ECE750T-28: Computer-aided Reasoning for Software Engineering

> Lecture 16: Decision Procedures for Combination Theories

> > Vijay Ganesh (Original notes from Isil Dillig)

▶ So far, learned about decision procedures for useful theories

- > So far, learned about decision procedures for useful theories
- Examples: Theory of equality with uninterpreted functions, theory of rationals, theory of integers

- > So far, learned about decision procedures for useful theories
- Examples: Theory of equality with uninterpreted functions, theory of rationals, theory of integers
- But in many cases, we need to decide satisfiability of formulas involving multiple theories

- > So far, learned about decision procedures for useful theories
- Examples: Theory of equality with uninterpreted functions, theory of rationals, theory of integers
- But in many cases, we need to decide satisfiability of formulas involving multiple theories
- ▶ Example: $1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)$

- > So far, learned about decision procedures for useful theories
- Examples: Theory of equality with uninterpreted functions, theory of rationals, theory of integers
- But in many cases, we need to decide satisfiability of formulas involving multiple theories
- Example: $1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)$
- > This formula does not belong to any individual theory

- > So far, learned about decision procedures for useful theories
- Examples: Theory of equality with uninterpreted functions, theory of rationals, theory of integers
- But in many cases, we need to decide satisfiability of formulas involving multiple theories
- Example: $1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)$
- > This formula does not belong to any individual theory
- ▶ But it does belong, for instance, to combination of $T_{=}$ and $T_{\mathbb{Z}}$

▶ Recall: Given two theories T_1 and T_2 that have the = predicate, we define a combined theory $T_1 \cup T_2$

- ▶ Recall: Given two theories T_1 and T_2 that have the = predicate, we define a combined theory $T_1 \cup T_2$
- Signature of $T_1 \cup T_2$: $\Sigma_1 \cup \Sigma_2$

- ▶ Recall: Given two theories T_1 and T_2 that have the = predicate, we define a combined theory $T_1 \cup T_2$
- Signature of $T_1 \cup T_2$: $\Sigma_1 \cup \Sigma_2$
- Axioms of $T_1 \cup T_2$: $A_1 \cup A_2$

- ▶ Recall: Given two theories T_1 and T_2 that have the = predicate, we define a combined theory $T_1 \cup T_2$
- Signature of $T_1 \cup T_2$: $\Sigma_1 \cup \Sigma_2$
- Axioms of $T_1 \cup T_2$: $A_1 \cup A_2$
- \blacktriangleright Given decision procedures for T_1 and $T_2,$ we want a decision procedure to decide satisfiability of formulas in $T_1\cup T_2$

- ▶ Recall: Given two theories T_1 and T_2 that have the = predicate, we define a combined theory $T_1 \cup T_2$
- Signature of $T_1 \cup T_2$: $\Sigma_1 \cup \Sigma_2$
- Axioms of $T_1 \cup T_2$: $A_1 \cup A_2$
- \blacktriangleright Given decision procedures for T_1 and $T_2,$ we want a decision procedure to decide satisfiability of formulas in $T_1\cup T_2$
- ▶ Today's lecture: Learn about Nelson-Oppen method for constructing decision procedure for combined theory $T_1 \cup T_2$ from individual decision procedures for T_1 and T_2

This method also allows combining arbitrary number of theories

This method also allows combining arbitrary number of theories

For instance, to combine T_1, T_2, T_3 , first combine T_1, T_2

This method also allows combining arbitrary number of theories

- For instance, to combine T_1, T_2, T_3 , first combine T_1, T_2
- ▶ Then, combine $T_1 \cup T_2$ and T_3 again using Nelson-Oppen

This method also allows combining arbitrary number of theories

- For instance, to combine T_1, T_2, T_3 , first combine T_1, T_2
- ▶ Then, combine $T_1 \cup T_2$ and T_3 again using Nelson-Oppen
- However, Nelson-Oppen imposes some restrictions on theories that can be combined

Nelson-Oppen method imposes the following restrictions:

- Nelson-Oppen method imposes the following restrictions:
 - 1. Only allows combining quantifier-free fragments

- Nelson-Oppen method imposes the following restrictions:
 - 1. Only allows combining quantifier-free fragments
 - 2. Only allows combining formulas without disjunctions, but not a major limitation because can convert to DNF

- Nelson-Oppen method imposes the following restrictions:
 - 1. Only allows combining quantifier-free fragments
 - 2. Only allows combining formulas without disjunctions, but not a major limitation because can convert to DNF
 - 3. Signatures can only share equality: $\Sigma_1 \cap \Sigma_2 = \{=\}$

- Nelson-Oppen method imposes the following restrictions:
 - 1. Only allows combining quantifier-free fragments
 - 2. Only allows combining formulas without disjunctions, but not a major limitation because can convert to DNF
 - 3. Signatures can only share equality: $\Sigma_1 \cap \Sigma_2 = \{=\}$
 - 4. Theories T_1 and T_2 must be stably infinite

- Nelson-Oppen method imposes the following restrictions:
 - 1. Only allows combining quantifier-free fragments
 - 2. Only allows combining formulas without disjunctions, but not a major limitation because can convert to DNF
 - 3. Signatures can only share equality: $\Sigma_1 \cap \Sigma_2 = \{=\}$
 - 4. Theories T_1 and T_2 must be stably infinite
- ► Theory *T* is stably infinite iff every satisfiable qff formula is satisfiable in a universe of discourse with infinite cardinality

- Nelson-Oppen method imposes the following restrictions:
 - 1. Only allows combining quantifier-free fragments
 - 2. Only allows combining formulas without disjunctions, but not a major limitation because can convert to DNF
 - 3. Signatures can only share equality: $\Sigma_1 \cap \Sigma_2 = \{=\}$
 - 4. Theories T_1 and T_2 must be stably infinite
- ► Theory *T* is stably infinite iff every satisfiable qff formula is satisfiable in a universe of discourse with infinite cardinality
- ▶ In other words, if qff *F* is satisfiable, then there exists *T*-model that satisfies *F* and has infinite cardinality.

- Nelson-Oppen method imposes the following restrictions:
 - 1. Only allows combining quantifier-free fragments
 - 2. Only allows combining formulas without disjunctions, but not a major limitation because can convert to DNF
 - 3. Signatures can only share equality: $\Sigma_1 \cap \Sigma_2 = \{=\}$
 - 4. Theories T_1 and T_2 must be stably infinite
- ► Theory *T* is stably infinite iff every satisfiable qff formula is satisfiable in a universe of discourse with infinite cardinality
- ▶ In other words, if qff *F* is satisfiable, then there exists *T*-model that satisfies *F* and has infinite cardinality.
- > Thus, theories with only finite models are not stably infinite.

Signature :
$$\{a, b, =\}$$

Axiom : $\forall x. \ x = a \lor x = b$

Signature :
$$\{a, b, =\}$$

Axiom : $\forall x. x = a \lor x = b$

Axiom says that any object in the universe of discourse must be equal to either a or b

Signature :
$$\{a, b, =\}$$

Axiom : $\forall x. x = a \lor x = b$

- ► Axiom says that any object in the universe of discourse must be equal to either *a* or *b*
- \blacktriangleright Now consider U containing more than 2 elements

Signature :
$$\{a, b, =\}$$

Axiom : $\forall x. x = a \lor x = b$

- Axiom says that any object in the universe of discourse must be equal to either a or b
- \blacktriangleright Now consider U containing more than 2 elements
- \blacktriangleright Then, there is at least one element distinct from both a and b

Signature :
$$\{a, b, =\}$$

Axiom : $\forall x. x = a \lor x = b$

- Axiom says that any object in the universe of discourse must be equal to either a or b
- \blacktriangleright Now consider U containing more than 2 elements
- \blacktriangleright Then, there is at least one element distinct from both a and b
- \blacktriangleright Thus, any U with more than 2 elements violates axiom

Signature :
$$\{a, b, =\}$$

Axiom : $\forall x. x = a \lor x = b$

- Axiom says that any object in the universe of discourse must be equal to either a or b
- \blacktriangleright Now consider U containing more than 2 elements
- \blacktriangleright Then, there is at least one element distinct from both a and b
- ▶ Thus, any U with more than 2 elements violates axiom
- Hence, theory only has finite models, and is not stably infinite

Fortunately, almost any theory of interest is stably infinite

- Fortunately, almost any theory of interest is stably infinite
- ▶ All theories we discussed, $T_{=}$, $T_{\mathbb{Q}}$, $T_{\mathbb{Z}}$, T_{A} , are stably infinite

- Fortunately, almost any theory of interest is stably infinite
- ▶ All theories we discussed, $T_{=}$, $T_{\mathbb{Q}}$, $T_{\mathbb{Z}}$, T_A , are stably infinite
- Which of these theories can we combine using Nelson-Oppen?

- Fortunately, almost any theory of interest is stably infinite
- ▶ All theories we discussed, $T_{=}$, $T_{\mathbb{Q}}$, $T_{\mathbb{Z}}$, T_A , are stably infinite
- Which of these theories can we combine using Nelson-Oppen?

 T₌ and T_Q?

- Fortunately, almost any theory of interest is stably infinite
- ▶ All theories we discussed, $T_{=}$, $T_{\mathbb{Q}}$, $T_{\mathbb{Z}}$, T_A , are stably infinite
- Which of these theories can we combine using Nelson-Oppen?

 T₌ and T_Q? yes

- Fortunately, almost any theory of interest is stably infinite
- ▶ All theories we discussed, $T_{=}$, $T_{\mathbb{Q}}$, $T_{\mathbb{Z}}$, T_{A} , are stably infinite
- Which of these theories can we combine using Nelson-Oppen?
 1. T₌ and T_Q? yes
 - **2**. $T_{=}$ and $T_{\mathbb{Z}}$?

- Fortunately, almost any theory of interest is stably infinite
- ▶ All theories we discussed, $T_{=}$, $T_{\mathbb{Q}}$, $T_{\mathbb{Z}}$, T_A , are stably infinite
- Which of these theories can we combine using Nelson-Oppen?

 T₌ and T_Q? yes
 - 2. $T_{=}$ and $T_{\mathbb{Z}}$? yes

- Fortunately, almost any theory of interest is stably infinite
- ▶ All theories we discussed, $T_{=}$, $T_{\mathbb{Q}}$, $T_{\mathbb{Z}}$, T_{A} , are stably infinite
- Which of these theories can we combine using Nelson-Oppen? 1. T₌ and T_Q? yes
 - 2. $T_{=}$ and $T_{\mathbb{Z}}$? yes
 - 3. T_A and $T_{\mathbb{Z}}$?

- Fortunately, almost any theory of interest is stably infinite
- ▶ All theories we discussed, $T_{=}$, $T_{\mathbb{Q}}$, $T_{\mathbb{Z}}$, T_{A} , are stably infinite
- Which of these theories can we combine using Nelson-Oppen? 1. T₌ and T_Q? yes
 - 2. $T_{=}$ and $T_{\mathbb{Z}}$? yes
 - 3. T_A and $T_{\mathbb{Z}}$? yes

- Fortunately, almost any theory of interest is stably infinite
- ▶ All theories we discussed, $T_{=}$, $T_{\mathbb{Q}}$, $T_{\mathbb{Z}}$, T_{A} , are stably infinite
- Which of these theories can we combine using Nelson-Oppen?
 1. T₌ and T_Q? yes
 - 2. $T_{=}$ and $T_{\mathbb{Z}}$? yes
 - 3. T_A and $T_{\mathbb{Z}}$? yes
- In general, almost any theory we care about can be combined using Nelson-Oppen

- Fortunately, almost any theory of interest is stably infinite
- ▶ All theories we discussed, $T_{=}$, $T_{\mathbb{Q}}$, $T_{\mathbb{Z}}$, T_{A} , are stably infinite
- Which of these theories can we combine using Nelson-Oppen?
 1. T₌ and T_Q? yes
 - 2. $T_{=}$ and $T_{\mathbb{Z}}$? yes
 - 3. T_A and $T_{\mathbb{Z}}$? yes
- In general, almost any theory we care about can be combined using Nelson-Oppen

- Fortunately, almost any theory of interest is stably infinite
- ▶ All theories we discussed, $T_{=}$, $T_{\mathbb{Q}}$, $T_{\mathbb{Z}}$, T_{A} , are stably infinite
- Which of these theories can we combine using Nelson-Oppen?
 1. T₌ and T_Q? yes
 - 2. $T_{=}$ and $T_{\mathbb{Z}}$? yes
 - 3. T_A and $T_{\mathbb{Z}}$? yes
- In general, almost any theory we care about can be combined using Nelson-Oppen
- More recent work has also extended Nelson-Oppen to non-stably-infinite theories

Nelson-Oppen method has conceptually two-different phases:

- Nelson-Oppen method has conceptually two-different phases:
 - 1. Purification: Seperate formula F in $T_1 \cup T_2$ into two formulas F_1 in T_1 and F_2 in T_2

- ► Nelson-Oppen method has conceptually two-different phases:
 - 1. Purification: Seperate formula F in $T_1 \cup T_2$ into two formulas F_1 in T_1 and F_2 in T_2
 - 2. Equality propagation: Propagate all relevant equalities between theories

- Nelson-Oppen method has conceptually two-different phases:
 - 1. Purification: Seperate formula F in $T_1 \cup T_2$ into two formulas F_1 in T_1 and F_2 in T_2
 - 2. Equality propagation: Propagate all relevant equalities between theories
- Purification step is always the same for any arbitrary theory

- Nelson-Oppen method has conceptually two-different phases:
 - 1. Purification: Seperate formula F in $T_1 \cup T_2$ into two formulas F_1 in T_1 and F_2 in T_2
 - 2. Equality propagation: Propagate all relevant equalities between theories
- Purification step is always the same for any arbitrary theory
- But equality propagation is different between convex and non-convex theories

▶ Input to Nelson-Oppen is formula F in $T_1 \cup T_2$

- ▶ Input to Nelson-Oppen is formula F in $T_1 \cup T_2$
- Goal of purification is to separate F into formulas F_1 and F_2 such that:

- ▶ Input to Nelson-Oppen is formula F in $T_1 \cup T_2$
- Goal of purification is to separate F into formulas F_1 and F_2 such that:
 - 1. F_1 belongs only to T_1 (is "pure")

- ▶ Input to Nelson-Oppen is formula F in $T_1 \cup T_2$
- Goal of purification is to separate F into formulas F_1 and F_2 such that:
 - 1. F_1 belongs only to T_1 (is "pure")
 - 2. F_2 belong only to T_2 (is "pure")

- ▶ Input to Nelson-Oppen is formula F in $T_1 \cup T_2$
- Goal of purification is to separate F into formulas F_1 and F_2 such that:
 - 1. F_1 belongs only to T_1 (is "pure")
 - 2. F_2 belong only to T_2 (is "pure")
 - 3. $F_1 \wedge F_2$ is equisatisfiable as F

- ▶ Input to Nelson-Oppen is formula F in $T_1 \cup T_2$
- Goal of purification is to separate F into formulas F_1 and F_2 such that:
 - 1. F_1 belongs only to T_1 (is "pure")
 - 2. F_2 belong only to T_2 (is "pure")
 - 3. $F_1 \wedge F_2$ is equisatisfiable as F
- Resulting formula after purification is not equivalent

- ▶ Input to Nelson-Oppen is formula F in $T_1 \cup T_2$
- Goal of purification is to separate F into formulas F_1 and F_2 such that:
 - 1. F_1 belongs only to T_1 (is "pure")
 - 2. F_2 belong only to T_2 (is "pure")
 - 3. $F_1 \wedge F_2$ is equisatisfiable as F
- Resulting formula after purification is not equivalent
- But since goal is to decide satisfiability, this is good enough

► To purify formula *F*, exhaustively apply the following:

- ▶ To purify formula *F*, exhaustively apply the following:
 - 1. Consider term $f(\ldots, t_i, \ldots)$. If $f \in \Sigma_i$ but t_i is not a term in T_i , replace t_i with fresh variable z and conjoin $z = t_i$

- ▶ To purify formula *F*, exhaustively apply the following:
 - 1. Consider term $f(\ldots, t_i, \ldots)$. If $f \in \Sigma_i$ but t_i is not a term in T_i , replace t_i with fresh variable z and conjoin $z = t_i$
 - 2. Consider predicate $p(\ldots, t_i, \ldots)$. If $p \in \Sigma_i$ but t_i is not a term in T_i , replace t_i with fresh variable w and conjoin $w = t_i$

▶ To purify formula *F*, exhaustively apply the following:

- 1. Consider term $f(\ldots, t_i, \ldots)$. If $f \in \Sigma_i$ but t_i is not a term in T_i , replace t_i with fresh variable z and conjoin $z = t_i$
- 2. Consider predicate $p(\ldots, t_i, \ldots)$. If $p \in \Sigma_i$ but t_i is not a term in T_i , replace t_i with fresh variable w and conjoin $w = t_i$
- Literals in resulting formula belong to either only T_1 or T_2 .

▶ To purify formula *F*, exhaustively apply the following:

- 1. Consider term $f(\ldots, t_i, \ldots)$. If $f \in \Sigma_i$ but t_i is not a term in T_i , replace t_i with fresh variable z and conjoin $z = t_i$
- 2. Consider predicate $p(\ldots, t_i, \ldots)$. If $p \in \Sigma_i$ but t_i is not a term in T_i , replace t_i with fresh variable w and conjoin $w = t_i$
- Literals in resulting formula belong to either only T_1 or T_2 .
- Thus, we can write F as a conjunction of formulas F_1 in T_1 and F_2 in T_2

```
• Consider T_{=} \cup T_{\mathbb{Q}} formula x \leq f(x) + 1
```

- Consider $T_{=} \cup T_{\mathbb{Q}}$ formula $x \leq f(x) + 1$
- Is this formula already pure?

- Consider $T_{=} \cup T_{\mathbb{Q}}$ formula $x \leq f(x) + 1$
- Is this formula already pure? No

- Consider $T_{=} \cup T_{\mathbb{Q}}$ formula $x \leq f(x) + 1$
- Is this formula already pure? No
- Since f(x) is not in $T_{\mathbb{Q}}$, replace with new variable y and add equality constraint y = f(x)

- Consider $T_{=} \cup T_{\mathbb{Q}}$ formula $x \leq f(x) + 1$
- Is this formula already pure? No
- Since f(x) is not in $T_{\mathbb{Q}}$, replace with new variable y and add equality constraint y = f(x)
- Thus, formula after purification:

$$\underbrace{x \le y+1}_{T_0} \land \underbrace{y = f(x)}_{T_{=}}$$

• Consider following $\Sigma_{=} \cup \Sigma_{\mathbb{Z}}$ formula:

 $f(x+g(y)) \le g(a) + f(b)$

• Consider following $\Sigma_{=} \cup \Sigma_{\mathbb{Z}}$ formula:

 $f(x + g(y)) \le g(a) + f(b)$

Easiest to purify "inside out"

• Consider following $\Sigma_{=} \cup \Sigma_{\mathbb{Z}}$ formula:

 $f(x + g(y)) \le g(a) + f(b)$

- Easiest to purify "inside out"
- Is the term x + g(y) pure?

• Consider following $\Sigma_{=} \cup \Sigma_{\mathbb{Z}}$ formula:

 $f(x + g(y)) \le g(a) + f(b)$

- Easiest to purify "inside out"
- ▶ Is the term x + g(y) pure? no

• Consider following $\Sigma_{=} \cup \Sigma_{\mathbb{Z}}$ formula:

 $f(x+g(y)) \le g(a) + f(b)$

- Easiest to purify "inside out"
- ▶ Is the term x + g(y) pure? no
- How do we purify it?

• Consider following $\Sigma_{=} \cup \Sigma_{\mathbb{Z}}$ formula:

 $f(x + g(y)) \le g(a) + f(b)$

- Easiest to purify "inside out"
- ▶ Is the term x + g(y) pure? no
- How do we purify it? replace g(y) with z_1 , add constraint $z_1 = g(y)$

• Consider following $\Sigma_{=} \cup \Sigma_{\mathbb{Z}}$ formula:

 $f(x + g(y)) \le g(a) + f(b)$

- Easiest to purify "inside out"
- ▶ Is the term x + g(y) pure? no
- How do we purify it? replace g(y) with z_1 , add constraint $z_1 = g(y)$
- Resulting formula:

$$f(x+z_1) \le g(a) + f(b) \land z_1 = g(y)$$

$$f(x+z_1) \le g(a) + f(b) \land z_1 = g(y)$$

▶ Is $f(x + z_1)$ pure?

$$f(x+z_1) \le g(a) + f(b) \land z_1 = g(y)$$

▶ Is $f(x + z_1)$ pure? no

$$f(x+z_1) \le g(a) + f(b) \land z_1 = g(y)$$

- ▶ Is $f(x + z_1)$ pure? no
- How do we purify?

$f(x+z_1) \le g(a) + f(b) \land z_1 = g(y)$

- ▶ Is $f(x + z_1)$ pure? no
- How do we purify? replace $x + z_1$ with z_2 , add constraint $z_2 = x + z_1$

$f(x+z_1) \le g(a) + f(b) \land z_1 = g(y)$

- ▶ Is $f(x + z_1)$ pure? no
- How do we purify? replace $x + z_1$ with z_2 , add constraint $z_2 = x + z_1$
- Resulting formula:

 $f(z_2) \le g(a) + f(b) \land z_1 = g(y) \land z_2 = x + z_1$

$f(x+z_1) \le g(a) + f(b) \land z_1 = g(y)$

- ▶ Is $f(x + z_1)$ pure? no
- How do we purify? replace $x + z_1$ with z_2 , add constraint $z_2 = x + z_1$
- Resulting formula:

 $f(z_2) \le g(a) + f(b) \land z_1 = g(y) \land z_2 = x + z_1$

Is formula purified now?

$f(x+z_1) \le g(a) + f(b) \land z_1 = g(y)$

- ▶ Is $f(x + z_1)$ pure? no
- How do we purify? replace $x + z_1$ with z_2 , add constraint $z_2 = x + z_1$
- Resulting formula:

 $f(z_2) \le g(a) + f(b) \land z_1 = g(y) \land z_2 = x + z_1$

Is formula purified now? no

$$f(z_2) \le g(a) + f(b) \land z_1 = g(y) \land z_2 = x + z_1$$

Which terms/predicate is impure?

$$f(z_2) \le g(a) + f(b) \land z_1 = g(y) \land z_2 = x + z_1$$

• Which terms/predicate is impure? g(a) + f(b)

$f(z_2) \le g(a) + f(b) \land z_1 = g(y) \land z_2 = x + z_1$

- Which terms/predicate is impure? g(a) + f(b)
- How do we purify?

 $f(z_2) \le g(a) + f(b) \land z_1 = g(y) \land z_2 = x + z_1$

- Which terms/predicate is impure? g(a) + f(b)
- How do we purify? replace g(a) with z_3 and f(b) with z_4 , add constraint $z_3 = g(a) \land z_4 = f(b)$

 $f(z_2) \le g(a) + f(b) \land z_1 = g(y) \land z_2 = x + z_1$

- Which terms/predicate is impure? g(a) + f(b)
- How do we purify? replace g(a) with z_3 and f(b) with z_4 , add constraint $z_3 = g(a) \land z_4 = f(b)$
- Resulting formula:

 $f(z_2) \le g(a) + f(b) \land z_1 = g(y) \land z_2 = x + z_1$

- Which terms/predicate is impure? g(a) + f(b)
- How do we purify? replace g(a) with z_3 and f(b) with z_4 , add constraint $z_3 = g(a) \land z_4 = f(b)$
- Resulting formula:

 $f(z_2) \le z_3 + z_4 \land z_1 = g(y) \land z_2 = x + z_1 \land z_3 = g(a) \land z_4 = f(b)$

Is formula purified now?

 $f(z_2) \le g(a) + f(b) \land z_1 = g(y) \land z_2 = x + z_1$

- Which terms/predicate is impure? g(a) + f(b)
- How do we purify? replace g(a) with z_3 and f(b) with z_4 , add constraint $z_3 = g(a) \land z_4 = f(b)$
- Resulting formula:

 $f(z_2) \le z_3 + z_4 \land z_1 = g(y) \land z_2 = x + z_1 \land z_3 = g(a) \land z_4 = f(b)$

Is formula purified now? no

 $f(z_2) \le z_3 + z_4 \land z_1 = g(y) \land z_2 = x + z_1 \land z_3 = g(a) \land z_4 = f(b)$

Which terms/predicate is impure?

 $f(z_2) \le z_3 + z_4 \land z_1 = g(y) \land z_2 = x + z_1 \land z_3 = g(a) \land z_4 = f(b)$

• Which terms/predicate is impure? $f(z_2) \le z_3 + z_4$

- Which terms/predicate is impure? $f(z_2) \le z_3 + z_4$
- How do we purify?

- Which terms/predicate is impure? $f(z_2) \le z_3 + z_4$
- ▶ How do we purify? replace $f(z_2)$ with z_5 , add constraint $z_5 = f(z_2)$

- Which terms/predicate is impure? $f(z_2) \le z_3 + z_4$
- ▶ How do we purify? replace $f(z_2)$ with z_5 , add constraint $z_5 = f(z_2)$
- Resulting formula:

$$egin{aligned} &z_5 \leq z_3 + z_4 \wedge z_1 = g(y) \wedge z_2 = x + z_1 \wedge \ &z_3 = g(a) \wedge z_4 = f(b) \wedge z_5 = f(z_2) \end{aligned}$$

 $f(z_2) \le z_3 + z_4 \land z_1 = g(y) \land z_2 = x + z_1 \land z_3 = g(a) \land z_4 = f(b)$

- Which terms/predicate is impure? $f(z_2) \le z_3 + z_4$
- ▶ How do we purify? replace $f(z_2)$ with z_5 , add constraint $z_5 = f(z_2)$
- Resulting formula:

$$egin{aligned} &z_5 \leq z_3 + z_4 \wedge z_1 = g(y) \wedge z_2 = x + z_1 \wedge \ &z_3 = g(a) \wedge z_4 = f(b) \wedge z_5 = f(z_2) \end{aligned}$$

Is formula purified now?

- Which terms/predicate is impure? $f(z_2) \le z_3 + z_4$
- ▶ How do we purify? replace $f(z_2)$ with z_5 , add constraint $z_5 = f(z_2)$
- Resulting formula:

$$egin{aligned} &z_5 \leq z_3 + z_4 \wedge z_1 = g(y) \wedge z_2 = x + z_1 \wedge \ &z_3 = g(a) \wedge z_4 = f(b) \wedge z_5 = f(z_2) \end{aligned}$$

After purification, we have decomposed a formula F into two pure formulas F₁ and F₂

- \blacktriangleright After purification, we have decomposed a formula F into two pure formulas F_1 and F_2
- If x occurs in both F_1 and F_2 , x is called shared variable

- After purification, we have decomposed a formula ${\cal F}$ into two pure formulas ${\cal F}_1$ and ${\cal F}_2$
- If x occurs in both F_1 and F_2 , x is called shared variable
- If y occurs only in F_1 or only in F_2 , it is called unshared variable

- After purification, we have decomposed a formula F into two pure formulas F_1 and F_2
- If x occurs in both F_1 and F_2 , x is called shared variable
- If y occurs only in F_1 or only in F_2 , it is called unshared variable

Consider the following purified formula:

$$\underbrace{w_1 = x + y \land y = 1 \land w_2 = 2}_{T_{\mathbb{Z}}} \land \underbrace{w_1 = f(x) \land f(x) \neq f(w_2)}_{T_{=}}$$

- After purification, we have decomposed a formula F into two pure formulas F_1 and F_2
- If x occurs in both F_1 and F_2 , x is called shared variable
- If y occurs only in F_1 or only in F_2 , it is called unshared variable
- Consider the following purified formula:

$$\underbrace{w_1 = x + y \land y = 1 \land w_2 = 2}_{T_{\mathbb{Z}}} \land \underbrace{w_1 = f(x) \land f(x) \neq f(w_2)}_{T_{=}}$$

Which variables are shared?

- After purification, we have decomposed a formula F into two pure formulas F_1 and F_2
- If x occurs in both F_1 and F_2 , x is called shared variable
- If y occurs only in F_1 or only in F_2 , it is called unshared variable
- Consider the following purified formula:

$$\underbrace{w_1 = x + y \land y = 1 \land w_2 = 2}_{T_{\mathbb{Z}}} \land \underbrace{w_1 = f(x) \land f(x) \neq f(w_2)}_{T_{=}}$$

• Which variables are shared? w_1, x, w_2

- After purification, we have decomposed a formula F into two pure formulas F_1 and F_2
- If x occurs in both F_1 and F_2 , x is called shared variable
- If y occurs only in F_1 or only in F_2 , it is called unshared variable
- Consider the following purified formula:

$$\underbrace{w_1 = x + y \land y = 1 \land w_2 = 2}_{T_{\mathbb{Z}}} \land \underbrace{w_1 = f(x) \land f(x) \neq f(w_2)}_{T_{=}}$$

- Which variables are shared? w_1, x, w_2
- Which variables are unshared?

- After purification, we have decomposed a formula F into two pure formulas F_1 and F_2
- If x occurs in both F_1 and F_2 , x is called shared variable
- If y occurs only in F_1 or only in F_2 , it is called unshared variable
- Consider the following purified formula:

$$\underbrace{w_1 = x + y \land y = 1 \land w_2 = 2}_{T_{\mathbb{Z}}} \land \underbrace{w_1 = f(x) \land f(x) \neq f(w_2)}_{T_{=}}$$

- Which variables are shared? w_1, x, w_2
- Which variables are unshared? y

- Recall: Nelson-Oppen method has two different phases:
 - 1. Purification: Seperate formula F in $T_1 \cup T_2$ into two formulas F_1 in T_1 and F_2 in T_2
 - 2. Equality propagation: Propagate all relevant equalities between theories

Recall: Nelson-Oppen method has two different phases:

- 1. Purification: Seperate formula F in $T_1 \cup T_2$ into two formulas F_1 in T_1 and F_2 in T_2
- 2. Equality propagation: Propagate all relevant equalities between theories
- Talk about second phase next

Recall: Nelson-Oppen method has two different phases:

- 1. Purification: Seperate formula F in $T_1 \cup T_2$ into two formulas F_1 in T_1 and F_2 in T_2
- 2. Equality propagation: Propagate all relevant equalities between theories
- Talk about second phase next
- But this phase is different for convex vs. non-convex theories

Recall: Nelson-Oppen method has two different phases:

- 1. Purification: Seperate formula F in $T_1 \cup T_2$ into two formulas F_1 in T_1 and F_2 in T_2
- 2. Equality propagation: Propagate all relevant equalities between theories
- Talk about second phase next
- But this phase is different for convex vs. non-convex theories
- So, need to talk about convex and non-convex theories

• Theory T is called convex if for every conjunctive formula F:

Convex Theories

- Theory T is called convex if for every conjunctive formula F:
 - If $F \Rightarrow \bigvee_{i=1}^n x_i = y_i$ for finite n

Convex Theories

- Theory T is called convex if for every conjunctive formula F:
 - If $F \Rightarrow \bigvee_{i=1}^n x_i = y_i$ for finite n
 - ▶ Then, $F \Rightarrow x_i = y_i$ for some $i \in [1, n]$

Convex Theories

- ▶ Theory *T* is called convex if for every conjunctive formula *F*:
 - If $F \Rightarrow \bigvee_{i=1}^n x_i = y_i$ for finite n
 - Then, $F \Rightarrow x_i = y_i$ for some $i \in [1, n]$
- ▶ Thus, in convex theory, if *F* implies disjunction of equalities, *F* also implies at least one of these equalities on its own

Convex Theories

- ▶ Theory *T* is called convex if for every conjunctive formula *F*:
 - If $F \Rightarrow \bigvee_{i=1}^n x_i = y_i$ for finite n
 - Then, $F \Rightarrow x_i = y_i$ for some $i \in [1, n]$
- ▶ Thus, in convex theory, if *F* implies disjunction of equalities, *F* also implies at least one of these equalities on its own
- If a theory does not satisfy this condition, it is called non-convex

• Example: Consider formula $1 \le x \land x \le 2$ in $T_{\mathbb{Z}}$

- Example: Consider formula $1 \le x \land x \le 2$ in $T_{\mathbb{Z}}$
- Does it imply $x = 1 \lor x = 2$?

- Example: Consider formula $1 \le x \land x \le 2$ in $T_{\mathbb{Z}}$
- Does it imply $x = 1 \lor x = 2$? yes

- Example: Consider formula $1 \le x \land x \le 2$ in $T_{\mathbb{Z}}$
- Does it imply $x = 1 \lor x = 2$? yes
- Does it imply x = 1?

- Example: Consider formula $1 \le x \land x \le 2$ in $T_{\mathbb{Z}}$
- Does it imply $x = 1 \lor x = 2$? yes
- Does it imply x = 1? no

- Example: Consider formula $1 \le x \land x \le 2$ in $T_{\mathbb{Z}}$
- Does it imply $x = 1 \lor x = 2$? yes
- Does it imply x = 1? no
- Does it imply x = 2?

- Example: Consider formula $1 \le x \land x \le 2$ in $T_{\mathbb{Z}}$
- Does it imply $x = 1 \lor x = 2$? yes
- Does it imply x = 1? no
- Does it imply x = 2? no

- Example: Consider formula $1 \le x \land x \le 2$ in $T_{\mathbb{Z}}$
- Does it imply $x = 1 \lor x = 2$? yes
- Does it imply x = 1? no
- Does it imply x = 2? no
- ▶ Is $T_{\mathbb{Z}}$ convex?

- Example: Consider formula $1 \le x \land x \le 2$ in $T_{\mathbb{Z}}$
- Does it imply $x = 1 \lor x = 2$? yes
- Does it imply x = 1? no
- Does it imply x = 2? no
- ▶ Is $T_{\mathbb{Z}}$ convex? no

- Example: Consider formula $1 \le x \land x \le 2$ in $T_{\mathbb{Z}}$
- Does it imply $x = 1 \lor x = 2$? yes
- Does it imply x = 1? no
- Does it imply x = 2? no
- ▶ Is $T_{\mathbb{Z}}$ convex? no

- Example: Consider formula $1 \le x \land x \le 2$ in $T_{\mathbb{Z}}$
- Does it imply $x = 1 \lor x = 2$? yes
- Does it imply x = 1? no
- Does it imply x = 2? no
- ▶ Is $T_{\mathbb{Z}}$ convex? no
- Theory of equality $T_{=}$ is convex

 Combining decision procedures for two convex theories is easier and more efficient

- Combining decision procedures for two convex theories is easier and more efficient
- Intuition: When we have convexity, there are fewer facts that need to be communicated between theories

- Combining decision procedures for two convex theories is easier and more efficient
- Intuition: When we have convexity, there are fewer facts that need to be communicated between theories
- \blacktriangleright Unfortunately, some theories of interest such as $T_{\mathbb{Z}}$ and theory of arrays are non-convex

- Combining decision procedures for two convex theories is easier and more efficient
- Intuition: When we have convexity, there are fewer facts that need to be communicated between theories
- \blacktriangleright Unfortunately, some theories of interest such as $T_{\mathbb{Z}}$ and theory of arrays are non-convex
- If one of the theories we want to combine is non-convex, decision procedure for combination theory is much less efficent

- Combining decision procedures for two convex theories is easier and more efficient
- Intuition: When we have convexity, there are fewer facts that need to be communicated between theories
- \blacktriangleright Unfortunately, some theories of interest such as $T_{\mathbb{Z}}$ and theory of arrays are non-convex
- If one of the theories we want to combine is non-convex, decision procedure for combination theory is much less efficent
- We'll first talk about Nelson-Oppen method for convex theories, then for non-convex theories

• Given formula F in $T_1 \cup T_2$ (T_1, T_2 convex), want to decide if F is satisfiable

- Given formula F in $T_1 \cup T_2$ (T_1, T_2 convex), want to decide if F is satisfiable
- First, purify F into F_1 and F_2

- Given formula F in $T_1 \cup T_2$ (T_1, T_2 convex), want to decide if F is satisfiable
- First, purify F into F_1 and F_2
- ▶ Run decision procedures for T_1 , T_2 to decide sat. of F_1 , F_2

- ▶ Given formula F in $T_1 \cup T_2$ (T_1, T_2 convex), want to decide if F is satisfiable
- First, purify F into F_1 and F_2
- ▶ Run decision procedures for T_1 , T_2 to decide sat. of F_1 , F_2
- ▶ If either is unsat, *F* is unsatisfiable. Why?

- Given formula F in $T_1 \cup T_2$ (T_1, T_2 convex), want to decide if F is satisfiable
- First, purify F into F_1 and F_2
- ▶ Run decision procedures for T_1 , T_2 to decide sat. of F_1 , F_2
- If either is unsat, F is unsatisfiable. Why?
- Because F is equisatisfiable to $F_1 \wedge F_2$, which is unsat

▶ If both are SAT, does this mean *F* is sat?

- ▶ If both are SAT, does this mean F is sat?
- \blacktriangleright No because if F_1 and F_2 are individually satisfiable, $F_1 \wedge F_2$ does not have to be satisfiable

- ▶ If both are SAT, does this mean *F* is sat?
- \blacktriangleright No because if F_1 and F_2 are individually satisfiable, $F_1 \wedge F_2$ does not have to be satisfiable
- ► Example:

$$\underbrace{x+y=2 \land x=1}_{T_{\mathbb{Z}}} \land \underbrace{f(x) \neq f(y)}_{T_{=}}$$

- ▶ If both are SAT, does this mean *F* is sat?
- No because if F_1 and F_2 are individually satisfiable, $F_1 \wedge F_2$ does not have to be satisfiable

• Example:
$$\underbrace{x+y=2 \wedge x=1}_{T_{\mathbb{Z}}} \wedge \underbrace{f(x) \neq f(y)}_{T_{=}}$$

 \blacktriangleright Here, F_1 and F_2 are individually sat, but their combination is unsat b/c $T_{\mathbb{Z}}$ implies x=y

- ▶ If both are SAT, does this mean *F* is sat?
- No because if F_1 and F_2 are individually satisfiable, $F_1 \wedge F_2$ does not have to be satisfiable

• Example:
$$\underbrace{x+y=2 \land x=1}_{T_{\mathbb{Z}}} \land \underbrace{f(x) \neq f(y)}_{T_{=}}$$

- \blacktriangleright Here, F_1 and F_2 are individually sat, but their combination is unsat b/c $T_{\mathbb{Z}}$ implies x=y
- \blacktriangleright In the case where F_1 and F_2 are sat, theories have to exchange all implied equalities

- ▶ If both are SAT, does this mean *F* is sat?
- \blacktriangleright No because if F_1 and F_2 are individually satisfiable, $F_1 \wedge F_2$ does not have to be satisfiable

• Example:
$$\underbrace{x+y=2 \land x=1}_{T_{\mathbb{Z}}} \land \underbrace{f(x) \neq f(y)}_{T_{=}}$$

- \blacktriangleright Here, F_1 and F_2 are individually sat, but their combination is unsat b/c $T_{\mathbb{Z}}$ implies x=y
- \blacktriangleright In the case where F_1 and F_2 are sat, theories have to exchange all implied equalities
- Why only equalities?

- If both are SAT, does this mean F is sat?
- \blacktriangleright No because if F_1 and F_2 are individually satisfiable, $F_1 \wedge F_2$ does not have to be satisfiable

• Example:
$$\underbrace{x+y=2 \land x=1}_{T_{\mathbb{Z}}} \land \underbrace{f(x) \neq f(y)}_{T_{=}}$$

- \blacktriangleright Here, F_1 and F_2 are individually sat, but their combination is unsat b/c $T_{\mathbb{Z}}$ implies x=y
- \blacktriangleright In the case where F_1 and F_2 are sat, theories have to exchange all implied equalities
- Why only equalities? b/c it is the only shared symbol

For each pair of shared variables x, y, determine if:

- For each pair of shared variables x, y, determine if:
 - 1. $F_1 \Rightarrow x = y$

- For each pair of shared variables x, y, determine if:
 - 1. $F_1 \Rightarrow x = y$
 - 2. $F_2 \Rightarrow x = y$

- For each pair of shared variables x, y, determine if:
 - 1. $F_1 \Rightarrow x = y$
 - 2. $F_2 \Rightarrow x = y$
- If (1) holds but not (2), conjoin x = y with F_2

- For each pair of shared variables x, y, determine if:
 - 1. $F_1 \Rightarrow x = y$
 - 2. $F_2 \Rightarrow x = y$
- If (1) holds but not (2), conjoin x = y with F_2
- If (2) holds but not (1), conjoin x = y with F_1

- For each pair of shared variables x, y, determine if:
 - 1. $F_1 \Rightarrow x = y$
 - 2. $F_2 \Rightarrow x = y$
- If (1) holds but not (2), conjoin x = y with F_2
- If (2) holds but not (1), conjoin x = y with F_1
- Let F'_1 and F'_2 denote new formulas

Nelson-Oppen Method for Convex Theories

- For each pair of shared variables x, y, determine if:
 - 1. $F_1 \Rightarrow x = y$
 - 2. $F_2 \Rightarrow x = y$
- If (1) holds but not (2), conjoin x = y with F_2
- If (2) holds but not (1), conjoin x = y with F_1
- Let F'_1 and F'_2 denote new formulas
- Check satisfiability of F'_1 and F'_2

Nelson-Oppen Method for Convex Theories

- For each pair of shared variables x, y, determine if:
 - 1. $F_1 \Rightarrow x = y$
 - 2. $F_2 \Rightarrow x = y$
- If (1) holds but not (2), conjoin x = y with F_2
- If (2) holds but not (1), conjoin x = y with F_1
- Let F'_1 and F'_2 denote new formulas
- Check satisfiability of F'_1 and F'_2
- Repeat until either formula becomes unsat or no new equalities can be inferred

▶ Use Nelson-Oppen to decide sat of following $T_{=} \cup T_{\mathbb{Q}}$ formula:

 $f(f(x) - f(y)) \neq f(z) \ \land \ x \leq y \ \land \ y + z \leq x \ \land \ 0 \leq z$

▶ Use Nelson-Oppen to decide sat of following $T_{=} \cup T_{\mathbb{Q}}$ formula:

 $f(f(x) - f(y)) \neq f(z) \ \land \ x \leq y \ \land \ y + z \leq x \ \land \ 0 \leq z$

▶ First, we need to purify:

▶ Use Nelson-Oppen to decide sat of following $T_{=} \cup T_{\mathbb{Q}}$ formula:

 $f(f(x) - f(y)) \neq f(z) \ \land \ x \leq y \ \land \ y + z \leq x \ \land \ 0 \leq z$

- First, we need to purify:
 - Replace f(x) with new variable w_1

▶ Use Nelson-Oppen to decide sat of following $T_{=} \cup T_{\mathbb{Q}}$ formula:

 $f(f(x) - f(y)) \neq f(z) \ \land \ x \leq y \ \land \ y + z \leq x \ \land \ 0 \leq z$

- First, we need to purify:
 - Replace f(x) with new variable w_1
 - Replace f(y) with new variable w_2

▶ Use Nelson-Oppen to decide sat of following $T_{=} \cup T_{\mathbb{Q}}$ formula:

 $f(f(x) - f(y)) \neq f(z) \land x \leq y \land y + z \leq x \land 0 \leq z$

- First, we need to purify:
 - Replace f(x) with new variable w₁
 - Replace f(y) with new variable w₂
 - f(x) f(y) is now replaced with $w_1 w_2$ and we conjoin

 $w_1 = f(x) \wedge w_2 = f(y)$

▶ Use Nelson-Oppen to decide sat of following $T_{=} \cup T_{\mathbb{Q}}$ formula:

 $f(f(x) - f(y)) \neq f(z) \land x \leq y \land y + z \leq x \land 0 \leq z$

- First, we need to purify:
 - Replace f(x) with new variable w₁
 - Replace f(y) with new variable w₂
 - f(x) f(y) is now replaced with $w_1 w_2$ and we conjoin

 $w_1 = f(x) \land w_2 = f(y)$

First literal is now $f(w_1 - w_2) \neq f(z)$; still not pure!

▶ Use Nelson-Oppen to decide sat of following $T_{=} \cup T_{\mathbb{Q}}$ formula:

 $f(f(x) - f(y)) \neq f(z) \land x \leq y \land y + z \leq x \land 0 \leq z$

- First, we need to purify:
 - Replace f(x) with new variable w₁
 - Replace f(y) with new variable w₂
 - ► f(x) f(y) is now replaced with $w_1 w_2$ and we conjoin $w_1 = f(x) \land w_2 = f(y)$
 - First literal is now $f(w_1 w_2) \neq f(z)$; still not pure!
 - Replace $w_1 w_2$ with w_3 and add equality $w_3 = w_1 w_2$

• Purified formula is $F_1 \wedge F_2$ where:

$$F_1: \quad w_1 = f(x) \land w_2 = f(y) \land f(w_3) \neq f(z) F_2: \quad w_3 = w_1 - w_2 \land x \le y \land y + z \le x \land 0 \le z$$

• Purified formula is $F_1 \wedge F_2$ where:

$$F_1: \quad w_1 = f(x) \land w_2 = f(y) \land f(w_3) \neq f(z) F_2: \quad w_3 = w_1 - w_2 \land x \le y \land y + z \le x \land 0 \le z$$

Which variables are shared?

• Purified formula is $F_1 \wedge F_2$ where:

$$F_1: \quad w_1 = f(x) \land w_2 = f(y) \land f(w_3) \neq f(z) F_2: \quad w_3 = w_1 - w_2 \land x \le y \land y + z \le x \land 0 \le z$$

Which variables are shared? all

• Purified formula is $F_1 \wedge F_2$ where:

$$F_1: \quad w_1 = f(x) \land w_2 = f(y) \land f(w_3) \neq f(z) F_2: \quad w_3 = w_1 - w_2 \land x \le y \land y + z \le x \land 0 \le z$$

Which variables are shared? all

▶ Check sat of *F*₁. Is it SAT?

• Purified formula is $F_1 \wedge F_2$ where:

$$F_1: \quad w_1 = f(x) \land w_2 = f(y) \land f(w_3) \neq f(z) F_2: \quad w_3 = w_1 - w_2 \land x \le y \land y + z \le x \land 0 \le z$$

Which variables are shared? all

▶ Check sat of *F*₁. Is it SAT? yes

• Purified formula is $F_1 \wedge F_2$ where:

$$F_1: \quad w_1 = f(x) \land w_2 = f(y) \land f(w_3) \neq f(z) F_2: \quad w_3 = w_1 - w_2 \land x \le y \land y + z \le x \land 0 \le z$$

- Which variables are shared? all
- ▶ Check sat of *F*₁. Is it SAT? yes
- ▶ Check sat of *F*₂. Is it SAT?

• Purified formula is $F_1 \wedge F_2$ where:

$$F_1: \quad w_1 = f(x) \land w_2 = f(y) \land f(w_3) \neq f(z) F_2: \quad w_3 = w_1 - w_2 \land x \le y \land y + z \le x \land 0 \le z$$

- Which variables are shared? all
- ▶ Check sat of *F*₁. Is it SAT? yes
- Check sat of F₂. Is it SAT? yes

• Purified formula is $F_1 \wedge F_2$ where:

$$F_1: \quad w_1 = f(x) \land w_2 = f(y) \land f(w_3) \neq f(z) F_2: \quad w_3 = w_1 - w_2 \land x \le y \land y + z \le x \land 0 \le z$$

Which variables are shared? all

- Check sat of F₁. Is it SAT? yes
- Check sat of F₂. Is it SAT? yes
- ▶ Now, for each pair of shared variable x_i, x_j, we query whether F₁ or F₂ imply x_i = x_j

$$F_1: \quad w_1 = f(x) \land w_2 = f(y) \land f(w_3) \neq f(z) F_2: \quad w_3 = w_1 - w_2 \land x \le y \land y + z \le x \land 0 \le z$$

• Consider the query x = y – is it implied by either F_1 or F_2 ?

$$F_1: \quad w_1 = f(x) \land w_2 = f(y) \land f(w_3) \neq f(z) F_2: \quad w_3 = w_1 - w_2 \land x \le y \land y + z \le x \land 0 \le z$$

• Consider the query x = y – is it implied by either F_1 or F_2 ? implied by F_2

$$F_1: \quad w_1 = f(x) \land w_2 = f(y) \land f(w_3) \neq f(z) F_2: \quad w_3 = w_1 - w_2 \land x \le y \land y + z \le x \land 0 \le z$$

- Consider the query x = y is it implied by either F_1 or F_2 ? implied by F_2
- $y + z \le x \land 0 \le z$ imply $0 \le z \le x y$, i.e., $y \le x$

$$F_1: \quad w_1 = f(x) \land w_2 = f(y) \land f(w_3) \neq f(z) F_2: \quad w_3 = w_1 - w_2 \land x \le y \land y + z \le x \land 0 \le z$$

- Consider the query x = y is it implied by either F_1 or F_2 ? implied by F_2
- $y + z \le x \land 0 \le z$ imply $0 \le z \le x y$, i.e., $y \le x$
- ▶ Since we also have $x \leq y$, $T_{\mathbb{Q}}$ implies x = y

$$F_1: \quad w_1 = f(x) \land w_2 = f(y) \land f(w_3) \neq f(z) F_2: \quad w_3 = w_1 - w_2 \land x \le y \land y + z \le x \land 0 \le z$$

- Consider the query x = y is it implied by either F_1 or F_2 ? implied by F_2
- $y + z \le x \land 0 \le z$ imply $0 \le z \le x y$, i.e., $y \le x$
- Since we also have $x \leq y$, $T_{\mathbb{Q}}$ implies x = y
- Now, propagate this to $T_{=}$, so F'_{1} becomes:

 $F_1': w_1 = f(x) \land w_2 = f(y) \land f(w_3) \neq f(z) \land x = y$

$$F_1: \quad w_1 = f(x) \land w_2 = f(y) \land f(w_3) \neq f(z) F_2: \quad w_3 = w_1 - w_2 \land x \le y \land y + z \le x \land 0 \le z$$

- Consider the query x = y is it implied by either F_1 or F_2 ? implied by F_2
- $y + z \le x \land 0 \le z$ imply $0 \le z \le x y$, i.e., $y \le x$
- Since we also have $x \leq y$, $T_{\mathbb{Q}}$ implies x = y
- Now, propagate this to $T_{=}$, so F'_{1} becomes:

 $F'_1: w_1 = f(x) \land w_2 = f(y) \land f(w_3) \neq f(z) \land x = y$

▶ Check sat of *F*[']₁. Is it SAT?

$$F_1: \quad w_1 = f(x) \land w_2 = f(y) \land f(w_3) \neq f(z) F_2: \quad w_3 = w_1 - w_2 \land x \le y \land y + z \le x \land 0 \le z$$

- Consider the query x = y is it implied by either F_1 or F_2 ? implied by F_2
- $y + z \le x \land 0 \le z$ imply $0 \le z \le x y$, i.e., $y \le x$
- Since we also have $x \leq y$, $T_{\mathbb{Q}}$ implies x = y
- Now, propagate this to $T_{=}$, so F'_{1} becomes:

 $F'_1: w_1 = f(x) \land w_2 = f(y) \land f(w_3) \neq f(z) \land x = y$

Check sat of F'₁. Is it SAT? yes

$$F_1: \quad w_1 = f(x) \land w_2 = f(y) \land f(w_3) \neq f(z) F_2: \quad w_3 = w_1 - w_2 \land x \le y \land y + z \le x \land 0 \le z$$

- Consider the query x = y is it implied by either F_1 or F_2 ? implied by F_2
- $y + z \le x \land 0 \le z$ imply $0 \le z \le x y$, i.e., $y \le x$
- Since we also have $x \leq y$, $T_{\mathbb{Q}}$ implies x = y
- Now, propagate this to $T_{=}$, so F'_{1} becomes:

 $F'_1: w_1 = f(x) \land w_2 = f(y) \land f(w_3) \neq f(z) \land x = y$

- Check sat of F'₁. Is it SAT? yes
- Are we done?

$$F_1: \quad w_1 = f(x) \land w_2 = f(y) \land f(w_3) \neq f(z) F_2: \quad w_3 = w_1 - w_2 \land x \le y \land y + z \le x \land 0 \le z$$

- Consider the query x = y is it implied by either F_1 or F_2 ? implied by F_2
- $y + z \le x \land 0 \le z$ imply $0 \le z \le x y$, i.e., $y \le x$
- Since we also have $x \leq y$, $T_{\mathbb{Q}}$ implies x = y
- Now, propagate this to $T_{=}$, so F'_{1} becomes:

 $F'_1: w_1 = f(x) \land w_2 = f(y) \land f(w_3) \neq f(z) \land x = y$

- Check sat of F'₁. Is it SAT? yes
- Are we done? no

$$F_1: \quad w_1 = f(x) \land w_2 = f(y) \land f(w_3) \neq f(z) \land x = y$$

$$F_2: \quad w_3 = w_1 - w_2 \land x \le y \land y + z \le x \land 0 \le z$$

• Since F_1 changed, need to check if it implies any new equality

$$F_1: \quad w_1 = f(x) \land w_2 = f(y) \land f(w_3) \neq f(z) \land x = y F_2: \quad w_3 = w_1 - w_2 \land x \le y \land y + z \le x \land 0 \le z$$

- Since F_1 changed, need to check if it implies any new equality
- Does it imply a new equality?

