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Motivation

» So far, learned about decision procedures for useful theories

» Examples: Theory of equality with uninterpreted functions, theory of
rationals, theory of integers

» But in many cases, we need to decide satisfiability of formulas involving
multiple theories

> Example: 1<z Az <2Af(z)# f(1)Af(z)#f(2)
» This formula does not belong to any individual theory

» But it does belong, for instance, to combination of T— and 1%
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Overview

» Recall: Given two theories Th1 and T» that have the = predicate, we define
a combined theory 77 U T
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Overview

v

Recall: Given two theories 71 and T» that have the = predicate, we define
a combined theory 77 U T%

v

Signature of 77 U Ta: X1 U Xg

» Axioms of T71 U Th: A1 U As

v

Given decision procedures for Ty and T2, we want a decision procedure to
decide satisfiability of formulas in 77 U T
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Overview

» Recall: Given two theories Th1 and T» that have the = predicate, we define
a combined theory 77 U T%

» Signature of T4 U Ta: 31 U X,
» Axioms of T U To: A1 U As

» Given decision procedures for T7 and T2, we want a decision procedure to
decide satisfiability of formulas in 77 U T

» Today's lecture: Learn about Nelson-Oppen method for constructing
decision procedure for combined theory T7 U T> from individual decision
procedures for Ty and T2
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Nelson-Oppen Overview

Y 1-theory Ty > >-theory T,

for Ti-satisfiability E for T,-satisfiability

\Nelson_Oppe)/

@ for (T1 U T)-satisfiability
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Nelson-Oppen Overview

¥ ;-theory T > >-theory T,

for Ti-satisfiability E for T,-satisfiability

\Nelson-Opp /

IE for (T1 U T)-satisfiability

» This method also allows combining arbitrary number of theories
» For instance, to combine T1, T2, T3, first combine T4, T2

» Then, combine T1 U T> and T3 again using Nelson-Oppen
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Nelson-Oppen Overview

¥ ;-theory T > >-theory T,

for Ti-satisfiability E for T,-satisfiability

\Nelson-Opp /

IE for (T1 U T)-satisfiability

v

This method also allows combining arbitrary number of theories

v

For instance, to combine T1, T2, T3, first combine Ty, T2

v

Then, combine T1 U T2 and T35 again using Nelson-Oppen

v

However, Nelson-Oppen imposes some restrictions on theories that can be
combined
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Restrictions of Nelson-Oppen

» Nelson-Oppen method imposes the following restrictions:
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1.

Only allows combining quantifier-free fragments

Only allows combining formulas without disjunctions, but not a major
limitation because can convert to DNF

. Signatures can only share equality: 1 NXy = {=}

. Theories T and T2 must be stably infinite
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2. