюринга  $\mathcal{M}_1=(A,Q_1,f_1,q_1',q_0')$  и  $\mathcal{M}_2=(A,Q_2,f_2,q_1'',q_0'').$
- Хотим построить машину  $\mathcal{M}$ , которая в некоторых случаях работает как машина  $\mathcal{M}_1$ , а в некоторых как безусловная композиция  $\mathcal{M}_1$  и  $\mathcal{M}_2$ .
- Строим аналогично безусловной композиции, но заменяем  $q_0'$  на  $q_1''$  не во всех ячейках  $\mathcal{M}_1$ , а только в тех, где нужно запустить работу машины  $\mathcal{M}_2$ . В остальных ячейках заменяем  $q_0'$  на заключительное состояние  $q_0''$ .

#### Условная композиция трёх машин

- Имеем три машины Тьюринга  $\mathcal{M}_1=(A,Q_1,f_1,q_1',q_0')$ ,  $\mathcal{M}_2=(A,Q_2,f_2,q_1'',q_0'')$ ,  $\mathcal{M}_3=(A,Q_3,f_3,q_1''',q_0''')$ .
- Хотим построить машину  $\mathcal{M}$ , которая в некоторых случаях работает как безусловная композиция машин  $\mathcal{M}_1$  и  $\mathcal{M}_2$ , а в некоторых как безусловная композиция  $\mathcal{M}_1$  и  $\mathcal{M}_3$ .

$$\mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3 \to \mathcal{M}$$

- Строим аналогично безусловной композиции, но объединяем программы всех машин и заменяем  $q_0'$  на  $q_1''$  или  $q_1'''$  в зависимости от того, какую машину нужно запустить при попадании управления в эту ячейку программы.
- ullet Заключительным выбираем состояние  $q_0''$ , и у машины  $\mathcal{M}_3$  в программе заменяем состояние  $q_0'''$  на  $q_0''$ .

#### Пример

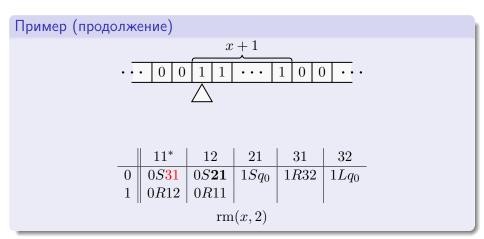
ullet rm(x,y) — остаток от деления x на y (0 при y=0).

• 
$$\operatorname{rm}(x,2) = \begin{cases} 0, & x \text{ чётно,} \\ 1, & x \text{ нечётно.} \end{cases}$$

•

|                 | 11*                                              |                   |   | $\  21^*$       |   | 31*             | 32                           |
|-----------------|--------------------------------------------------|-------------------|---|-----------------|---|-----------------|------------------------------|
| 0               | $ \begin{array}{c c} 0Sq'_0\\ 0R12 \end{array} $ | $0S\mathbf{q_0'}$ | 0 | $1Sq_0''$       | 0 | 1R32            | $1Lq_0^{\prime\prime\prime}$ |
| 1               | 0R12                                             | 0R11              | 1 |                 | 1 |                 |                              |
| $\mathcal{M}_1$ |                                                  |                   |   | $\mathcal{M}_2$ |   | $\mathcal{M}_3$ |                              |

• Условная композиция этих машин вычисляет функцию  ${
m rm}(x,2)$ : выделенное жирным состояние нужно заменить на 21, а выделенное красным — на 31. Состояния  $q_0'',q_0'''$  объединяем в общее заключительное состояние.



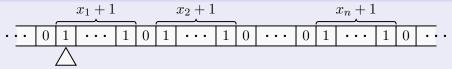
### Итерация машин Тьюринга

#### Итерация

- Имеем машину Тьюринга  $\mathcal{M}=(A,Q,f,q_1,q_0)$ . Хотим построить машину  $\mathcal{M}'$ , которая выполняет работу машины  $\mathcal{M}$  несколько раз (каждый раз применяя её к результату работы предыдущей машины). Цикл завершается при выполнении некоторого условия.
- В программе машины выделяем клетки с переходами в заключительное состояние, после которых нужно запускать машину  $\mathcal M$  снова. Заменяем в них состояние  $q_0$  на  $q_1$ .
- $\bullet \quad \boxed{a_r D q_0} \to \boxed{a_r D q_1}$

## Вычислимость простейших функций

### Селекторные функции



•  $I_m^n(x_1,\ldots,x_n)=x_m, \ m\in\{1,\ldots,m\}, \ n\in\mathbb{N}$  — селекторные функции.

|                  |                   |       | 2   | l   | m –                                               |              |       | n                     |   |
|------------------|-------------------|-------|-----|-----|---------------------------------------------------|--------------|-------|-----------------------|---|
| (                | $0 \mid 0R2 \mid$ |       | 0R3 |     | $ \begin{array}{c c} 0Rm \\ 0R(m-1) \end{array} $ |              | 0R(n  | (n+1)                 |   |
| 1                | 1                 | 0R1   | 0R2 |     | 0R(m)                                             | -1)          | 1F    | 2m                    |   |
|                  | $\parallel m+1$   |       |     |     |                                                   | n+1          |       | n+2                   |   |
| $0 \mid 0F$      | $\overline{R}(n)$ | (n+2) |     | 0R( | (n+1)                                             | 0L(n         | (n+1) | $0Rq_0$               |   |
| $1 \parallel 0F$ | R(n)              | (n+1) |     | 0   | Rn                                                | $\int 1L(n)$ | (n+2) | $ 0Rq_0 $ $ 1L(n+2) $ | ı |

## Вычислимость простейших функций

#### Селекторные функции

- В примерах были построены программы для правильного вычисления следующих простейших функций:
  - Константа 0;
  - 2. Функция x + 1;
  - 3. Селекторные функции  $I_m^n(x_1,\ldots,x_n)=x_m, \ m\in\{1,\ldots,m\}, \ n\in\mathbb{N}.$
- Кроме того, были построены программы для правильного вычисления функций  $x \doteq 1$  и  $\mathrm{rm}(x,2)$ .
- Таким образом, все перечисленные функции являются вычислимыми.

### Лекция 6

Моделирование машин Тьюринга. Механизм дорожек. Универсальные функции.

• Мы рассмотрим моделирование машин Тьюринга, работающих в алфавите  $\{0,1,a_2,\ldots,a_k\}$ , машинами Тьюринга, работающими в алфавите  $\{0,1\}$ .

### Теорема 1

При любом  $k\geqslant 2$  классы функций, вычислимых машинами Тьюринга в алфавитах  $\{0,1,a_2,\ldots,a_k\}$  и  $\{0,1\}$ , совпадают.

#### Доказательство

•  $\supseteq$ . Если функция вычислима на машине Тьюринга с алфавитом  $\{0,1\}$ , то она вычислима и на машине Тьюринга с алфавитом  $\{0,1,a_2,\ldots,a_k\}$  (дополнительные символы в вычислении можно не использовать).

- $\subseteq$ . Выберем такое l, что  $2^l \geqslant k+1$ . Кодируем все символы  $\{0,1,a_2,\ldots,a_k\}$  наборами из l нулей и единиц.
- 0 кодируем в виде  $0^l$ , а 1 в виде  $1^l$ . Остальные символы кодируем произвольно.
- Пусть  $\mathcal{M}$  машина Тьюринга, работающая в алфавите  $\{0,1,a_2,\ldots,a_k\}$  и правильно вычисляющая некоторую функцию  $f(x_1,\ldots,x_n)$ .
- Отметим, в начале вычисления и в конце вычисления на ленте этой машины находятся только нули и единицы. Остальные символы могут появляться только на промежуточных шагах.
- Строим машину  $\mathcal{M}'$  в алфавите  $\{0,1\}$ , моделирующую машину  $\mathcal{M}$  и правильно вычисляющую функцию  $f(x_1,\ldots,x_n)$ .

- ullet Моделирование проходит в 3 этапа (машины  $\mathcal{M}_1,\mathcal{M}_2,\mathcal{M}_3$ ):
  - 1. Все единицы и нули на ленте заменяются своими кодами: вход «растягивается» в l раз.
  - 2. Моделирующая машина «воспроизводит» на ленте работу машины  $\mathcal{M}$ , обрабатывая коды символов, вместо самих символов.
  - 3. Получив результат, заменяем коды единиц на единицы: выход «сжимается» в l раз.
- Сперва рассмотрим этап 2. Пусть  $Q = \{q_0, \dots, q_m\}$  множество состояний исходной машины  $\mathcal{M}$ .

- ullet Машина  $\mathcal{M}_2$  будет иметь 3 группы состояний и команд.
- Первая группа чтение кода символа.
  - Состояния:  $[b_1 \dots b_p, j], \ b_1, \dots, b_p \in \{0, 1\}, \ p = \overline{1, l}, \ j = \overline{1, m}.$
  - lack Команды:  $bq_j o bR[b,j],$   $b[b_1 \dots b_p,j] o bR[b_1 \dots b_p b,j], \ p=\overline{1,\ l-2},$   $b[b_1 \dots b_{l-1},j] o bS[b_1 \dots b_{l-1} b,j]$   $(b \in \{0,1\}).$
- Первая группа команд обеспечивает чтение кода очередного символа за l тактов. Этот код, а также номер состояния машины в начале чтения, сохраняются с помощью перехода машины в специальные состояния.

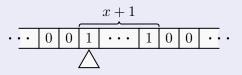
- Вторая группа запись кода нового символа на ленту.
  - ▶ Пусть  $a_iq_j \to a_rDq_s$  команда машины  $\mathcal{M}$ . Пусть  $b_1 \dots b_l$  код  $a_i$ , а  $c_1 \dots c_l$  код  $a_r$ . Для каждой такой команды машина  $\mathcal{M}_2$  будет иметь указанные ниже состояния и команды.
  - Состояния:  $[i,j,\,p],\,\,p=\overline{1,l-1},\,\,i=\overline{0,k},\,\,j=\overline{1,m};$  Состояние кодирует текущую выполняемую команду (i,j) и номер p текущего записываемого элемента кода символа.
  - ▶ Команды:  $b[b_1 \dots b_l, j] \to c_l L[i, j, l-1],$   $b[i, j, p] \to c_p L[i, j, p-1], \ p=2, l-1,$   $b[i, j, 1] \to c_1 S\{D, s\}$   $(b \in \{0, 1\}).$
- Вторая группа команд обеспечивает запись на ленту кода нового символа в соответствии с командой машины  $\mathcal{M}$ . Она делает это за l тактов, двигая головку справа налево. В конце она приходит в состояние, в котором «записывается» тип движения D и номер s текущей команды машины  $\mathcal{M}$ .

- ullet Третья группа движение головки машины  ${\mathcal M}$ .
  - lackbox Состояния:  $\{D,s\},\ D\in \{R,L,S\},\ s=\overline{0,m},\ \{L,s,p\},\ \{R,s,p\},\ p=\overline{1,l},\ s=\overline{0,m}.$
  - ▶ Команды:  $b\{S,s\} \to bSq_s$ ,  $b\{L,s\} \to bL\{L,s,1\},$   $b\{L,s,p\} \to bL\{L,s,p+1\}, \ p=\overline{1,l-1},$   $b\{L,s,l\} \to bSq_s$   $b\{R,s\} \to bR\{R,s,1\},$   $b\{R,s,p\} \to bR\{R,s,p+1\}, \ p=\overline{1,l-1},$   $b\{R,s,l\} \to bSq_s$   $(b \in \{0,1\}).$
- Третья группа команд совершает движение головки в нужном направлении. Для этого нужно просто остаться на месте, либо сдвинуться l раз влево или вправо. После этого машина переходит в состояние, в котором заново начнётся чтение символа кода.

- Таким образом, на втором этапе машина  $\mathcal{M}_2$  совершает те же преобразования над кодами символов на ленте, что машина  $\mathcal{M}$  совершает над самими символами. Каждая команда машины  $\mathcal{M}$  «выполняется» машиной  $\mathcal{M}_2$  за 3(l+1) тактов.
- Отметим, что машина  $\mathcal{M}_2$  также содержит во множестве состояний состояния  $\{q_0,\ldots,q_m\}$ . В них она попадает в промежутках между итерациями. Начальное состояние  $q_1$ , заключительное  $q_0$ .

### Доказательство (продолжение)

• Теперь рассмотрим этап 1. Выпишем программу машины  $\mathcal{M}_1$  для случая функции от одной переменной.



|   | 1*      | 2       | [3, 1]  | [3,2]   | <br>[3, l] | 4   | 5   |
|---|---------|---------|---------|---------|------------|-----|-----|
| 0 | $0Rq_0$ | 0R[3,1] | 1R[3,2] | 1R[3,3] | <br>1L4    | 0L5 | 0R1 |
| 1 | 0R2     | 1R2     | 1R[3,1] |         |            | 1L4 | 1L5 |

• Машина стирает единицу в начале, движет головку вправо и записывает там l единиц, после чего возвращает головку в начало. Так продолжается, пока входное слово не кончится.

## 

- В общем случае машина действует аналогично, но во время прохода по слову ей нужно «пропускать» нужное количество нулей (разное при обработке разных входных чисел), а также «отлавливать» моменты обработки первого символа очередного слова, чтобы оставлять l разделительных нулей между массивами из единиц.
- Машина  $\mathcal{M}_1$  будет получаться как безусловная композиция машин  $\mathcal{M}_1^0,\dots,\mathcal{M}_1^{n-1}$ , каждая из которых обрабатывает один вход. Программа машины  $\mathcal{M}_1^k$  в общем виде для  $k\geqslant 1$  приведена на следующем слайде.

#### Доказательство (продолжение)

• Программа  $\mathcal{M}_1^0$  будет иметь немного другой вид (так как ей нужно «пропустить» только один ноль, а не l). Выпишем её отдельно.

## Моделирование машин Тьюринга

## Доказательство (продолжение)

$$\begin{array}{c|c}
l(y+1) \\
\hline
 & \\
\hline
 & \\
\end{array}$$

• Машина  $\mathcal{M}_3$  строится аналогично машине  $\mathcal{M}_1$ , только она должна каждый раз стирать l символов, а записывать один. При этом ей всегда требуется обрабатывать только один блок единиц.

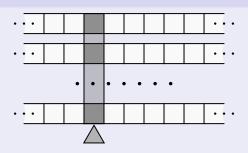
| 0 | $0Rq_0$                                          |         |         | 0R3 | 1L4 | 0L5 | 0R[1,1] |
|---|--------------------------------------------------|---------|---------|-----|-----|-----|---------|
| 1 | $ \begin{vmatrix} 0Rq_0\\0R[1,2] \end{aligned} $ | 0R[1,3] | <br>0R2 | 1R2 | 1R3 | 1L4 | 1L5     |

• Машина  $\mathcal{M}'$  получается путём безусловной композиции машин  $\mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3$ .



# Механизм дорожек

## Дорожки



- Рассмотрим машину Тьюринга в алфавите  $A = \{0,1,a_2,\dots,a_k\}$  с m дорожками. Эта машина имеет m лент (дорожек), на каждой из которых могут быть записаны символы алфавита A.
- Машина имеет одну головку, которая синхронно перемещается по всем дорожкам и может считывать и записывать символы на всех дорожках одновременно.

## Механизм дорожек

#### Дорожки

- ullet Команды машины имеют вид  $a_{i_1}\dots a_{i_m}q_j o a_{k_1}\dots a_{k_m}Dq_s.$
- При вычислении функций в начальный момент основной код набора записан на первой дорожке, а остальные дорожки содержат нули.
- Результат вычисления записывается на первую дорожку, при этом все остальные дорожки должны быть «очищены» (на них должны содержаться нули).

## Механизм дорожек

#### Моделирование машины с дорожками

- Моделируем машину  $\mathcal{M}$  с m дорожками на обычной машине Тьюринга  $\mathcal{M}'$  в алфавите  $A^m$ : каждый символ ленты машины  $\mathcal{M}'$  кодирует в себе сразу m символов (по одному с каждой дорожки).
- Нулём машины  $\mathcal{M}'$  считаем символ  $(0,\dots,0)$ , а единицей символ  $(1,0,\dots,0)$ . В начальный и конечный момент содержимое ленты  $\mathcal{M}'$  автоматически кодирует содержимое дорожек  $\mathcal{M}$ .
- ullet Каждая команда  $a_{i_1}\dots a_{i_m}q_j o a_{k_1}\dots a_{k_m}Dq_s$  моделируется командой  $(a_{i_1},\dots,a_{i_m})q_j o (a_{k_1},\dots,a_{k_m})Dq_s.$
- Таким образом, машина  $\mathcal{M}'$  будет «воспроизводить» работу  $\mathcal{M}$  с помощью одной ленты с «расширенным» алфавитом и будет вычислять ту же функцию.
- С помощью рассматривавшегося ранее моделирования машин Тьюринга теперь можно перейти от машины  $\mathcal{M}'$  к машине с одной лентой в алфавите  $\{0,1\}$ , вычисляющей ту же функцию.

## Универсальные функции

#### Определение

Пусть  $f_0(x), f_1(x), \ldots$  — последовательность частичных функций натурального аргумента. Частичная функция U(n,x) — универсальная функция для  $\{f_0(x), f_1(x), \ldots\}$ , если

- 1. При любом  $n_0\geqslant 0$  функция  $U(n_0,x)$  совпадает с одной из функций  $f_0(x),f_1(x),\dots$
- 2. Для любого  $i\geqslant 0$  найдётся  $n'\geqslant 0$  такое, что  $f_i(x)=U(n',x).$ 
  - ullet Для универсальной функции  $\{U(0,x),U(1,x),\ldots\}=\{f_0(x),f_1(x),\ldots\}.$

#### Определение

Универсальная машина Тьюригна  $\mathcal{U}(n,x)$  — это машина Тьюринга, которая правильно вычисляет функцию, универсальную для последовательности всех вычислимых функций от одной переменной.

#### Лекция 7

Существование универсальной машины Тьюринга. Операции суперпозиции, примитивной рекурсии и минимизации. Классы примитивно рекурсивных и частично рекурсивных функций.

#### Теорема 2

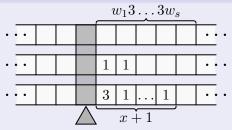
Универсальная машина Тьюринга существует.

#### Доказательство

- Мы опишем лишь идею построения программы универсальной машины Тьюринга. Полное построение программы было бы слишком громоздко.
- Мы хотим пронумеровать все машины Тьюринга в алфавите  $\{0,1\}$  так, чтобы универсальная машина  $\mathcal{U}(n,x)$  могла по поданному на вход номеру машины Тьюринга n воспроизвести её работу на числе x.

- Для этого мы будем формировать номер машины при помощи кодирования её программы.
  - 1. Команду  $a_iq_j \to a_rDq_s$  кодируем словом  $2a_i2d(j)2a_r2d(D)2d(s)$ . Здесь d(j),d(s) это основные коды чисел.  $d(L)=0,\ d(R)=1,\ d(S)=01.$
  - 2. Пусть  $w_1,\dots,w_p$  коды всех команд машины (порядок произвольный). Тогда  $w_13w_23\dots 3w_p$  код программы машины.
  - Теперь рассматриваем код программы как число в четверичной системе счисления (сопоставление однозначно, так как первый символ всегда не 0). Это число и будет номером машины.
- Теперь нужно построить программу, которая бы расшифровывала номер-код машины Тьюринга и выполняла бы её программу. Для этого мы будем использовать механизм дорожек.

- Нам нужно построить универсальную машину, которая по номеру n машины Тьюринга  $\mathcal{M}_n$  и входу x воспроизводила бы работу  $\mathcal{M}_n$  на x и выдавала бы соответствующий результат.
- Будем использовать машину Тьюринга с тремя дорожками в алфавите  $\{0,1,2,3\}$ :
  - 1. Первая дорожка содержит номер n в четверичной записи и используется для чтения программы машины  $\mathcal{M}_n$ .
  - 2. Вторая дорожка хранит номер текущего состояния машины  $\mathcal{M}_n$  в основном коде.
  - 3. Третья дорожка хранит текущее содержимое ленты машины  $\mathcal{M}_n$ , а также позицию головки: символ 2 означает, что в ячейке записан 0 и находится головка, а символ 3 что в ячейке записана 1 и находится головка.



- Сначала мы переписываем x на третью дорожку, 11 на вторую дорожку, а на первой дорожке получаем из числа n его запись в четверичной системе счисления (т. е. код программы машины).
- ullet Мы также помечаем позицию головки  $\mathcal{M}_n$  в начале слова x.

- Происходит моделирование работы машины  $\mathcal{M}_n$ :
  - 1. Универсальная машина считывает текущий обозреваемый  $\mathcal{M}_n$  символ с третьей дорожки (запоминает в состояниях) и ищет на первой дорожке команду, в левой части которой находится этот символ и состояние, записанное на второй дорожке.
  - 2. Если машина не находит такой команды (или видит нарушения формата кода), то число n не является кодом машины Тьюринга. Тогда машина стирает содержимое всех дорожек, записывает на первую дорожку основной код нуля и останавливается.
  - 3. Если машина нашла нужную команду, она заменяет номер состояния на второй дорожке, текущий обозреваемый символ на третьей дорожке и передвигает указатель положения головки (символ 2 или 3) на третьей дорожке.
  - 4. Если машина  $\mathcal{M}_n$  перешла в состояние  $q_0$ , то универсальная машина переписывает результат её работы на первую дорожку и стирает содержимое остальных дорожек.

- Если в результате работы  $\mathcal{M}_n$  на ленте не ровно один массив единиц, то зацикливаемся. Для этой проверки нужно ещё во время вычисления помечать задействованный участок ленты.
- Теперь можно перейти к машине с одной дорожкой в алфавите  $\{0,1\}$ , и мы получим требуемую универсальную машину.
- Отметим, что мы описали лишь общую идею построения универсальной машины Тьюринга. При её реализации может потребоваться ввести дополнительные дорожки для выполнения технических операций универсальной машины.
- Например, при поиске команды в программе нужно возвращаться к содержимому второй дорожки для сравнения номеров состояний. Чтобы запоминать текущую позицию поиска в коде программы, можно использовать дополнительную дорожку.

#### Утверждение

Для последовательности всех вычислимых всюду определённых функций натурального аргумента от одной переменной не существует вычислимой универсальной функции.

#### Доказательство

- Пусть U'(n,x) вычислимая функция, универсальная для вычислимых всюду определённых функций от одной переменной.
- Функция U'(n,x) всюду определена.
- Тогда функция U'(x,x)+1 тоже вычислима и всюду определена. Значит, она имеет некоторый номер  $n_0$ :  $U'(x,x)+1=U'(n_0,x)$ .
- Тогда  $U'(n_0,n_0)+1=U'(n_0,n_0)$ , что невозможно, т.к. значение  $U'(n_0,n_0)$  определено.



#### Утверждение

Существует вычислимая частичная функция, которую невозможно доопределить до вычислимой всюду определённой функции.

#### Доказательство

- Пусть U(n,x) вычислимая универсальная функция для последовательности вычислимых функций одного аргумента.
- Пусть V(x) всюду определена и есть доопределение U(x,x)+1.
- Если функция V(x) вычислима, то вычисляющая её машина Тьюринга имеет некоторый номер  $n_1$  и верно  $V(x) = U(n_1,x)$ .
- ullet Тогда  $V(n_1)=U(n_1,n_1)$ , то есть значение  $U(n_1,n_1)$  определено. Но тогда  $V(n_1)=U(n_1,n_1)+1.$
- Противоречие показывает, что функция V(x) не может быть вычислимой.



- Будем считать, что машины Тьюринга нумеруются тем же способом, что и в доказательстве существования универсальной машины Тьюринга.
- Если номер некорректен, то считаем, что он задаёт машину, правильно вычисляющую функцию 0.

#### Проблема остановки

$$\mathrm{stop}(n,x) = \begin{cases} 1, & \text{машина Тьюринга с номером } n \\ & \text{останавливается на входе } x, \\ 0, & \text{машина Тьюринга с номером } n \\ & \text{не останавливается на входе } x. \end{cases}$$

• Функция stop(n,x) проверяет, останавливается или зацикливается машина  $\mathcal{M}_n$  на входе x. Эта задача называется проблемой остановки.

#### Утверждение (неразрешимость проблемы остановки)

Функция stop(n,x) невычислима.

#### Доказательство

• Пусть функция  $\mathrm{stop}(n,x)$  вычислима, а машина для вычисления U(x,x)+1 имеет номер  $n_0$ . Тогда рассмотрим функцию

$$V(x) = \begin{cases} U(x,x) + 1, & \mathsf{если} \ \mathsf{stop}(n_0,x) = 1, \\ 0 & \mathsf{в} \ \mathsf{ином} \ \mathsf{случаe}. \end{cases}$$

• Тогда функция V(x) вычислима. Но это невозможно, так как она является доопределением U(x,x)+1.



#### Содержательный смысл результатов

- Существование универсальной машины Тьюринга на теоретическом уровне обосновывает возможность иметь один компьютер, который за счёт занесения в него разных программ способен выполнять любые алгоритмические задачи.
- При этом невозможно создать устройство или язык программирования, который позволял бы составлять только программы, которые не зацикливаются, но всё ещё позволял бы решать любые (алгоритмически разрешимые) задачи.
- Не существует алгоритмических способов избавиться от зацикливания или даже проверить наличие зацикливаний в произвольной программе.

#### Определение

ullet Функция  $f(x_1,\dots,x_n)$  получается из функций  $g_0(y_1,\dots,y_m),\ g_1(x_1,\dots,x_n),\ \dots,\ g_m(x_1,\dots,x_n)$  с помощью операции суперпозиции, если

$$f(x_1,\ldots,x_n)=g_0(g_1(x_1,\ldots,x_n),\ldots,g_m(x_1,\ldots,x_n)).$$

- При этом для каждого  $\bar{a} \in \mathbb{N}_0^n$  значение  $f(\bar{a})$  определено, если определены все значения  $g_1(\bar{a}),\dots,g_m(\bar{a})$ , а также значение  $g_0(g_1(\bar{a}),\dots,g_m(\bar{a}))$ .
- ullet В противном случае значение f(ar a) не определено.

#### Определение

ullet Функция  $f(x_1,\dots,x_n)$  получается из функций  $g(x_1,\dots,x_{n-1})$  и  $h(x_1,\dots,x_{n+1})$  с помощью операции примитивной рекурсии, если

$$\begin{cases} f(x_1, \dots, x_{n-1}, 0) = g(x_1, \dots, x_{n-1}), \\ f(x_1, \dots, x_{n-1}, y + 1) = h(x_1, \dots, x_{n-1}, y, f(x_1, \dots, x_{n-1}, y)). \end{cases}$$

- При этом для каждого  $(\bar a,a_n)\in\mathbb N_0^n$  значение  $f(\bar a,a_n)$  определено, если определено значение  $g(\bar a)$  и все значения  $h(\bar a,\,y,\,f(\bar a,y))$  при  $y< a_n.$
- В противном случае значение  $f(\bar{a}, a_n)$  не определено.

#### Пример работы рекурсии

• Рассмотрим частный примитивной случай рекурсии — итерацию:

$$\begin{cases} f(0) = a, \\ f(y+1) = h(f(y)). \end{cases}$$

• Здесь  $f(1) = h(a), \ f(2) = h(h(a)), \ \dots, \ f(i) = \underbrace{h(\dots(h(a))\dots)}.$ 

#### Определение

• Функция  $f(x_1,\ldots,x_n)$  получается из функции  $g(x_1,\ldots,x_n)$  с помощью операции минимизации

$$f(x_1,\ldots,x_n)=(\mu y)(g(x_1,\ldots,x_{n-1},y)=x_n),$$

если при любых значениях  $x_1,\ldots,x_n$  значение  $f(x_1,\ldots,x_n)$  равно минимальному значению y такому, что  $g(x_1,\ldots,x_{n-1},y)=x_n$ .

- При этом для каждого  $(\bar{a},a_n)\in \mathbb{N}_0^n$  значение  $f(\bar{a},a_n)$  определено, если существует b такое, что  $g(\bar{a},b)=a_n$ , причём все значения  $g(\bar{a},0),\dots,g(\bar{a},b)$  определены.
- ullet В противном случае значение f(ar a,b) не определено.
- Иными словами  $f(a_1,\dots,a_n)=b$ , если  $g(a_1,\dots,a_{n-1},b)=a_n$  и для всех z< b значения  $g(a_1,\dots,a_{n-1},z)$  определены и отличны от  $a_n$ .

• Требование того, что  $g(\bar{a},0),\dots,g(\bar{a},b)$  определены, существенно в определении минимизации. Если убрать это требование, то минимизация сможет получать из вычислимых функций невычислимые.

#### Пример минимизации

- Пусть  $g(y) \equiv 1$ .
- $f(x) = (\mu y)(1 = x)$ .

• Тогда 
$$f(x) = \begin{cases} 0, & x = 1, \\ \text{не определено} & \text{иначе.} \end{cases}$$

## Некоторые классы функций

## Базовые функции

ullet  $I=\{0,\;x+1,\;I^n_m(x_1,\ldots,x_n),\;m=\overline{1,n},\,n\in\mathbb{N}\}$ , где  $I^n_m(x_1,\ldots,x_n)=x_m.$ 

#### Определение

Класс примитивно рекурсивных функций  $F_{\rm np}$  — это замыкание множества I относительно операций суперпозиции и примитивной рекурсии [I] суперпозиция . прим. рекурсия

#### Определение

Класс частично рекурсивных функций  $F_{\rm чp}$  — это замыкание множества I относительно операций суперпозиции, примитивной рекурсии и минимизации I суперпозиция . прим. рекурсия минимизация

## Некоторые классы функций

#### Простейшие свойства классов

- $F_{\rm np}$  содержит только всюду определённые функции.  $F_{\rm чp}$  содержит и частичные функции.
- $F_{\mathsf{np}} \subsetneq F_{\mathsf{up}}$ .
- Название «частично рекурсивные функции» не вполне корректно с точки зрения русского языка и появилось в результате неудачного перевода. Правильнее было бы говорить «частичные рекурсивные функции». Но название «частично рекурсивные функции» уже стало стандартным и повсеместно используется.

## Лекция 8

Вычислимость частично рекурсивных функций. Некоторые примитивно рекурсивные функции.

## Некоторые классы функций

#### Тезис Чёрча

Класс  $F_{\rm чp}$  совпадает с классом эффективно (алгоритмически) вычислимых функций.

- Понятие «эффективно (алгоритмически) вычислимых» не является строгим, поэтому этот тезис невозможно доказать.
- Однако на текущий момент все известные способы конкретизации понятия эффективной вычислимости приводят к классу  $F_{\rm чp}$ .
- Далее мы докажем это для одной из конкретизаций:  $F_{\rm чp} = F_{\rm выч}$ , где  $F_{\rm выч}$  это класс всех вычислимых (на машинах Тьюринга) функций.

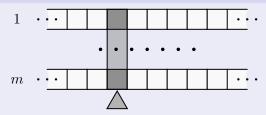
## Вычислимость частично рекурсивных функций

#### Теорема 3

Имеет место включение  $F_{\mathsf{чp}} \subseteq F_{\mathsf{выч}}$ .

#### Доказательство

- Ранее были построены машины Тьюринга, правильно вычисляющие функции системы I.
- Для доказательства теоремы осталось доказать замкнутость класса вычислимых функций относительно операций суперпозиции, примитивной рекурсии и минимизации.

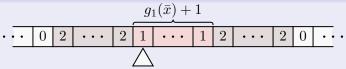


- Пусть  $f(x_1,\dots,x_n)=g_0(g_1(x_1,\dots,x_n),\,\dots,\,g_m(x_1,\dots,x_n))$ , а функции  $g_0,\dots,g_m$  правильно вычисляются машинами Тьюринга  $\mathcal{M}_0,\dots,\mathcal{M}_m$ .
- Мы будем строить машину Тьюринга  $\mathcal{M}$ , правильно вычисляющую функцию f. Машина будет иметь m дорожек, на которых она будет производить вычисление функций  $g_1,\ldots,g_m$ . Затем она будет записывать результаты на первую дорожку и применять к ним функцию  $g_0$ .

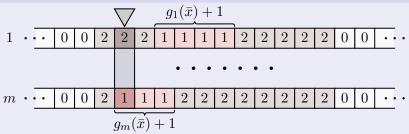
- Мы хотим иметь возможность «отслеживать» области ленты, которые были затронуты вычислениями функций  $g_1, \ldots, g_m$ . Для этого мы вводим в машины  $\mathcal{M}_1, \ldots, \mathcal{M}_m$  новый символ ленты 2.
- Машины будут обрабатывать символ 2 так же, как символ 0. При этом они никогда не будут записывать на ленту 0, вместо этого они будут записывать 2.
- В машинах  $\mathcal{M}_1,\dots,\mathcal{M}_m$  команды  $a_iq_j\to 0Dq_s$  заменяем на  $a_iq_j\to 2Dq_s$ . После этого для каждой команды  $0q_j\to a_kDq_s$  добавляем новую команду  $2q_j\to a_kDq_s$ .
- ullet Полученные машины обозначим  $\mathcal{M}'_1,\ldots,\mathcal{M}'_m.$
- ullet Каждая дорожка машины  ${\mathcal M}$  будет содержать символы 0,1,2.
- Далее описываем работу машины  $\mathcal{M}$ .

# 

- Вначале машина переносит основной код входного набора на m дорожек и возвращает головку на начало этого основного кода.
- Запускаем машину  $\mathcal{M}_1'$  на первой дорожке. Во время своей работы машина  $\mathcal{M}_1'$  заменяет нули на всех остальных дорожках на двойки (единицы оставляет без изменения).

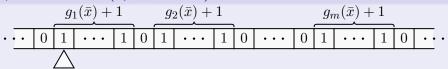


- Если машина  $\mathcal{M}_1'$  остановится, то её результатом на первой дорожке будет являться массив из единиц. Он может быть окружён некоторым количеством двоек.
- Возвращаем головку на первый символ входа других дорожек.
   Для этого на любой из других дорожек двигаемся по единицам и двойкам влево, пока не дойдём до нулей, а затем вправо до первой единицы.
- Далее одну за другой запускаем машины  $\mathcal{M}_2'$  на второй дорожке,  $\mathcal{M}_3'$  на третьей дорожке, ...,  $\mathcal{M}_m'$  на m-й дорожке. Перед каждым запуском возвращаем головку на первый символ входа.



- Если все машины остановятся, то их результаты будут иметь такой же вид, как у  $\mathcal{M}_1'$ . Блоки из единиц могут находиться в разных местах ленты, но непустые области дорожек выровнены.
- Переносим все результаты вычислений на первую дорожку: как и раньше, найти начало блока единиц можно с помощью двоек.
- Стираем содержимое всех дорожек, кроме первой. Заменяем на первой дорожке двойки на нули.

# Замкнутость $F_{\scriptscriptstyle {\sf Bыч}}$ относительно суперпозиции



- Мы получили на первой дорожке основной код набора  $g_1(\bar{x}), \dots, g_m(\bar{x})$ . Остальные дорожки пусты и больше не будут использоваться.
- Запускаем на первой дорожке машину  $\mathcal{M}_0$ . Она проведёт вычисление функции  $g_0$  и выдаст требуемый результат. В случае неопределённых значений функционирование машины  $\mathcal{M}$  тоже соответствует определению суперпозиции.
- От машины с дорожками в алфавите  $\{0,1,2\}$  переходим к обычной машине Тьюринга в алфавите  $\{0,1\}$ . Замкнутость класса  $F_{\mathsf{Выч}}$  относительно суперпозиции доказана.

# Замкнутость $F_{\mathtt{выч}}$ относительно рекурсии

#### Доказательство (продолжение)

• Пусть  $f(x_1,\ldots,x_n,x_{n+1})$  получается из функций  $g(x_1,\ldots,x_n)$  и  $h(x_1,\ldots,x_n,y,z)$  с помощью примитивной рекурсии:

$$\begin{cases} f(x_1, \dots, x_n, 0) = g(x_1, \dots, x_n), \\ f(x_1, \dots, x_n, y + 1) = h(x_1, \dots, x_n, y, f(x_1, \dots, x_n, y)) \end{cases}$$

и функции g и h правильно вычисляются машинами  $\mathcal{M}_g$  и  $\mathcal{M}_h.$ 

- Аналогично случаю суперпозиции будем отмечать символом 2 пустые клетки, которые были затронуты работой машин  $\mathcal{M}_g$  и  $\mathcal{M}_h$ . Символы 2 будут использоваться для поиска блоков единиц на дорожках, мы не будем уточнять это далее.
- Будем строить машину  $\mathcal{M}$  с тремя дорожками в алфавите  $\{0,1,2\}$  для вычисления функции f.

# Замкнутость $F_{\mathtt{выч}}$ относительно рекурсии

# 

- Первая дорожка постоянно содержит входные значения. Вторая дорожка содержит y номер текущей итерации рекурсии. Третья дорожка используется для вычислений  $\mathcal{M}_g$  и  $\mathcal{M}_h$ .
- Вначале машина  $\mathcal M$  переписывает значения  $x_1,\dots,x_n$  с первой дорожки на третью, записывает y=0 на вторую дорожку и запускает машину  $\mathcal M_g$  на третьей дорожке.

# Замкнутость $F_{\mathtt{выч}}$ относительно рекурсии

- Если  $y=x_{n+1}$ , то машина переписывает результат с третьей дорожки на первую, стирает всё остальное и завершает вычисление.
- Иначе машина формирует на третьей дорожке набор  $x_1, \ldots, x_n, y, z$ , где z уже имеющийся на этой дорожке результат прошлого вычисления.
- Запускается машина  $\mathcal{M}_h$  на третьей дорожке. После окончания её работы содержимое второй дорожки y увеличивается на 1.
- Если  $y=x_{n+1}$ , то машина переписывает результат на первую дорожку, стирает всё остальное и завершает вычисление.
- Иначе машина вновь формирует на третьей дорожке набор  $x_1, \dots, x_n, y, z$ , где z уже записанный на ней результат прошлого вычисления, запускает  $\mathcal{M}_h$  и продолжает работу циклически.

## Замкнутость $F_{\mathtt{выч}}$ относительно рекурсии

### Доказательство (продолжение)

- Нетрудно видеть, что полученная машина моделирует работу примитивной рекурсии.
- При этом, если в процессе вычислений встретилось неопределённое значение, то машина никогда не остановится и результат будет неопределён, что соответствует определению примитивной рекурсии.
- От машины с дорожками в алфавите  $\{0,1,2\}$  переходим к обычной машине Тьюринга в алфавите  $\{0,1\}$ . Замкнутость класса  $F_{\mathsf{Выч}}$  относительно примитивной рекурсии доказана.

## Замкнутость $F_{\mathtt{выч}}$ относительно минимизации

### Доказательство (продолжение)

- ullet Пусть  $f(x_1,\ldots,x_n)=(\mu y)(g(x_1,\ldots,x_{n-1},y)=x_n)$  и функция g вычисляется машиной  $\mathcal{M}_q$ .
- Аналогично случаю суперпозиции будем отмечать символом 2 пустые клетки, которые были затронуты работой машины  $\mathcal{M}_g$ . Символы 2 будут использоваться для поиска блоков единиц на дорожках, мы не будем уточнять это далее.
- Будем строить машину  $\mathcal M$  с тремя дорожками в алфавите  $\{0,1,2\}$  для вычисления функции f, аналогичную машине для примитивной рекурсии.

## Замкнутость $F_{\mathtt{выч}}$ относительно минимизации

## 

- Первая дорожка постоянно содержит входные значения. Вторая дорожка содержит y номер текущего проверяемого значения. Третья дорожка используется для вычислений  $\mathcal{M}_g$ .
- Вначале машина  $\mathcal M$  записывает y=0 на вторую дорожку, переписывает значения  $x_1,\dots,x_{n-1},y$  на третью дорожку и запускает машину  $\mathcal M_g$  на третьей дорожке.

## Замкнутость $F_{\mathtt{выч}}$ относительно минимизации

### Доказательство (продолжение)

- Далее машина сравнивает результат z на третьей дорожке с  $x_n$ . Если  $z=x_n$ , то она переписывает y со второй дорожки на первую, стирает всё остальное и останавливается.
- Иначе машина увеличивает y на 1, формирует на третьей дорожке набор  $x_1,\ldots,x_{n-1},y$  и запускает машину  $\mathcal{M}_g$ . Далее машина продолжает работу циклически.
- Таким образом, машина находит минимальное y, для которого выполняется  $g(x_1,\dots,x_{n-1},y)=x_n$ . Если в процессе поиска она натыкается на неопределённое значение, то она никогда не остановится, что соответствует определению минимизации.
- От машины с дорожками в алфавите  $\{0,1,2\}$  переходим к обычной машине Тьюринга в алфавите  $\{0,1\}$ . Замкнутость класса  $F_{\rm Выч}$  относительно минимизации доказана.



#### Класс примитивно рекурсивных функций

- ullet  $I=\{0,\;x+1,\;I^n_m(x_1,\ldots,x_n),\;m=\overline{1,n},\;n\in\mathbb{N}\},$  где  $I^n_m(x_1,\ldots,x_n)=x_m.$
- Суперпозиция:

$$f(x_1,\ldots,x_n)=g_0(g_1(x_1,\ldots,x_n),\ldots,g_m(x_1,\ldots,x_n)).$$

• Примитивная рекурсия:

$$\begin{cases} f(x_1, \dots, x_{n-1}, 0) = g(x_1, \dots, x_{n-1}), \\ f(x_1, \dots, x_{n-1}, y+1) = h(x_1, \dots, x_{n-1}, y, f(x_1, \dots, x_{n-1}, y)) \end{cases}$$

• Класс примитивно рекурсивных функций  $F_{\sf np}$  — это замыкание множества I относительно операций суперпозиции и примитивной рекурсии [I] суперпозиция . прим. рекурсия

### Некоторые простые функции

- $0, x + 1 \in F_{np}$  по определению.
- Константа  $d=0\underbrace{+1+\ldots+1}_d\in F_{\mathsf{пp}}.$
- $\bullet \ \operatorname{sum}(x,y) = x + y:$

$$\begin{cases} \operatorname{sum}(x, 0) = x, \\ \operatorname{sum}(x, y + 1) = \operatorname{sum}(x, y) + 1. \end{cases}$$

Здесь 
$$g(x)=x=I_1^1(x)$$
,  $h(x,y,z)=z+1=I_3^3(x,y,z)+1$ .

$$\begin{cases} \operatorname{prod}(x, 0) = 0, \\ \operatorname{prod}(x, y + 1) = \operatorname{prod}(x, y) + x. \end{cases}$$

#### Некоторые простые функции

- Усечённая разность:  $x \div y = \begin{cases} x y, & x \geqslant y, \\ 0, & x < y. \end{cases}$ 
  - 1. Сначала докажем, что  $x \doteq 1 \in F_{\mathsf{пp}}$ :

$$\begin{cases} 0 \doteq 1 = 0, \\ (x+1) \doteq 1 = x. \end{cases}$$

2. Теперь можно доказать, что  $x \div y \in F_{\mathsf{np}}$ :

$$\begin{cases} x \doteq 0 = x, \\ x \doteq (y+1) = (x \doteq y) \doteq 1. \end{cases}$$

#### Некоторые простые функции

•  $pow(x,y) = x^y$  (считаем, что  $0^0 = 1$ ):

$$\begin{cases} pow(x, 0) = 1, \\ pow(x, y + 1) = pow(x, y) \cdot x. \end{cases}$$

- $\bullet \ \min(x,y) = x \div (x \div y).$
- $\bullet \ \max(x,y) = (x+y) \div \min(x,y).$
- |x y| = (x y) + (y x).

Отметим: |x-y| не является суперпозицией функций |x| и x-y. Это единая функция, и она всюду определена.

### Замена значений функции в нескольких точках

- ullet Характеристическая функция точки a:  $\overline{\operatorname{sg}}\,|x-a|=egin{cases} 1, & x=a, \\ 0, & x
  eq a. \end{cases}$
- Пусть функция f(x) в точках  $a_1,\dots,a_m$  принимает значения  $b_1,\dots,b_m$  соответственно, а в остальных точках она равна 0. Тогда

$$f(x) = b_1 \overline{\operatorname{sg}} |x - a_1| + \ldots + b_m \overline{\operatorname{sg}} |x - a_m| \in F_{\mathsf{np}}.$$

• Пусть теперь g(x) — примитивно рекурсивная функция, а f(x) получается из g(x) заменой значений в точках  $a_1,\dots,a_m$  на  $b_1,\dots,b_m$  соответственно. Тогда  $f\in F_{\sf np}$ :

$$f(x) = b_1 \overline{\operatorname{sg}} |x - a_1| + \ldots + b_m \overline{\operatorname{sg}} |x - a_m| + g(x) \operatorname{sg} |x - a_1| \cdot \ldots \cdot \operatorname{sg} |x - a_m|.$$

### Выражение отношений функциями

- Характеристическая функция отношения (предиката)  $\rho(\bar{x})$  это функция, принимающая значения 0 и 1, причём функция принимает значение 1 на тех и только на тех наборах, на которых  $\rho(\bar{x})$  истинно.
- Характеристическая функция x = y:  $\overline{sg} |x y|$ .
- Характеристическая функция  $x \neq y$ :  $\operatorname{sg} |x y|$ .
- Характеристическая функция x < y: sg(y x).
- Характеристическая функция x > y: sg(x y).
- Характеристическая функция  $x \geqslant y$ :  $\overline{sg}(y \div x)$ .
- Характеристическая функция  $x \leqslant y$ :  $\overline{sg}(x \div y)$ .

### Утверждение (Разбор случаев по предикатам)

где  $f_1,\ldots,f_{m+1}\in F_{\mathit{пр}},\ \rho_1,\ldots,\rho_m$  — попарно несовместные предикаты, характеристические функции  $\chi_1,\ldots,\chi_m$  которых примитивно рекурсивны. Тогда функция f примитивно рекурсивна.

#### Доказательство

$$f(\bar{x}) = f_1(\bar{x})\chi_1(\bar{x}) + \ldots + f_m(\bar{x})\chi_m(\bar{x}) + f_{m+1}(\bar{x})\,\overline{\operatorname{sg}}(\chi_1(\bar{x}) + \ldots + \chi_m(\bar{x}))$$



#### Ограниченные суммирование и мультиплицирование

• Операция ограниченного суммирования:

$$f(x_1, \dots, x_n) = \sum_{i=0}^{x_n} g(x_1, \dots, x_{n-1}, i).$$

$$\begin{cases} f(x_1, \dots, x_{n-1}, 0) = g(x_1, \dots, x_{n-1}, 0), \\ f(x_1, \dots, x_{n-1}, y+1) = f(x_1, \dots, x_{n-1}, y) + g(x_1, \dots, x_{n-1}, y+1). \end{cases}$$

• Операция ограниченного мультиплицирования:

$$f(x_1, \dots, x_n) = \prod_{i=0}^{x_n} g(x_1, \dots, x_{n-1}, i).$$

$$\begin{cases} f(x_1, \dots, x_{n-1}, 0) = g(x_1, \dots, x_{n-1}, 0), \\ f(x_1, \dots, x_{n-1}, y+1) = f(x_1, \dots, x_{n-1}, y) \cdot g(x_1, \dots, x_{n-1}, y+1). \end{cases}$$

#### Деление с остатком

- Считаем, что  $\lfloor x/y \rfloor = 0$  при y = 0.
- Чтобы получить значение  $\lfloor x/y \rfloor$ , нужно получить  $i \in \{0, \dots, x\}$  (оно будет единственным) такое, что  $(i = |x/y|) \equiv (i \leqslant x/y < i+1) \equiv (iy \leqslant x) \& ((i+1)y > x).$
- Это значение i ищем с помощью операции ограниченного суммирования:

$$\lfloor x/y \rfloor = \sum_{i=0}^{x} i \cdot \overline{\operatorname{sg}}(iy - x) \operatorname{sg}((i+1)y - x).$$

- $\bullet$  rm(x,y) остаток от деления x на y (0 при y=0).
- $\operatorname{rm}(x, y) = (x y \cdot |x/y|) \operatorname{sg} y$ .

#### Извлечение корня

- Аналогично делению можно получить вычисление корня:  $(i = |\sqrt{x}|) \equiv (i \leqslant \sqrt{x} < i+1) \equiv (i^2 \leqslant x) \& ((i+1)^2 > x).$
- Поиск этого i с помощью ограниченного суммирования:

$$\lfloor \sqrt{x} \rfloor = \sum_{i=0}^{x} i \cdot \overline{\operatorname{sg}}(i^2 \div x) \operatorname{sg}((i+1)^2 \div x).$$

• Схожим образом можно получить функции  $\lfloor \sqrt[m]{x} \rfloor$ ,  $\lfloor \log_y x \rfloor$  (при некотором доопределении в нулевых точках) и другие обратные функции.

# Лекция 9 Некоторые частично рекурсивные функции. Формула Клини.

### Частично рекурсивные функции

• Операция минимизации:

$$f(x_1,\ldots,x_n)=(\mu y)(g(x_1,\ldots,x_{n-1},y)=x_n),$$

• Класс частично рекурсивных функций  $F_{\rm чp}$  — это замыкание множества I относительно операций суперпозиции, примитивной рекурсии и минимизации [I] суперпозиция . прим. рекурсия минимизация

### Нигде не определённая функция

- $g(x) = (\mu y)(1 = x) = \begin{cases} 0, & x = 1, \\ \text{не определено,} & \text{иначе.} \end{cases}$
- $f(x) = (\mu y)(g(y) = x)$  нигде не определённая функция (она не определена ни в одной точке).

### Обратные функции

- $f_1(x) = (\mu y)(y+1=x) = x-1$  (не определена при x=0).
- $f_2(x) = (\mu y)(y^2 = x) = \sqrt{x}$  (не определена, если x не полный квадрат).

### Нумерационные функции

- Пусть  $\mathbf{c}(x,y)$  инъективная функция, а  $\mathbf{l}(v)$  и  $\mathbf{r}(v)$  такие функции, что  $\mathbf{l}(\mathbf{c}(x,y))=x,\ \mathbf{r}(\mathbf{c}(x,y))=y.$  Тогда набор функций  $\mathbf{c}(x,y),\ \mathbf{l}(v),\ \mathbf{r}(v)$  называется тройкой нумерационных функций.
- Нумерационные функции позволяют кодировать пары чисел одним числом. Их можно выбирать по разному, мы рассмотрим один конкретный вариант.

#### Нумерационные функции

• Обозначим

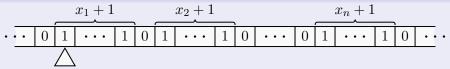
$$c(x,y) = (x+y)^2 + x, \quad l(v) = v \div (\lfloor \sqrt{v} \rfloor)^2, \quad r(v) = \lfloor \sqrt{v} \rfloor \div l(v).$$

- Легко видеть, что указанные функции составляют тройку нумерационных функций и что эти функции примитивно рекурсивны.
- ullet Для нумерации троек используем функцию  ${
  m c}^3(x,y,z)={
  m c}({
  m c}(x,y),z).$
- Обратные функции для  $c^3$ :

$$l_1(v) = l(l(v)), \quad l_2(v) = r(l(v)), \quad l_3(v) = r(v).$$

• Ясно, что все эти функции примитивно рекурсивны.

#### Функции для представления основного кода



- Обозначим через  $\Theta_n(x_1,\ldots,x_n)$  функцию, которая выдаёт число, двоичным представлением которого является основной код набора  $(x_1,\ldots,x_n)$ .
- Эти функции примитивно рекурсивны:

$$\begin{cases} \Theta_1(0) = 1, \\ \Theta_1(x+1) = 2\Theta_1(x) + 1, \\ \Theta_{n+1}(\bar{x}, 0) = 4\Theta_n(\bar{x}) + 1, \\ \Theta_{n+1}(\bar{x}, x_{n+1} + 1) = 2\Theta_{n+1}(\bar{x}, x_{n+1}) + 1. \end{cases}$$

### Теорема 4 (Формула Клини)

Для любой вычислимой функции  $f(x_1,\ldots,x_n)$  найдутся примитивно рекурсивные функции  $G(x_1,\ldots,x_n,y)$  и  $H(x_1,\ldots,x_n,y)$  такие, что

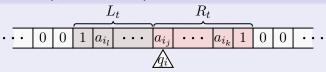
$$f(x_1,\ldots,x_n) = G(x_1,\ldots,x_n, (\mu y)(H(x_1,\ldots,x_n,y)=0)).$$

• Для задания любой вычислимой функции достаточно только одного использования операции минимизации.

### Доказательство

• Пусть машина  ${\cal M}$  правильно вычисляет функцию f. Мы будем считать, что в программе машины есть команды для заключительного состояния:  $0q_0 \to 0Sq_0$  и  $1q_0 \to 1Sq_0$ .

### Доказательство (продолжение)



- Предположим, что машина  $\mathcal{M}$  начала работать на входе  $\bar{x}=(x_1,\ldots,x_n)$ . Рассмотрим конфигурацию на ленте в произвольный момент времени t.
- Обозначим через  $l(\bar{x},t)$  число, двоичной записью которой является содержимое ленты левее головки  $L_t$ .
- Обозначим через  $r(\bar{x},t)$  число, двоичной записью которой является содержимое ленты справа от головки  $R_t$ , включая обозреваемый головкой символ. При этом считаем, что эта запись размещена на ленте справа налево (младшие разряды слева, обозреваемый головкой разряд самый младший).

### Доказательство (продолжение)

- Обозначим  $q(\bar{x},t)$  номер состояния i в момент времени t при работе на входе  $\bar{x}$ .
- Легко видеть, что тройка значений  $(l(\bar{x},t),\,r(\bar{x},t),\,q(\bar{x},t))$  полностью задаёт конфигурацию машины и её дальнейшее функционирование.
- Будем кодировать всю конфигурацию машины с помощью одного числа:

Code(
$$\bar{x}, t$$
) =  $c^3(l(\bar{x}, t), r(\bar{x}, t), q(\bar{x}, t))$ .

• Далее мы покажем, что функция Code примитивно рекурсивна. А пока выпишем формулу Клини с использованием этой функции.

#### Доказательство (продолжение)

$$\rho \colon (\underbrace{11\dots 1}_{z+1})_2 \to z$$

- Через  $\rho(x)$  обозначим функцию, которая удовлетворяет условию  $\rho(2^{z+1}-1)=z$  при всех  $z\in\mathbb{N}_0$ . Эта функция преобразует число, двоичной записью которого является основной код числа z, в само число z. Далее мы покажем, что она примитивно рекурсивна.
- Формула Клини:

$$f(x_1,\ldots,x_n)=\rho(l_2(\operatorname{Code}(\bar{x},\,(\mu t)(l_3(\operatorname{Code}(\bar{x},t))=0)))).$$

• Эта формула ищет минимальный момент времени, в котором машина попадает в состояние  $q_0$ . Далее она берёт конфигурацию в этот момент времени, извлекает из неё правую часть ленты и выдаёт записанный на ней результат.

#### Доказательство (продолжение)

ullet Сначала покажем примитивную рекурсивность функции ho:

$$\rho(x) = \sum_{i=0}^{x} i \,\overline{\mathrm{sg}} \,|(2^{i+1} - 1) - x|.$$

 Для завершения доказательства теоремы осталось доказать примитивную рекурсивность функции Code. Будем задавать эту функцию схемой примитивной рекурсии.

$$\begin{cases} \operatorname{Code}(\bar{x}, 0) = c^{3}(0, \Theta_{n}(x_{n}, \dots, x_{1}), 1), \\ \operatorname{Code}(\bar{x}, t + 1) = h(\bar{x}, t, \operatorname{Code}(\bar{x}, t)). \end{cases}$$

- У  $\Theta_n(x_n,\ldots,x_1)$  аргументы переставлены, так как двоичная запись  $r(\bar x,t)$  пишется справа налево.
- ullet Задание функции h потребует ряда технических операций.

### Доказательство (продолжение)

$$l(\bar{x},t) = l_1(\operatorname{Code}(\bar{x},t)), \ r(\bar{x},t) = l_2(\operatorname{Code}(\bar{x},t)), \ q(\bar{x},t) = l_3(\operatorname{Code}(\bar{x},t))$$

- Текущий обозреваемый символ младший символ правой части:  $\nu(\bar{x},t) = \mathrm{rm}(r(\bar{x},t),\,2).$
- Пусть  $\nu(\bar{x},t)=a,\;q(\bar{x},t)=i$  и в программе машины есть команда  $aq_i\to b_{a,i}D_{a,i}q_{j_{a,i}}.$  Рассмотрим, каким будет значение  $\mathrm{Code}(\bar{x},\,t+1)$  в каждом возможном случае.
- Если  $D_{a,i} = S$ , то

$$\begin{split} l_{a,i}(\bar{x}, t+1) &= l(x, t), \\ r_{a,i}(\bar{x}, t+1) &= r(x, t) \div \nu(\bar{x}, t) + b_{a,i}, \\ q_{a,i}(\bar{x}, t+1) &= j_{a,i}. \end{split}$$

### Доказательство (продолжение)

• Если  $D_{a,i} = L$ , то

$$\begin{split} &l_{a,i}(\bar{x},\,t+1) = \lfloor l(\bar{x},t)/2 \rfloor, \\ &r_{a,i}(\bar{x},\,t+1) = (r(\bar{x},t) \doteq \nu(\bar{x},t) + b_{a,i}) \cdot 2 + \mathrm{rm}(l(\bar{x},t),\,2), \\ &q_{a,i}(\bar{x},\,t+1) = j_{a,i}. \end{split}$$

ullet Если D=R, то

$$\begin{split} l_{a,i}(\bar{x},\,t+1) &= 2 \cdot l(\bar{x},t) + b_{a,i}, \\ r_{a,i}(\bar{x},\,t+1) &= \lfloor r(\bar{x},t)/2 \rfloor, \\ q_{a,i}(\bar{x},\,t+1) &= j_{a,i}. \end{split}$$

### Доказательство (продолжение)

ullet Пусть Q — множество номеров состояний машины  ${\mathcal M}.$  Тогда

$$Code(\bar{x}, t+1) = \sum_{\substack{a \in \{0,1\}\\i \in Q}} \overline{sg} |a - \nu(\bar{x}, t)| \cdot \overline{sg} |i - q(\bar{x}, t)| \times c^{3}(l_{a,i}(\bar{x}, t+1), r_{a,i}(\bar{x}, t+1), q_{a,i}(\bar{x}, t+1)),$$

где функции  $l_{a,i}(\bar{x},\,t+1),\,r_{a,i}(\bar{x},\,t+1),\,q_{a,i}(\bar{x},\,t+1)$  для каждой пары a,i определяются индивидуально в зависимости от действия программы машины.

• Отметим, что в задании  $\mathrm{Code}(\bar{x},\,t+1)$  не используется операция ограниченного суммирования. С помощью знака суммы сокращена запись обычной конечной суммы  $z_1+\ldots+z_k$ , которую можно получить суперпозициями функции x+y.

### Доказательство (продолжение)

- Итак, мы построили схему примитивной рекурсии для функции  $\operatorname{Code}(\bar{x},t)$ . Значит, эта функция примитивно рекурсивна.
- Отметим, что формула Клини корректно работает и тогда, когда машина  $\mathcal M$  не останавливается. В этом случае результат минимизации будет не определён, а значит не определено и значение  $f(\bar x)$ .

#### Теорема 5

Имеет место равенство  $F_{yp} = F_{выy}$ .

- Класс частично рекурсивных функций задан индуктивным способом и не зависит от устройства каких-либо машин.
- Совпадение класса вычислимых функций с классом частично рекурсивных функций показывает, что класс вычислимых функций «устойчив»: он отражает некоторые содержательные свойства функций, а не какие-то тонкости определения машины Тьюринга.

# Лекция 10 Классы Р и NP. Проблема выполнимости

#### Класс Р

- Пусть A,B произвольные алфавиты. Рассматриваем частичные функции вида  $f\colon A^* \to B^*$ .
- ullet Считаем, что  $\Lambda \notin A \cup B$  пустой символ.
- В этом разделе мы не будем делать различий между вычислимостью и правильной вычислимостью.

#### Определение

Машина Тьюринга  $\mathcal{M}$  с алфавитом  $A \cup B \cup \{\Lambda\}$  вычисляет функцию  $f \colon A^* \to B^*$ , если, начиная работу на первом символе слова  $w \in A^*$  (остальные символы ленты —  $\Lambda$ ) в состоянии  $q_1$ , машина:

- 1. Если f(w) определено, то  $\mathcal M$  через конечное число тактов останавливается, и в этот момент на ленте представлено слово f(w) (остальные символы ленты  $\Lambda$ ), причём головка машина находится на первом символе этого слова.
- 2. Если f(w) не определено, то  ${\mathcal M}$  не останавливается.

#### Класс Р

#### Определение

- ullet Пусть  $T(n)\colon \mathbb{N}_0 o \mathbb{N}_0$  всюду определённая функция.
- Функция f вычислима за время T(n), если существует машина Тьюринга  $\mathcal{M}$ , которая вычисляет функцию f, и при этом для любого слова w длины n время вычисления не превосходит T(n).
- Функция f вычислима за полиномиальное время (полиномиально вычислима), если существует машина Тьюринга  $\mathcal M$  и полином p(n) с натуральными коэффициентами такие, что  $\mathcal M$  вычисляет f за время p(n).
- Если функция f зависит от двух переменных  $(f \colon A^* \times B^* \to C^*)$ , то считаем, что вход w = x # y, где  $x \in A^*, \ y \in B^*, \ \# \notin A \cup B$ .
- ullet Функция f, вычислимая за время T(n), всегда всюду определена.
- Класс полиномиально вычислимых функций не меняется при изменении допустимого размера алфавита и количества дорожек у машин Тьюринга.

#### Класс Р

#### Определение

Характеристическая функция множества (языка)  $L\subseteq A^*$  — это функция  $f_L(x)\colon A^* o\{0,1\}^*$  такая, что

$$f_L(x) = egin{cases} 0, & \text{если } x \notin L, \ 1, & \text{если } x \in L. \end{cases}$$

#### Определение

Класс  ${\rm P}$  — это множество всех языков, характеристические функции которых вычислимы за полиномиальное время.

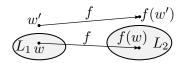
- Язык (множество) это формализация задачи распознавания.
- ullet Класс P это класс задач, которые разрешимы «на практике».
- Если задача не принадлежит классу P, то обычно это означает,
   что для её разрешения требуется неприемлемо много времени.

### Полиномиальная сводимость

#### Определение

• Пусть  $L_1\subseteq A^*,\ L_2\subseteq B^*.\ L_1$  полиномиально сводится (P-сводится) к  $L_2$  ( $L_1\leqslant_{\mathrm{P}} L_2$ ), если существует полиномиально вычислимая функция  $f\colon A^*\to B^*$  такая, что

$$(\forall w)(w \in L_1 \iff f(w) \in L_2).$$



• Множество  $L_2$  используется как «оракул»: для решения задачи  $L_1$  можно (при помощи функции f) использовать решение  $L_2$ .

### Полиномиальная сводимость

#### Утверждение

Пусть множество  $L_1$  полиномиально сводится к множеству  $L_2$  и  $L_2 \in \mathbf{P}$ . Тогда  $L_1 \in \mathbf{P}$ .

#### Доказательство

- Пусть  $f_2$  характеристическая функция множества  $L_2$ .
- Поскольку  $L_2 \in {\bf P}$ , существует полином с натуральными коэффициентами  $p_2(n)$  такой, что  $f_2$  вычислима за время  $p_2(n)$ .
- Пусть функция  $f_1$  сводит  $L_1$  к  $L_2$  и вычисляется за время  $p_1(n)$ , где  $p_1(n)$  полином с натуральными коэффициентами.

$$x' \xrightarrow{f_1} \xrightarrow{f_1(x')} \xrightarrow{f_2} 0 = f_2(f_1(x'))$$

$$\underbrace{f_1} \xrightarrow{f_1(x)} \underbrace{f_2} \xrightarrow{f_2} 1 = f_2(f_1(x))$$

• Характеристическая функция множества  $L_1$  есть  $f(x) = f_2(f_1(x))$ .

### Полиномиальная сводимость

### Доказательство (продолжение)

- Вычисляем функцию  $f(x) = f_2(f_1(x))$ . Пусть n = |x|.
  - Сначала вычисляем  $y = f_1(x)$  за время  $p_1(n)$ .
  - ightharpoonup Длина y не превосходит  $n+p_1(n)$ , так как на каждом такте машина может добавить символ не более чем в одну пустую ячейку.
  - ▶ Далее вычисляем  $f(x) = f_2(y)$  за время  $p_2(|y|) \leqslant p_2(n + p_1(n))$ .
  - ▶ Общее время не превосходит  $p_1(n) + p_2(n + p_1(n))$  полином.
- Таким образом, функция f(x) полиномиально вычислима, поэтому  $L_1 \in \mathcal{P}.$

- Аналогичным образом нетрудно показать, что отношение  $\leqslant_{
  m P}$  рефлексивно и транзитивно.
- Поэтому, если  $L_1$  полиномиально сводится к  $L_2$ , то  $L_1$  является «равной по сложности» или «более простой» задачей, чем  $L_2$ .

#### Определение

Недетерминированная машина Тьюринга  $\mathcal{M}$  — это набор  $(A,Q,f,q_1,q_0)$ , где

- ullet  $A=\{a_0,\ldots,a_k\},\; k\geqslant 1$  алфавит.  $a_0=\Lambda$  пустой символ.
- $Q \neq \varnothing$  множество состояний.
- $q_1 \in Q$  начальное состояние.
- $q_0 \in Q, \ q_0 \neq q_1$  заключительное состояние.
- ullet  $f\colon A imes Q o 2^{A imes\{L,R,S\} imes Q}\setminusarnothing$  программа машины.
- Программу машины можно считать набором команд вида  $a_iq_j \to a_r Dq_s, \ j \neq 0$ . В программе может быть несколько команд с каждой допустимой левой частью:

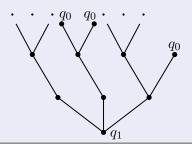
$$a_i q_j \to a_{r_1} D_1 q_{s_1} \mid a_{r_2} D_2 q_{s_2} \mid \dots \mid a_{r_l} D_l q_{s_l}.$$

#### Работа недетерминированной машины

- В начальный момент времени машина находится в состоянии  $q_1$ , на ленте записано входное слово  $w \in A \setminus \{\Lambda\}$ , а головка машины обозревает первый символ этого слова.
- В каждый момент времени машина считывает символ a из обозреваемой головкой ячейки. По этому символу и текущему состоянию  $q_i$  машина выбирает команду с левой частью  $aq_i$ .
- Если команд с левой частью  $aq_j$  несколько, то машина выбирает произвольную.
- После этого машина записывает в текущую ячейку символ b, передвигает головку и переходит в состояние  $q_j$ .
- Машина останавливается при переходе в состояние  $q_0$  Такое вычисление называется допускающим (ответ «да»).
- Если этого не происходит, машина работает бесконечно (считаем это ответом «нет»).

#### Вычисления недетерминированной машины

- На каждом входном слове w недетерминированная машина Тьюринга может отработать несколькими разными способами.
- Все вычисления машины на слове w можно изобразить в виде дерева конфигураций (возможно, бесконечного).
- Ветвление дерева происходит при произвольном выборе команды среди команд с одной и той же левой частью.



#### Распознавание множеств недетерминированными машинами

- Пусть  $\mathcal{M}$  недетерминированная машина Тьюринга с входным алфавитом A.
- $D(\mathcal{M})$  это множество всех слов  $w \in A^*$  таких, что существует допускающее вычисление машины  $\mathcal{M}$  на слове w.
- Иными словами,  $D(\mathcal{M})$  это множество всех слов  $w \in A^*$  таких, что в дереве вычислений машины  $\mathcal{M}$  имеется хотя бы одна заключительная ветвь (ветвь с заключительным состоянием  $q_0$ ).
- Недетерминированная машина Тьюринга может выдавать только ответы «да» и «нет». Она может распознавать множества, но не может вычислять функции.

#### Определение

- ullet Пусть  $T(n)\colon \mathbb{N}_0 o \mathbb{N}_0$  всюду определённая функция.
- Недетерминированная машина Тьюринга  $\mathcal M$  распознаёт язык L за время T(n), если  $D(\mathcal M)=L$ , и для любого слова  $w\in L$  существует допускающее вычисление  $\mathcal M$  на слове w длительности не более T(n), где n=|w|.
- Недетерминированная машина Тьюринга  ${\cal M}$  распознаёт язык L за полиномиальное время, если она распознаёт его за время p(n), где p(n) полином с натуральными коэффициентами.

### Определение (основное)

Класс  ${
m NP}$  — это множество всех языков, распознаваемых на недетерминированных машинах Тьюринга за полиномиальное время.

### Определение (альтернативное)

Класс  ${
m NP}$  — это класс всех языков L (в произвольных алфавитах A), для которых существует полином q(n) с натуральными коэффициентами, алфавит B и полиномиально вычислимая функция  $Q(x,y)\colon A^*\times B^* \to \{0,1\}^*$  со значениями 0 и 1 такая, что

$$(x \in L) \iff (\exists y)_{|y| \leqslant q(|x|)} (Q(x, y) = 1).$$

- ullet Функция Q(x,y) называется функцией проверки сертификата.
- Слово y = y(x) такое, что Q(x,y) истинно, называется сертификатом для входа x.
- $x \in L$ , если существует сертификат для x (имеющий длину, полиномиальную от длины x).

#### Утверждение

Основное и альтернативное определения класса NP равносильны.

#### Доказательство

- ullet  $\Rightarrow$ . Пусть язык  $L\subseteq A^*$  распознаётся недетерминированной машиной Тьюринга  $\mathcal M$  за полиномиальное время p(n).
- Пусть r максимальное число команд  $\mathcal M$  с одинаковой левой частью и  $B=\{b_1,\dots,b_r\}$  алфавит.
- Строим детерминированную машину Тьюринга  $\mathcal{M}_Q$  для вычисления Q(x,y):
  - lacktriangle Машина  $\mathcal{M}_Q$  имеет две дорожки и моделирует работу  $\mathcal{M}.$
  - ▶ Первая дорожка хранит содержимое ленты  $\mathcal{M}$ . В начальный момент вход x.
  - Вторая дорожка хранит вход  $y \in B^*$ , указывающий, какие команды машина  ${\mathcal M}$  выбирает при недетерминированном вычислении.

- ullet Машина  $\mathcal{M}_Q$  работает следующим образом:
  - lacktriangle Сначала машина  $\mathcal{M}_Q$  переписывает y на вторую дорожку.
  - lacktriangle При моделировании каждого такта машина  $\mathcal{M}_Q$ :
    - 1. Считывает текущий символ a ленты;
    - 2. Считывает и стирает очередной символ b слова y;
    - 3. Определяет выполняемую команду машины  $\mathcal{M}$  (если их несколько для данной левой части, то символ b указывает, какую выбрать);
    - 4. Выполняет выбранную команду.
  - ightharpoonup Если машина  $\mathcal M$  переходит в состояние  $q_0$ , то  $\mathcal M_Q$  завершает вычисление и выдаёт 1.
  - Если слово y закончилось или символ b не указывает ни на одну команду, то  $\mathcal{M}_Q$  завершает вычисление и выдаёт 0.
- В качестве q(n) выбираем полином p(n). По построению  $\mathcal{M}_Q$  ясно, что заключительная ветвь в вычислении  $\mathcal{M}$  на слове x существует тогда и только тогда, когда  $(\exists y)_{|y|\leqslant q(|x|)}(Q(x,y)=1).$

### Доказательство (продолжение)

•  $\Leftarrow$ . Пусть для L существует полином q(n) и вычислимая за полиномиальное время p(n) функция Q(x,y) такая, что

$$(x \in L) \iff (\exists y)_{|y| \leqslant q(|x|)} (Q(x, y) = 1).$$

- Строим недетерминированную машину  $\mathcal{M}$ , работающую следующим образом:
  - Сначала недетерминированно формируется произвольное слово  $y \in B^* = \{b_1, \dots, b_r\}^*$ .
  - ightharpoonup Для этого на каждом такте машина выбирает одну из команд: дописать символ  $b_1,\dots,b_r$  или завершить формирование y.
  - ▶ После этого машина детерминированно вычисляет Q(x,y). Если Q(x,y)=1, то машина останавливается, иначе зацикливается.
  - На словах из L общее время вычисления хотя бы в одной из ветвей не превосходит q(n) + p(n+q(n)+1) полином.



#### Определение

- ullet Литерал это формула вида  $x_k$  или  $\overline{x}_k$ .
- Элементарная дизъюнкция (ЭД) это формула вида  $t_{i1} \lor \ldots \lor t_{in_i}$ , где все  $t_{ij}$  литералы, а переменные в них различны.
- Конъюнктивная нормальная форма (КНФ) это формула вида 1 или  $D_1 \& D_2 \& \dots \& D_l$ , где все  $D_i$  различные (с точностью до порядка литералов) элементарные дизъюнкции.

### Определение

- Пусть F формула с символами переменных  $x_1, \dots, x_m$ , реализующая булеву функцию  $f_F(x_1, \dots, x_m)$ , а  $\alpha = (a_1, \dots, a_m) \in \{0, 1\}^m$ .
- ullet Набор lpha выполняет формулу F, если  $f_F(a_1,\ldots,a_m)=1.$
- Формула выполнима, если существует выполняющий её набор.

### Проблема выполнимости (ВЫП или SAT)

- Алфавит:  $A = \{(, ), x, 0, 1, \neg, \&, \lor\}.$
- Вход: КНФ К.
- **Вопрос**: верно ли, что КНФ K выполнима?
- Язык ВЫП состоит из слов в алфавите  $A^*$ , которые являются записями выполнимых КНФ.
- При записи КНФ номера переменных записываются в двоичной системе счисления.
- Например, для  $K = (x_1 \lor x_2 \lor \overline{x}_3) \& (\overline{x}_1 \lor x_3)$  имеем

$$(x1 \lor x10 \lor \neg x11) \& (\neg x1 \lor x11) \in A^*.$$

#### Утверждение

ВЫП  $\in$  NP.

#### Доказательство

- Пусть функция Q(x,y) выдаёт 1, если x КНФ, y двоичный набор, длина которого равна числу переменных в КНФ x, и набор y выполняет КНФ x.
- ullet Вычисление Q(x,y) можно произвести за полиномиальное время:
  - Проверить корректность КНФ, число переменных и длину набора;
  - Подставить значения из набора на места переменных;
  - ▶ Инвертировать значения под отрицаниями;
  - ▶ Проверить, во всех ли ЭД есть хотя бы по одной единице.
- Тогда  $(x \in \mathsf{B}\mathsf{Ы}\Pi) \iff (\exists y)_{|y| \leqslant |x|} (Q(x,y) = 1).$



# Лекция 11 Проблема существования клики. NP-полнота. Теорема Кука

# Проблема существования клики

- Рассматриваем простые неориентированные графы (без петель и кратных рёбер).
- Полный граф на k вершинах это граф с k вершинами, у которого каждая пара вершин соединена ребром.

#### Определение

- ullet Клика размера k это полный граф на k вершинах.
- В графе G существует клика размера k, если существует подграф графа G, являющийся кликой размера k.

# Проблема существования клики

### Проблема существования клики (КЛИКА)

- Алфавит:  $A = \{(, ), [, ], ;, 0, 1\}.$
- ullet Вход: граф G, натуральное число k.
- Вопрос: существует ли в графе G клика размера k?
- Язык КЛИКА состоит из слов в алфавите  $A^*$ , которые являются описаниями пар (G, k), где G граф, k натуральное число, и в G существует клика размера k.
- Считаем, что граф задан списками вершин и рёбер. Номера вершин и число k представлены в двоичном виде.
- Например, для  $G=(\{v_1,v_2,v_3,v_4\},\ \{(v_1,v_3),\ (v_3,v_4),\ (v_4,v_1)\})$  и k=2 имеем

```
[1;10;11;100];[(1;11);(11;100);(100;1)];10\in A^*.
```

# Проблема существования клики

#### Утверждение

 $KЛИКА \in NP.$ 

### Доказательство

- Пусть функция Q(x,y) выдаёт 1, если x пара (G,k), где G граф и  $k\in\mathbb{N}$ , y список из k номеров вершин G, и граф G имеет клику на вершинах из y.
- ullet Вычисление Q(x,y) можно произвести за полиномиальное время:
  - ▶ Проверить корректность описания графа, числа k и списка вершин, проверить число в вершин в списке y;
  - ▶ Перебрать все k(k-1)/2 пар вершин из y;
  - ightharpoonup Для каждой пары (u,v) вершин из y проверить, что в списке рёбер G есть пара (u,v) или (v,u).
- Тогда  $(x \in \mathsf{KЛИKA}) \iff (\exists y)_{|y| \leqslant |x|} (Q(x,y) = 1).$



#### Утверждение

 $P \subseteq NP$ .

#### Доказательство

- Пусть  $L \in \mathcal{P}$ , т.е. L распознаётся детерминированной машиной Тьюринга за полиномиальное время p(n).
- Дополним эту машину: если после остановки она выдаёт 0, заставляем её вместо этого зациклиться.
- Рассмотрим эту машину как недетерминированную. Она распознаёт язык L за время p(n). Поэтому  $L \in \mathrm{NP}$ .



### Содержательный смысл классов P и NP

- Р это класс задач, решение которых требует «не слишком много» времени.
- NP это класс задач на проверку существования объекта с заданными (полиномиально проверяемыми) свойствами.
- Задачи из NP можно решать перебором, но это требует экспоненциального времени. Неизвестно, можно ли для этих задач придумать алгоритм, избегающий перебора.
- На практике для решения задач из NP применяют SAT-солверы, использующие оптимизированный перебор. Обычно это работает, но нет гарантии быстрой работы во всех случаях.

#### Проблема соотношения классов Р и NP

- ullet Легко видеть, что  $P\subseteq NP$ .
- Вопрос о том, верно ли  $P=\mathrm{NP}$ , был поставлен в 1970 г. С. Куком. Это одна из самых известных нерешённых проблем современной математики.
- Большинство специалистов предполагают, что  $P \neq NP$ , но неизвестно, как это можно было бы доказать.
- Этот вопрос имеет большое теоретическое и практическое значение.
- ullet Доказательство P=NP позволило бы быстро решать многие прикладные переборные задачи и взламывать ряд кодов.
- Доказательство  $P \neq NP$  позволило бы получать нижние оценки сложности задач и обосновало бы надёжность ряда криптосистем.

#### Определение

Множество L является NP-трудным, если к L P-сводится любое множество из класса NP.

#### Определение

Множество L является  $\overline{\mathrm{NP}}$ -полным, если  $L \in \mathrm{NP}$  и L  $\mathrm{NP}$ -трудное.

- NP-полные языки это «самые сложные» языки класса NP.
- ullet Если какое-то NP-полное множество принадлежит P, то P=NP.

### Теорема 6 (С. Кук)

Задача ВЫП является NP-полной.

- Благодаря этой теореме для решения любой задачи из NP достаточно уметь решать задачу ВЫП (SAT).
- На практике для решения задачи ВЫП используются SAT-солверы, а другие задачи сводятся к ВЫП.

#### Доказательство

- Ранее было доказано, что ВЫП  $\in$  NP. Осталось доказать, что ВЫП NP-трудна.
- ullet Пусть  $L\in \mathrm{NP}$  и  $L\subseteq A^*$ , где  $A=\{a_1,\ldots,a_k\}$ ,  $a_0=\Lambda$ .
- По определению NP существует НМТ  $\mathcal M$  и полином p(n) такие, что  $w\in L\iff$  в некотором вычислении на w  $\mathcal M$  приходит в  $q_0$  через не более p(|w|) тактов.

- Будем считать, что в программе машины  $\mathcal{M}$  есть команды для заключительного состояния:  $a_iq_0 \to a_iSq_0, \ i=\overline{1,r}.$
- ullet  $w\in L\iff$  машина  $\mathcal{M}$ , начиная работу со словом w на ленте, в каком-то вычислении в момент p(n) будет находиться в  $q_0$ .
- Покажем, что L Р-сводится к ВЫП. Будем строить полиномиально вычислимую функцию  $\varphi\colon A^* \to B^*$  такую, что  $w\in L\iff F_w=\varphi(w)$  является выполнимой КНФ.
- Конфигурация  $K_t$  машины  $\mathcal{M}$  в момент времени t представляет собой набор из трёх элементов:
  - 1. Содержимое ленты;
  - 2. Положение головки на ленте;
  - 3. Текущее состояние машины.

### Доказательство (продолжение)

• Пусть  $w=a_{j_1}a_{j_2}\dots a_{j_n}$  и  $p(n)\geqslant n$ . Пронумеруем ячейки ленты последовательными целыми числами слева направо, считая нулевой обозреваемую в начале вычисления ячейку.

- При вычислении за время p(n) машина  $\mathcal M$  не выйдет за пределы области ленты, состоящей из ячеек с номерами от -p(n) до p(n).
- Тогда:
  - 1. Содержимое ленты это слово в ячейках от -p(n) до p(n).
  - 2. Положение головки это номер ячейки из  $\{-p(n), \dots, p(n)\}.$
  - 3. Текущее состояние это номер из  $\{0,\ldots,r\}$ .
- Конфигурация  $K_t$  машины  $\mathcal M$  полностью определяет все ветви возможных дальнейших вычислений.

- Можно записать:  $w \in L \iff (\exists K_0)(\exists K_1) \dots (\exists K_{p(|w|)})$  такие, что выполнены все следующие условия (n = |w|):
  - 1.  $K_0$  начальная конфигурация для слова w;
  - 2.  $K_{p(n)}$  содержит состояние  $q_0$ ;
  - 3.  $K_{t+1}$  можно получить из  $K_t$  за один такт работы машины  $\mathcal{M}$ ,  $t=\overline{0},\;p(n)-1.$
- Выразим условия на конфигурации с помощью КНФ  $F_w = \varphi(w)$ .
- Вводим три типа булевых переменных:
  - $lacktriangledown x_{i,j}^t\colon (x_{i,j}^t=1)\iff$  в  $K_t$  в ячейке i записан символ  $a_j$ ;
  - $lacktriangledown y_i^t\colon \quad (y_i^t=1) \iff$  в  $K_t$  головка обозревает ячейку i;
  - $lacktriangleright z_l^t\colon \quad (z_l^t=1) \iff$  в  $K_t$  машина находится в состоянии  $q_l$ .
  - lacktriangle Здесь  $t=\overline{0,\,p(n)},\ \ i=\overline{-p(n),\,p(n)},\ \ j=\overline{0,\,k},\ \ l=\overline{0,\,r}.$

- Строим КНФ  $F_w$ , принимающую значение 1 на наборе значений своих переменных, если выполнены все следующие условия:
  - 1. Набор корректно задаёт последовательность конфигураций  $K_0, \dots, K_{p(n)}$ ;
  - 2. Конфигурация  $K_0$  является правильной начальной конфигурацией для входа w;
  - 3. Конфигурация  $K_{p(n)}$  сдержит состояние  $q_0$ ;
  - 4. Для всякого  $t \in \{0, \ldots, p(n)-1\}$  конфигурация  $K_{t+1}$  может быть получена из  $K_t$  согласно программе  $\mathcal M$  за один такт работы.
- Итоговая КНФ будет конъюнкцией КНФ  $F_1, F_2, F_3, F_4$ , реализующих указанные условия по отдельности.

- Условие 1: «Корректная последовательность конфигураций».
- ullet При каждом t должны выполняться все следующие условия:
  - ightharpoonup B каждой ячейке один символ: для любого i ровно одна переменная  $x_{i,j}^t$  (при различных j) принимает значение 1;
  - ▶ Головка обозревает одну ячейку: ровно одна переменная  $y_i^t$  (при различных i) принимает значение 1;
  - ▶ Машина находится в одном состоянии: ровно одна переменная  $z_l^t$  (при различных l) принимает значение 1.
- Чтобы выразить это условие с помощью КНФ, введём вспомогательную функцию.

### Доказательство (продолжение)

• Обозначим

$$h(v_1, \dots, v_s) = (v_1 \vee \dots \vee v_s) \& \underbrace{\sum_{\substack{i,j=\overline{1},s\\i \leq j}} (\overline{v}_i \vee \overline{v}_j)}.$$

- Функция h принимает значение 1, если ровно одна из её переменных содержит 1.
- Для этой функции выписана КНФ. Её ранг (число символов переменных) равен  $s^2$ .

### Доказательство (продолжение)

• Теперь выпишем КНФ для условия 1:

$$F_{1} = \bigotimes_{t=0}^{p(n)} \left( \left( \bigotimes_{i=-p(n)}^{p(n)} h(x_{i,0}^{t}, \dots, x_{i,k}^{t}) \right) \& \\ \& h(y_{-p(n)}^{t}, \dots, y_{p(n)}^{t}) \& h(z_{0}^{t}, \dots, z_{r}^{t}) \right)$$

- В этой КНФ  $(p(n)+1)((2p(n)+1)(k+1)^2+(2p(n)+1)^2+(r+1)^2)$  символов переменных, и длина её записи полиномиальна от n.
- Поэтому её можно построить за полиномиальное от n время. КНФ  $F_1$  зависит только от чисел  $n=|w|,\ p(n),\ k,\ r.$

- Условие 2: «Правильная начальная конфигурация».
- При t=0 должны выполняться все следующие условия:
  - lacktriangle В ячейках  $0,\,\ldots,\,n-1$  символы слова w, остальные ячейки пусты;
  - ▶ Головка обозревает ячейку 0;
  - ightharpoonup Машина находится в состоянии  $q_1$ .
- Выразим это условие с помощью КНФ:

$$F_2 = x_{0, j_1}^0 \& \dots \& x_{n-1, j_n}^0 \&$$

$$\& \left( \bigotimes_{i=-n(n)}^{-1} x_{i,0}^0 \right) \& \left( \bigotimes_{i=n}^{p(n)} x_{i,0}^0 \right) \& y_0^0 \& z_1^0.$$

- Ранг этой КНФ 2p(n) + 3, длина её записи полиномиальна от n.
- ullet Поэтому её можно построить за полиномиальное от n время.

- Условие 3: «Заключительная конфигурация содержит  $q_0$ ».
- Это условие элементарно выражается с помощью КНФ:

$$F_3 = z_0^{p(n)}.$$

- Ранг этой КНФ равен 1, длина её записи полиномиальна от n.
- ullet Поэтому её можно построить за полиномиальное от n время.

# Лекция 12 Завершение доказательства теоремы Кука. Проблемы $3\text{-BЫ}\Pi$ и $2\text{-BЫ}\Pi$

- Условие 4: « $K_{t+1}$  может быть получена из  $K_t$  за один шаг».
- Пусть для каждой левой части  $a_jq_l$  программа машины  $\mathcal M$  имеет набор команд  $a_jq_l \to a_{\sigma_p(j,l)}D_p(j,l)q_{\tau_p(j,l)}, \ p=\overline{1,\ c(j,l)}.$
- Считаем, что  $D_p(j,l) \in \{-1,\,0,\,1\}.$
- ullet Распишем условие 4. При каждом t,i,j,l:
  - lacktriangle Пусть в момент t головка обозревает i-ю ячейку, в ней находится символ  $a_j$  и машина находится в состоянии  $q_l$ .
  - ▶ Тогда существует такое p, что в момент t+1 в i-й ячейке будет символ  $a_{\sigma_p(j,l)}$ , головка будет обозревать ячейку  $i+D_p(j,l)$ , а машина будет в состоянии  $q_{\tau_p(j,l)}$ .
  - **Е**Сли в момент t головка не обозревает i-ю ячейку, то в момент t+1 в ней будет тот же символ, что и в момент t.

#### Доказательство (продолжение)

• Выразим условие 4 с помощью булевой формулы:

$$\begin{split} F_4' &= \bigotimes_{t=0}^{p(n)-1} \bigotimes_{i=-p(n)}^{p(n)} \bigotimes_{j=0}^k \bigotimes_{l=0}^r \left( \left( x_{i,j}^t \ \& \ y_i^t \ \& \ z_l^t \to \right. \right. \\ & \left. \to \bigvee_{p=0}^{c(j,l)} x_{i,\sigma_p(j,l)}^{t+1} \ \& \ y_{i+D_p(j,l)}^{t+1} \ \& \ z_{\tau_p(j,l)}^{t+1} \right) \& \left( \overline{y}_i^t \to (x_{i,j}^{t+1} \sim x_{i,j}^t) \right) \right). \end{split}$$

- Часть формулы во внешних скобках зависит от не более 3+(k+1)+3+(r+1)=8+k+r переменных (не зависит от n).
- Перепишем эту часть формулы в виде совершенной КНФ. Она будет иметь не более  $(8+k+r)2^{8+k+r}$  символов переменных.
- Получим КНФ  $F_4$  с  $p(n)(2p(n)+1)(k+1)(r+1)(8+k+r)2^{8+k+r}$  символами переменных длина записи полиномиальна от n.

- КНФ  $F_4$  можно построить за полиномиальное от n время.
- Наконец, получаем КНФ  $F_w = F_1 \& F_2 \& F_3 \& F_4$ . Она строится по слову w и машине  $\mathcal M$  за полиномиальное от n = |w| время.
- Данная КНФ принимает значение 1, если набор значений переменных «изображает» последовательность конфигураций «успешного» вычисления  $\mathcal M$  (в котором она останавливается).
- ullet Поэтому КНФ  $F_w$  выполнима  $\iff$  существует успешное вычисление  $\mathcal{M} \iff w \in L.$
- ullet Таким образом, произвольный язык L Р-сводится к ВЫП.
- ullet В силу этого задача ВЫП NP-трудна, а значит и NP-полна.

#### Определение

3-КНФ — это КНФ, в которой каждая элементарная дизъюнкция имеет не более трёх литералов.

### Проблема 3-выполнимости (3-ВЫП)

- Алфавит:  $A = \{(, ), x, 0, 1, \neg, \&, \lor\}.$
- Вход: 3-КНФ K.
- **Вопрос**: верно ли, что 3-КНФ K выполнима?
- Язык 3-ВЫП состоит из слов в алфавите  $A^*$ , которые являются записями выполнимых 3-КНФ.
- При записи КНФ номера переменных записываются в двоичной системе счисления.

#### Теорема 7

Задача 3-ВЫП является NP-полной.

• Эта теорема также была доказана С. Куком.

#### Доказательство

- Задача 3-ВЫП является частным случаем ВЫП. Проверка того, что КНФ является 3-КНФ, полиномиальна, поэтому 3-ВЫП  $\in$  NP.
- В силу теоремы Кука, чтобы доказать NP-трудность 3-ВЫП, достаточно доказать, что ВЫП полиномиально сводится к 3-ВЫП.
- ullet Пусть  $K=D_1\ \&\dots\& D_k$  произвольная КНФ. Преобразуем её в 3-КНФ K' с сохранением выполнимости / невыполнимости.
- ullet Преобразуем каждую ЭД  $D_i$  в КНФ  $F_i$ . Если  $D_i$  имеет не более 3 литералов, то  $F_i=D_i$ .

### Доказательство (продолжение)

• Иначе  $D_i = (t_1 \lor t_2 \lor \ldots \lor t_m), \ m > 3$ , где  $t_i$  — литералы. Строим

$$\begin{split} F_i &= (t_1 \vee t_2 \vee y_1) \ \& \ (\overline{y}_1 \vee t_3 \vee y_2) \ \& \ (\overline{y}_2 \vee t_4 \vee y_3) \ \& \ \dots \\ &\qquad \qquad \dots \& \ (\overline{y}_{m-4} \vee t_{m-2} \vee y_{m-3}) \ \& \ (\overline{y}_{m-3} \vee t_{m-1} \vee t_m). \end{split}$$

- Здесь  $y_1, y_2, \dots, y_{m-3}$  переменные, отсутствующие в КНФ K. Для разных КНФ  $F_i$  используем непересекающиеся наборы переменных  $y_j$ .
- Получаем  $K' = F_1 \& \dots \& F_k$ .
- Очевидно, ранг  $F_i$  не превосходит 3m. Поэтому длина записи K' полиномиальна от длины записи K, а построение K' требует полиномиального от длины K времени.

- ullet Покажем, что если  $F_i$  выполнима, то и  $D_i$  выполнима.
- Пусть  $\alpha=(a_1,\dots,a_n;\ b_1,\dots,b_{m-3})$ , где  $a_i$  значения переменных КНФ K, а  $b_j$  значения новых переменных  $y_j$ .
- Пусть  $F_i(\alpha) = 1$ . Тогда
  - ▶ Если  $b_1 = 0$ , то  $t_1(\alpha) \vee t_2(\alpha) = 1$ , т.е.  $D_i(\alpha) = 1$ .
  - ▶ Если  $b_{m-3} = 1$ , то  $t_{m-1}(\alpha) \vee t_m(\alpha) = 1$ , т.е.  $D_i(\alpha) = 1$ .
  - ▶ Пусть  $b_1=1$  и  $b_{m-3}=0$ . Тогда существует k:  $b_k=1$  и  $b_{k+1}=0$ . Имеем  $\bar{b}_k \vee t_{k+2}(\alpha) \vee b_{k+1}=1$ , т.е.  $t_{k+2}(\alpha)=1$ . Тогда  $D_i(\alpha)=1$ .
- ullet Таким образом, если  $F_i$  выполнима, то и  $D_i$  выполнима.

- ullet Теперь покажем, что если  $D_i$  выполнима, то и  $F_i$  выполнима.
- ullet Пусть  $lpha=(a_1,\ldots,a_n)$  и  $D_i(lpha)=1.$
- Тогда существует такое k, что  $t_k(\alpha) = 1$ .
- Построим набор  $\beta=(\alpha;\ b_1,\dots,b_{m-3})$  такой, что  $F_i(\beta)=1.$ 
  - ▶ Если  $k \in \{1, 2\}$ , то выбираем  $b_1 = \ldots = b_{m-3} = 0$ . ЭД  $t_1 \lor t_2 \lor y_1$  обращается в 1 из-за  $t_k(\beta) = 1$ , а остальные ЭД  $F_i$  содержат  $\overline{y}_j(\beta) = 1$ .
  - lacktriangle Если  $k\in\{m-1,\,m\}$ , то выбираем  $b_1=\ldots=b_{m-3}=1.$  ЭД  $\overline{y}_{m-3}\lor t_{m-1}\lor t_m$  обращается в 1 из-за  $t_k(\beta)=1$ , а остальные ЭД  $F_i$  содержат  $y_j(\beta)=1.$
  - ▶ Иначе выбираем  $b_1=\ldots=b_{k-2}=1$  и  $b_{k-1}=\ldots=b_{m-3}=0$ . ЭД  $\overline{y}_{k-2}\vee t_k\vee y_k$  обращается в 1 из-за  $t_k(\beta)=1$ , а остальные ЭД  $F_i$  содержат  $y_j(\beta)=1$   $(j\leqslant k-2)$  или  $\overline{y}_l(\beta)=1$   $(l\geqslant k-1)$ .

- ullet Итак,  $F_i$  выполнима тогда и только тогда, когда выполнима  $D_i.$
- ullet Значит, K' выполнима тогда и только тогда, когда выполнима K.



#### Определение

2-КНФ — это КНФ, в которой каждая элементарная дизъюнкция имеет не более двух литералов.

### Проблема 2-выполнимости (2-ВЫП)

- Алфавит:  $A = \{(, ), x, 0, 1, \neg, \&, \lor\}.$
- Вход: 2-КНФ K.
- **Вопрос**: верно ли, что 2-КНФ K выполнима?
- Язык 2-ВЫП состоит из слов в алфавите  $A^*$ , которые являются записями выполнимых 2-КНФ.
- При записи КНФ номера переменных записываются в двоичной системе счисления.

#### Теорема 8

Задача 2-ВЫП принадлежит классу Р.

#### Доказательство

- Построим полиномиальный алгоритм решения задачи 2-ВЫП.
- Пусть  $K(x_1, ..., x_n)$  2-КНФ, содержащая только символы переменных  $x_1, ..., x_n$ .
- ullet Если n=1, то K имеет вид 1,  $x_1$ ,  $\overline{x}_1$  или  $x_1\overline{x}_1$ . В первых трёх случаях K выполнима, а в последнем невыполнима.
- Пусть  $n\geqslant 2$ . Покажем, что можно исключить из КНФ K переменную  $x_n$  с сохранением выполнимости / невыполнимости.
- Имеем  $K=K'\ \&\ (x_n\lor t_1)\dots(x_n\lor t_k)\ \&\ (\overline{x}_n\lor t_1')\dots(\overline{x}_n\lor t_m')$ , где K'-2-КНФ без  $x_n$  и  $\overline{x}_n$ , а все  $t_i$  и  $t_i'$  литералы или нули.

### Доказательство (продолжение)

ullet КНФ  $K(x_1,\ldots,x_n)$  выполнима  $\iff$  выполнима формула

$$F = K(x_1, \dots, x_{n-1}, 0) \vee K(x_1, \dots, x_{n-1}, 1).$$

 $\bullet$  В формуле F множитель K' можно вынести за скобки. Тогда получим

$$F = K' \& (t_1 \dots t_k \vee t'_1 \dots t'_m).$$

ullet Используя тождество  $xee yz=(xee y)\ \&\ (xee z)$ , преобразуем

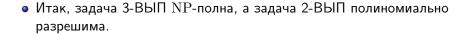
$$F = K' \& (t_1 \dots t_k \lor t'_1 \dots t'_m) = K' \& \bigotimes_{\substack{i = \overline{1,k} \\ j = \overline{1,m}}} (t_i \lor t'_j).$$

ullet Если k=0 или m=0, то F=K'.

$$F = K' \& \underbrace{\sum_{\substack{i=\overline{1,k} \\ j=\overline{1,m}}} (t_i \lor t'_j)}_{}$$

- Совершаем простейшие поглощения. Если есть скобка  $0 \lor 0$ , то заменяем КНФ на  $x_1\overline{x}_1$ . Иначе устраняем константы и дубликаты, применяя тождества  $1 \cdot x = x,\ 0 \lor x = x,\ x \lor x = x$  и  $x \cdot x = x$ .
- Получили 2-КНФ. Поскольку различных ЭД  $t_1 \lor t_2$  не более  $(2n)^2$ , ранг полученной 2-КНФ не превосходит  $2 \cdot (2n)^2 = 8n^2$ .
- Последовательно исключаем из КНФ K переменные  $x_n, \ldots, x_2$  и сводим задачу к проверке выполнимости КНФ с одной переменной  $x_1$ , которая уже рассмотрена ранее.

- На каждом шаге мы получаем КНФ ранга не более  $8n^2$ , т.е. КНФ с длиной записи, полиномиальной от длины записи K.
- Поэтому каждый шаг требует полиномиального от длины записи КНФ K времени, а всего шагов n.
- Таким образом, приведённый алгоритм проверки выполнимости задачи 2-ВЫП является полиномиальным.



### Литература

- 1. Лекции С. С. Марченкова: Плейлист на YouTube
- 2. Марченков С. С. Избранные главы дискретной математики. М.: МАКС Пресс, 2016. 136 с.
- https://mk.cs.msu.ru/images/2/25/ИзбрГлавыДискрМатем\_2015.pdf
- 3. Яблонский С.В. Введение в дискретную математику. М.: Наука, 1986. 384 с.
- 4. Алексеев В.Б. Введение в теорию сложности алгоритмов. М.: Издательский отдел ф-та ВМиК МГУ, 2002. 82 с.
  - https://mk.cs.msu.ru/images/c/c4/KNIGA1.pdf
- 5. https://docs.python.org/3/library/re.html
- 6. https://ru.wikipedia.org/wiki/Регулярные\_выражения