$$F_1: \quad w_1 = f(x) \land w_2 = f(y) \land f(w_3) \neq f(z) \land x = y$$

$$F_2: \quad w_3 = w_1 - w_2 \land x \le y \land y + z \le x \land 0 \le z$$

- Since F_1 changed, need to check if it implies any new equality
- Does it imply a new equality? yes, $w_1 = w_2$

$$F_1: \quad w_1 = f(x) \land w_2 = f(y) \land f(w_3) \neq f(z) \land x = y$$

$$F_2: \quad w_3 = w_1 - w_2 \land x \le y \land y + z \le x \land 0 \le z$$

- Since F_1 changed, need to check if it implies any new equality
- Does it imply a new equality? yes, $w_1 = w_2$

Now, we add
$$w_1 = w_2$$
 to F_2 :

 $F_2: w_3 = w_1 - w_2 \land x \le y \land y + z \le x \land 0 \le z \land w_1 = w_2$

$$F_1: \quad w_1 = f(x) \land w_2 = f(y) \land f(w_3) \neq f(z) \land x = y$$

$$F_2: \quad w_3 = w_1 - w_2 \land x \le y \land y + z \le x \land 0 \le z$$

- Since F_1 changed, need to check if it implies any new equality
- Does it imply a new equality? yes, $w_1 = w_2$

Now, we add
$$w_1 = w_2$$
 to F_2 :

 $F_2: w_3 = w_1 - w_2 \land x \le y \land y + z \le x \land 0 \le z \land w_1 = w_2$

▶ We recheck sat of *F*₂. Is it SAT?

$$F_1: \quad w_1 = f(x) \land w_2 = f(y) \land f(w_3) \neq f(z) \land x = y$$

$$F_2: \quad w_3 = w_1 - w_2 \land x \le y \land y + z \le x \land 0 \le z$$

- Since F_1 changed, need to check if it implies any new equality
- Does it imply a new equality? yes, $w_1 = w_2$

Now, we add
$$w_1 = w_2$$
 to F_2 :

 $F_2: w_3 = w_1 - w_2 \land x \le y \land y + z \le x \land 0 \le z \land w_1 = w_2$

▶ We recheck sat of *F*₂. Is it SAT? yes

$$F_1: \quad w_1 = f(x) \land w_2 = f(y) \land f(w_3) \neq f(z) \land x = y$$

$$F_2: \quad w_3 = w_1 - w_2 \land x \le y \land y + z \le x \land 0 \le z$$

- Since F_1 changed, need to check if it implies any new equality
- Does it imply a new equality? yes, $w_1 = w_2$

Now, we add
$$w_1 = w_2$$
 to F_2 :

 $F_2: w_3 = w_1 - w_2 \land x \le y \land y + z \le x \land 0 \le z \land w_1 = w_2$

- ▶ We recheck sat of *F*₂. Is it SAT? yes
- Still not done b/c need to check if F₂ implies any new equalities

$$F_1: \quad w_1 = f(x) \land w_2 = f(y) \land f(w_3) \neq f(z) \land x = y$$

$$F_2: \quad w_3 = w_1 - w_2 \land x \leq y \land y + z \leq x \land 0 \leq z \land w_1 = w_2$$

• Consider the query $w_3 = z$?

$$\begin{array}{ll} F_1: & w_1 = f(x) \land w_2 = f(y) \land f(w_3) \neq f(z) \land x = y \\ F_2: & w_3 = w_1 - w_2 \land x \leq y \land y + z \leq x \land 0 \leq z \land w_1 = w_2 \end{array}$$

• Consider the query $w_3 = z$?

•
$$w_3 = w_1 - w_2$$
 and $w_1 = w_2$ imply $w_3 = 0$

$$\begin{array}{ll} F_1: & w_1 = f(x) \land w_2 = f(y) \land f(w_3) \neq f(z) \land x = y \\ F_2: & w_3 = w_1 - w_2 \land x \leq y \land y + z \leq x \land 0 \leq z \land w_1 = w_2 \end{array}$$

• Consider the query $w_3 = z$?

•
$$w_3 = w_1 - w_2$$
 and $w_1 = w_2$ imply $w_3 = 0$

• Since x = y, $y + z \le x$ implies $z \le 0$

$$\begin{array}{ll} F_1: & w_1 = f(x) \land w_2 = f(y) \land f(w_3) \neq f(z) \land x = y \\ F_2: & w_3 = w_1 - w_2 \land x \le y \land y + z \le x \land 0 \le z \land w_1 = w_2 \end{array}$$

• Consider the query $w_3 = z$?

•
$$w_3 = w_1 - w_2$$
 and $w_1 = w_2$ imply $w_3 = 0$

- Since x = y, $y + z \le x$ implies $z \le 0$
- Since $z \leq 0$ and $0 \leq z$, we have z = 0

$$\begin{array}{ll} F_1: & w_1 = f(x) \land w_2 = f(y) \land f(w_3) \neq f(z) \land x = y \\ F_2: & w_3 = w_1 - w_2 \land x \le y \land y + z \le x \land 0 \le z \land w_1 = w_2 \end{array}$$

• Consider the query $w_3 = z$?

•
$$w_3 = w_1 - w_2$$
 and $w_1 = w_2$ imply $w_3 = 0$

- Since x = y, $y + z \le x$ implies $z \le 0$
- Since $z \leq 0$ and $0 \leq z$, we have z = 0
- Thus, $T_{\mathbb{Q}}$ answer "yes" for query $w_3 = z$

• Now, propagate $w_3 = z$ to F_1 :

 $F_1: w_1 = f(x) \land w_2 = f(y) \land f(w_3) \neq f(z) \land x = y \land w_3 = z$

• Now, propagate $w_3 = z$ to F_1 :

 $F_1: w_1 = f(x) \land w_2 = f(y) \land f(w_3) \neq f(z) \land x = y \land w_3 = z$

Is this sat?

• Now, propagate $w_3 = z$ to F_1 :

 $F_1: w_1 = f(x) \land w_2 = f(y) \land f(w_3) \neq f(z) \land x = y \land w_3 = z$

Is this sat?

• No, because $w_3 = z$ implies $f(w_3) = f(z)$

• Now, propagate $w_3 = z$ to F_1 :

 $F_1: w_1 = f(x) \land w_2 = f(y) \land f(w_3) \neq f(z) \land x = y \land w_3 = z$

Is this sat?

- ▶ No, because $w_3 = z$ implies $f(w_3) = f(z)$
- This contradicts $f(w_3) \neq f(z)$

• Now, propagate $w_3 = z$ to F_1 :

 $F_1: w_1 = f(x) \land w_2 = f(y) \land f(w_3) \neq f(z) \land x = y \land w_3 = z$

Is this sat?

- No, because $w_3 = z$ implies $f(w_3) = f(z)$
- This contradicts $f(w_3) \neq f(z)$
- Thus, original formula is UNSAT

 Unfortunately, technique discussed so far does not work for non-convex theories

- Unfortunately, technique discussed so far does not work for non-convex theories
- Consider the following $T_{\mathbb{Z}} \cup T_{=}$ formula:

 $1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)$

- Unfortunately, technique discussed so far does not work for non-convex theories
- Consider the following $T_{\mathbb{Z}} \cup T_{=}$ formula:

 $1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)$

Is this formula SAT?

- Unfortunately, technique discussed so far does not work for non-convex theories
- Consider the following $T_{\mathbb{Z}} \cup T_{=}$ formula:

 $1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)$

Is this formula SAT? no

- Unfortunately, technique discussed so far does not work for non-convex theories
- Consider the following $T_{\mathbb{Z}} \cup T_{=}$ formula:

 $1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)$

- Is this formula SAT? no
- Let's see what happens if we use technique described so far

- Unfortunately, technique discussed so far does not work for non-convex theories
- Consider the following $T_{\mathbb{Z}} \cup T_{=}$ formula:

 $1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)$

- Is this formula SAT? no
- Let's see what happens if we use technique described so far
- If we purify, we get the following formulas:

 $F_1: \quad f(x) \neq f(w_1) \land f(x) \neq f(w_2)$ $F_2: \quad 1 \le x \land x \le 2 \land w_1 = 1 \land w_2 = 2$

$$F_1: \quad f(x) \neq f(w_1) \land f(x) \neq f(w_2)$$

$$F_2: \quad 1 \le x \land x \le 2 \land w_1 = 1 \land w_2 = 2$$

▶ Is F_1 SAT?

$$F_1: \quad f(x) \neq f(w_1) \land f(x) \neq f(w_2)$$

$$F_2: \quad 1 \le x \land x \le 2 \land w_1 = 1 \land w_2 = 2$$

► Is F₁ SAT? yes

$$F_1: \quad f(x) \neq f(w_1) \land f(x) \neq f(w_2)$$

$$F_2: \quad 1 \le x \land x \le 2 \land w_1 = 1 \land w_2 = 2$$

- ► Is F₁ SAT? yes
- ▶ Is F_2 SAT?

$$F_1: \quad f(x) \neq f(w_1) \land f(x) \neq f(w_2)$$

$$F_2: \quad 1 \le x \land x \le 2 \land w_1 = 1 \land w_2 = 2$$

- ▶ Is F₁ SAT? yes
- ► Is F₂ SAT? yes

$$F_1: \quad f(x) \neq f(w_1) \land f(x) \neq f(w_2)$$

$$F_2: \quad 1 \le x \land x \le 2 \land w_1 = 1 \land w_2 = 2$$

- ▶ Is F₁ SAT? yes
- ▶ Is F₂ SAT? yes
- ▶ Does *F*¹ imply a new equality by itself?

$$F_1: \quad f(x) \neq f(w_1) \land f(x) \neq f(w_2)$$

$$F_2: \quad 1 \le x \land x \le 2 \land w_1 = 1 \land w_2 = 2$$

- ▶ Is F₁ SAT? yes
- ▶ Is F₂ SAT? yes
- Does F₁ imply a new equality by itself? no

$$F_1: \quad f(x) \neq f(w_1) \land f(x) \neq f(w_2)$$

$$F_2: \quad 1 \le x \land x \le 2 \land w_1 = 1 \land w_2 = 2$$

- ▶ Is F₁ SAT? yes
- ▶ Is F₂ SAT? yes
- ▶ Does *F*¹ imply a new equality by itself? no
- ▶ Does *F*² imply a new equality by itself?

$$F_1: \quad f(x) \neq f(w_1) \land f(x) \neq f(w_2)$$

$$F_2: \quad 1 \le x \land x \le 2 \land w_1 = 1 \land w_2 = 2$$

- ▶ Is F₁ SAT? yes
- ▶ Is F₂ SAT? yes
- Does F_1 imply a new equality by itself? no
- Does F₂ imply a new equality by itself? no

$$F_1: \quad f(x) \neq f(w_1) \land f(x) \neq f(w_2)$$

$$F_2: \quad 1 \le x \land x \le 2 \land w_1 = 1 \land w_2 = 2$$

- ▶ Is F₁ SAT? yes
- ▶ Is F₂ SAT? yes
- Does F_1 imply a new equality by itself? no
- Does F₂ imply a new equality by itself? no
- > Thus technique discussed so far returns sat, although formula in unsat

 Problem is that in non-convex theories, a formula might imply a disjunction of equalities

- Problem is that in non-convex theories, a formula might imply a disjunction of equalities
- But it doesn't have to imply any single equality on its own

- Problem is that in non-convex theories, a formula might imply a disjunction of equalities
- But it doesn't have to imply any single equality on its own
- Thus, it is not enough to query individual equality relations between variables

- Problem is that in non-convex theories, a formula might imply a disjunction of equalities
- But it doesn't have to imply any single equality on its own
- Thus, it is not enough to query individual equality relations between variables
- We also have to query and propagate disjunctions of equalities

- Problem is that in non-convex theories, a formula might imply a disjunction of equalities
- But it doesn't have to imply any single equality on its own
- Thus, it is not enough to query individual equality relations between variables
- > We also have to query and propagate disjunctions of equalities
- Two questions:

- Problem is that in non-convex theories, a formula might imply a disjunction of equalities
- But it doesn't have to imply any single equality on its own
- Thus, it is not enough to query individual equality relations between variables
- > We also have to query and propagate disjunctions of equalities
- Two questions:
 - 1. Which disjunctions do we query?

- Problem is that in non-convex theories, a formula might imply a disjunction of equalities
- But it doesn't have to imply any single equality on its own
- Thus, it is not enough to query individual equality relations between variables
- We also have to query and propagate disjunctions of equalities
- Two questions:
 - 1. Which disjunctions do we query?
 - 2. How do we propagate disjunctions since we are considering disjunction-free formulas?

Recall: We only have a finite set of shared variables

- Recall: We only have a finite set of shared variables
- From these, we can only generate a finite number of disjunctions of equalities

- Recall: We only have a finite set of shared variables
- From these, we can only generate a finite number of disjunctions of equalities
- > Thus, for each possible disjunction, we need to issue a query

- Recall: We only have a finite set of shared variables
- From these, we can only generate a finite number of disjunctions of equalities
- > Thus, for each possible disjunction, we need to issue a query
- Example: If we have shared variables x, y, z, which queries do we need to issue?

- Recall: We only have a finite set of shared variables
- From these, we can only generate a finite number of disjunctions of equalities
- > Thus, for each possible disjunction, we need to issue a query
- Example: If we have shared variables x, y, z, which queries do we need to issue?

$$\begin{array}{c} x = y \\ x = z \\ y = z \\ x = y \lor x = z \end{array}$$

Propagating Disjunctions

• Suppose answer to some disjunctive query $\bigvee_{i=1}^{n} x_i = y_i$ is yes

- Suppose answer to some disjunctive query $\bigvee_{i=1}^{n} x_i = y_i$ is yes
- \blacktriangleright In this case, we need to branch and consider all n possibilities

Propagating Disjunctions

- Suppose answer to some disjunctive query $\bigvee_{i=1}^{n} x_i = y_i$ is yes
- In this case, we need to branch and consider all n possibilities
- \blacktriangleright Thus, create n subproblems where we propagate $x_i = y_i$ in i 'th subproblem

Propagating Disjunctions

- Suppose answer to some disjunctive query $\bigvee_{i=1}^{n} x_i = y_i$ is yes
- \blacktriangleright In this case, we need to branch and consider all n possibilities
- ▶ Thus, create n subproblems where we propagate $x_i = y_i$ in i'th subproblem
- ▶ If there is any subproblem that is satisfiable, original formula is satisfiable

Propagating Disjunctions

- Suppose answer to some disjunctive query $\bigvee_{i=1}^{n} x_i = y_i$ is yes
- In this case, we need to branch and consider all n possibilities
- ▶ Thus, create n subproblems where we propagate $x_i = y_i$ in i'th subproblem
- ▶ If there is any subproblem that is satisfiable, original formula is satisfiable
- If every subproblem is unsatisfiable, then original formula is unsatisfiable

• Consider $T_{=} \cup T_{\mathbb{Z}}$ formula:

```
1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)
```

• Consider $T_{=} \cup T_{\mathbb{Z}}$ formula:

$$1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)$$

After purification, we get:

$$F_1: \quad f(x) \neq f(w_1) \land f(x) \neq f(w_2)$$

$$F_2: \quad 1 \le x \land x \le 2 \land w_1 = 1 \land w_2 = 2$$

• Consider $T_{=} \cup T_{\mathbb{Z}}$ formula:

$$1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)$$

After purification, we get:

$$F_1: \quad f(x) \neq f(w_1) \land f(x) \neq f(w_2)$$

$$F_2: \quad 1 \le x \land x \le 2 \land w_1 = 1 \land w_2 = 2$$

Which queries do we need to issue?

• Consider $T_{=} \cup T_{\mathbb{Z}}$ formula:

$$1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)$$

After purification, we get:

$$F_1: \quad f(x) \neq f(w_1) \land f(x) \neq f(w_2)$$

$$F_2: \quad 1 \le x \land x \le 2 \land w_1 = 1 \land w_2 = 2$$

Which queries do we need to issue?

(1)
$$x = w_1$$

(2) $x = w_2$
(3) $x = w_1 \lor x = w_2$

• Consider $T_{=} \cup T_{\mathbb{Z}}$ formula:

$$1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)$$

After purification, we get:

$$F_1: \quad f(x) \neq f(w_1) \land f(x) \neq f(w_2)$$

$$F_2: \quad 1 \le x \land x \le 2 \land w_1 = 1 \land w_2 = 2$$

Which queries do we need to issue?

(1)
$$x = w_1$$

(2) $x = w_2$
(3) $x = w_1 \lor x = w_2$

• Answer to queries (1) and (2) are no, but F_2 implies query (3)

▶ Now, we create two subproblems, one where we propagate $x = w_1$ and $x = w_2$

- \blacktriangleright Now, we create two subproblems, one where we propagate $x=w_1$ and $x=w_2$
- ► First subproblem:

$$F_1: \quad f(x) \neq f(w_1) \land f(x) \neq f(w_2) \land \mathbf{x} = \mathbf{w}_1$$

$$F_2: \quad 1 \le x \land x \le 2 \land w_1 = 1 \land w_2 = 2$$

- \blacktriangleright Now, we create two subproblems, one where we propagate $x=w_1$ and $x=w_2$
- First subproblem:

$$F_1: \quad f(x) \neq f(w_1) \land f(x) \neq f(w_2) \land \mathbf{x} = \mathbf{w}_1$$

$$F_2: \quad 1 \le x \land x \le 2 \land w_1 = 1 \land w_2 = 2$$

Is this satisfiable?

- \blacktriangleright Now, we create two subproblems, one where we propagate $x=w_1$ and $x=w_2$
- First subproblem:

$$F_1: \quad f(x) \neq f(w_1) \land f(x) \neq f(w_2) \land x = w_1$$

$$F_2: \quad 1 \le x \land x \le 2 \land w_1 = 1 \land w_2 = 2$$

- Is this satisfiable?
- No because $x = w_1$ implies $f(x) = f(w_1)$

Second subproblem:

$$F_1: \quad f(x) \neq f(w_1) \land f(x) \neq f(w_2) \land \mathbf{x} = \mathbf{w}_2$$

$$F_2: \quad 1 \le x \land x \le 2 \land w_1 = 1 \land w_2 = 2$$

Second subproblem:

$$F_1: \quad f(x) \neq f(w_1) \land f(x) \neq f(w_2) \land \mathbf{x} = \mathbf{w}_2$$

$$F_2: \quad 1 \le x \land x \le 2 \land w_1 = 1 \land w_2 = 2$$

Is this satisfiable?

Second subproblem:

$$F_1: \quad f(x) \neq f(w_1) \land f(x) \neq f(w_2) \land x = w_2$$

$$F_2: \quad 1 \le x \land x \le 2 \land w_1 = 1 \land w_2 = 2$$

- Is this satisfiable?
- No because $x = w_2$ implies $f(x) = f(w_2)$

Second subproblem:

$$F_1: \quad f(x) \neq f(w_1) \land f(x) \neq f(w_2) \land x = w_2$$

$$F_2: \quad 1 \le x \land x \le 2 \land w_1 = 1 \land w_2 = 2$$

- Is this satisfiable?
- No because $x = w_2$ implies $f(x) = f(w_2)$
- Since neither subproblem is satisfiable, Nelson-Oppen returns unsat for original formula

• Consider the following $T_{=} \cup T_{\mathbb{Z}}$ formula:

 $1 \leq x \wedge x \leq 3 \wedge f(x) \neq f(1) \wedge f(x) \neq f(3) \wedge f(1) \neq f(2)$

• Consider the following $T_{=} \cup T_{\mathbb{Z}}$ formula:

 $1 \leq x \wedge x \leq 3 \wedge f(x) \neq f(1) \wedge f(x) \neq f(3) \wedge f(1) \neq f(2)$

Formulas after purification:

$$F_1: \quad f(x) \neq f(w_1) \land f(x) \neq f(w_3) \land f(w_1) \neq f(w_2) F_2: \quad 1 \le x \land x \le 3 \land w_1 = 1 \land w_2 = 2 \land w_3 = 3$$

• Consider the following $T_{=} \cup T_{\mathbb{Z}}$ formula:

 $1 \le x \land x \le 3 \land f(x) \ne f(1) \land f(x) \ne f(3) \land f(1) \ne f(2)$

Formulas after purification:

$$F_1: \quad f(x) \neq f(w_1) \land f(x) \neq f(w_3) \land f(w_1) \neq f(w_2) F_2: \quad 1 \le x \land x \le 3 \land w_1 = 1 \land w_2 = 2 \land w_3 = 3$$

• Consider the query $x = w_1 \lor x = w_2 \lor x = w_3$

• Consider the following $T_{=} \cup T_{\mathbb{Z}}$ formula:

 $1 \leq x \wedge x \leq 3 \wedge f(x) \neq f(1) \wedge f(x) \neq f(3) \wedge f(1) \neq f(2)$

Formulas after purification:

$$F_1: \quad f(x) \neq f(w_1) \land f(x) \neq f(w_3) \land f(w_1) \neq f(w_2) F_2: \quad 1 \le x \land x \le 3 \land w_1 = 1 \land w_2 = 2 \land w_3 = 3$$

- Consider the query $x = w_1 \lor x = w_2 \lor x = w_3$
- Does either formula imply this query?

• Consider the following $T_{=} \cup T_{\mathbb{Z}}$ formula:

 $1 \leq x \wedge x \leq 3 \wedge f(x) \neq f(1) \wedge f(x) \neq f(3) \wedge f(1) \neq f(2)$

Formulas after purification:

$$F_1: \quad f(x) \neq f(w_1) \land f(x) \neq f(w_3) \land f(w_1) \neq f(w_2) F_2: \quad 1 \le x \land x \le 3 \land w_1 = 1 \land w_2 = 2 \land w_3 = 3$$

- Consider the query $x = w_1 \lor x = w_2 \lor x = w_3$
- Does either formula imply this query? Yes

First subproblem:

$$F_1: \quad f(x) \neq f(w_1) \land f(x) \neq f(w_3) \land f(w_1) \neq f(w_2) \land x = w_1 F_2: \quad 1 \le x \land x \le 3 \land w_1 = 1 \land w_2 = 2 \land w_3 = 3$$

First subproblem:

$$F_1: \quad f(x) \neq f(w_1) \land f(x) \neq f(w_3) \land f(w_1) \neq f(w_2) \land x = w_1 F_2: \quad 1 \le x \land x \le 3 \land w_1 = 1 \land w_2 = 2 \land w_3 = 3$$

Is this satisfiable?

First subproblem:

$$F_1: \quad f(x) \neq f(w_1) \land f(x) \neq f(w_3) \land f(w_1) \neq f(w_2) \land x = w_1 F_2: \quad 1 \le x \land x \le 3 \land w_1 = 1 \land w_2 = 2 \land w_3 = 3$$

Is this satisfiable? no

First subproblem:

$$F_1: \quad f(x) \neq f(w_1) \land f(x) \neq f(w_3) \land f(w_1) \neq f(w_2) \land x = w_1 F_2: \quad 1 \le x \land x \le 3 \land w_1 = 1 \land w_2 = 2 \land w_3 = 3$$

- Is this satisfiable? no
- Second subproblem:

First subproblem:

$$F_1: \quad f(x) \neq f(w_1) \land f(x) \neq f(w_3) \land f(w_1) \neq f(w_2) \land x = w_1 F_2: \quad 1 \le x \land x \le 3 \land w_1 = 1 \land w_2 = 2 \land w_3 = 3$$

- Is this satisfiable? no
- Second subproblem:

 $F_1: \quad f(x) \neq f(w_1) \land f(x) \neq f(w_3) \land f(w_1) \neq f(w_2) \land x = w_2$ $F_2: \quad 1 \le x \land x \le 3 \land w_1 = 1 \land w_2 = 2 \land w_3 = 3$

Is this satisfiable?

First subproblem:

$$F_1: \quad f(x) \neq f(w_1) \land f(x) \neq f(w_3) \land f(w_1) \neq f(w_2) \land x = w_1 F_2: \quad 1 \le x \land x \le 3 \land w_1 = 1 \land w_2 = 2 \land w_3 = 3$$

- Is this satisfiable? no
- Second subproblem:

 $F_1: \quad f(x) \neq f(w_1) \land f(x) \neq f(w_3) \land f(w_1) \neq f(w_2) \land x = w_2$ $F_2: \quad 1 \le x \land x \le 3 \land w_1 = 1 \land w_2 = 2 \land w_3 = 3$

Is this satisfiable? Yes

Second subproblem:

 $F_1: \quad f(x) \neq f(w_1) \land f(x) \neq f(w_3) \land f(w_1) \neq f(w_2) \land x = w_2$ $F_2: \quad 1 \le x \land x \le 3 \land w_1 = 1 \land w_2 = 2 \land w_3 = 3$

So it's satisfiable, are we done?

Second subproblem:

 $F_1: \quad f(x) \neq f(w_1) \land f(x) \neq f(w_3) \land f(w_1) \neq f(w_2) \land x = w_2$ $F_2: \quad 1 \le x \land x \le 3 \land w_1 = 1 \land w_2 = 2 \land w_3 = 3$

So it's satisfiable, are we done? No, need to check for new equalities

Second subproblem:

 $F_1: \quad f(x) \neq f(w_1) \land f(x) \neq f(w_3) \land f(w_1) \neq f(w_2) \land x = w_2$ $F_2: \quad 1 \le x \land x \le 3 \land w_1 = 1 \land w_2 = 2 \land w_3 = 3$

So it's satisfiable, are we done? No, need to check for new equalities

• Thus, we now issue new queries such as $x = w_1, x = w_2$, etc

Second subproblem:

- So it's satisfiable, are we done? No, need to check for new equalities
- Thus, we now issue new queries such as $x = w_1, x = w_2$, etc
- Are there any new implied equalities or disjunctions of equalities?

Second subproblem:

- So it's satisfiable, are we done? No, need to check for new equalities
- Thus, we now issue new queries such as $x = w_1, x = w_2$, etc
- Are there any new implied equalities or disjunctions of equalities? No

Second subproblem:

- So it's satisfiable, are we done? No, need to check for new equalities
- Thus, we now issue new queries such as $x = w_1, x = w_2$, etc
- Are there any new implied equalities or disjunctions of equalities? No
- Thus, second subproblem is satisfiable

Second subproblem:

- So it's satisfiable, are we done? No, need to check for new equalities
- Thus, we now issue new queries such as $x = w_1, x = w_2$, etc
- Are there any new implied equalities or disjunctions of equalities? No
- Thus, second subproblem is satisfiable
- Do we need to check third subproblem?

Second subproblem:

- So it's satisfiable, are we done? No, need to check for new equalities
- Thus, we now issue new queries such as $x = w_1, x = w_2$, etc
- Are there any new implied equalities or disjunctions of equalities? No
- Thus, second subproblem is satisfiable
- Do we need to check third subproblem? No

Second subproblem:

- So it's satisfiable, are we done? No, need to check for new equalities
- Thus, we now issue new queries such as $x = w_1, x = w_2$, etc
- Are there any new implied equalities or disjunctions of equalities? No
- Thus, second subproblem is satisfiable
- Do we need to check third subproblem? No
- Thus, original formula is satisfiable

> In presentation so far, we issued some disjuctive queries

- In presentation so far, we issued some disjuctive queries
- As soon as answer was yes to some query, we propagated it by performing case split

- In presentation so far, we issued some disjuctive queries
- As soon as answer was yes to some query, we propagated it by performing case split
- But really, we want to find a minimal query that is implied.

- In presentation so far, we issued some disjuctive queries
- As soon as answer was yes to some query, we propagated it by performing case split
- But really, we want to find a minimal query that is implied.
- Minimal query is one where dropping any disjunct causes query to no longer be implied

- In presentation so far, we issued some disjuctive queries
- As soon as answer was yes to some query, we propagated it by performing case split
- But really, we want to find a minimal query that is implied.
- Minimal query is one where dropping any disjunct causes query to no longer be implied
- Why do we want minimal query?

- In presentation so far, we issued some disjuctive queries
- As soon as answer was yes to some query, we propagated it by performing case split
- But really, we want to find a minimal query that is implied.
- Minimal query is one where dropping any disjunct causes query to no longer be implied
- Why do we want minimal query?
 - 1. Since $x = y \lor y = z$ already implies $x = y \lor y = z \lor z = w$, no need to consider latter to decide satisfiability

- In presentation so far, we issued some disjuctive queries
- As soon as answer was yes to some query, we propagated it by performing case split
- But really, we want to find a minimal query that is implied.
- Minimal query is one where dropping any disjunct causes query to no longer be implied
- Why do we want minimal query?
 - 1. Since $x = y \lor y = z$ already implies $x = y \lor y = z \lor z = w$, no need to consider latter to decide satisfiability
 - 2. When we propagate the query, using minimal query creates fewer subproblems

▶ To find minimal query, start with disjunction of all possible equalities

- > To find minimal query, start with disjunction of all possible equalities
- If this isn't implied, no subset will be implied, so we are done

- > To find minimal query, start with disjunction of all possible equalities
- If this isn't implied, no subset will be implied, so we are done
- If it is implied, drop one equality

- > To find minimal query, start with disjunction of all possible equalities
- If this isn't implied, no subset will be implied, so we are done
- If it is implied, drop one equality
- ▶ If it is still implied, continue with smaller disjunction

- > To find minimal query, start with disjunction of all possible equalities
- If this isn't implied, no subset will be implied, so we are done
- If it is implied, drop one equality
- If it is still implied, continue with smaller disjunction
- > Otherwise, restore equality and continue with next one

- > To find minimal query, start with disjunction of all possible equalities
- If this isn't implied, no subset will be implied, so we are done
- If it is implied, drop one equality
- ▶ If it is still implied, continue with smaller disjunction
- Otherwise, restore equality and continue with next one
- This ensures we find a minimal disjunction that is implied

- > To find minimal query, start with disjunction of all possible equalities
- If this isn't implied, no subset will be implied, so we are done
- If it is implied, drop one equality
- If it is still implied, continue with smaller disjunction
- Otherwise, restore equality and continue with next one
- This ensures we find a minimal disjunction that is implied
- > Thist strategy much better than using any disjunction that is implied

 Nelson-Oppen method is much more efficient for convex theories than for non-convex theories

- Nelson-Oppen method is much more efficient for convex theories than for non-convex theories
- In convex theories:
 - 1. need to issue one query for each pair of shared variables

- Nelson-Oppen method is much more efficient for convex theories than for non-convex theories
- In convex theories:
 - 1. need to issue one query for each pair of shared variables
 - 2. If decision procedures for T_1 and T_2 have polynomial time complexity, combination using Nelson-Oppen also has polynomial complexity

- Nelson-Oppen method is much more efficient for convex theories than for non-convex theories
- In convex theories:
 - 1. need to issue one query for each pair of shared variables
 - 2. If decision procedures for T_1 and T_2 have polynomial time complexity, combination using Nelson-Oppen also has polynomial complexity

In non-convex theories:

1. need to consider disjunctions of equalities between each pair of shared variables

- Nelson-Oppen method is much more efficient for convex theories than for non-convex theories
- In convex theories:
 - 1. need to issue one query for each pair of shared variables
 - 2. If decision procedures for T_1 and T_2 have polynomial time complexity, combination using Nelson-Oppen also has polynomial complexity

In non-convex theories:

- 1. need to consider disjunctions of equalities between each pair of shared variables
- 2. If decision procedures for T_1 and T_2 have NP time complexity, combination using Nelson-Oppen also has NP time complexity

 Nelson-Oppen method gives a sound and complete decision procedure for combination theories

- Nelson-Oppen method gives a sound and complete decision procedure for combination theories
- ▶ However, it only works for quantifier-free theories that are infinitely stable

- Nelson-Oppen method gives a sound and complete decision procedure for combination theories
- ▶ However, it only works for quantifier-free theories that are infinitely stable
- Not a severe restriction because most theories of interest are infinitely stable

- Nelson-Oppen method gives a sound and complete decision procedure for combination theories
- ▶ However, it only works for quantifier-free theories that are infinitely stable
- Not a severe restriction because most theories of interest are infinitely stable
- Next lecture: How to decide satisfiability in first-order theories without converting to DNF

- Nelson-Oppen method gives a sound and complete decision procedure for combination theories
- ▶ However, it only works for quantifier-free theories that are infinitely stable
- Not a severe restriction because most theories of interest are infinitely stable
- Next lecture: How to decide satisfiability in first-order theories without converting to DNF
- Reminder: homework due next lecture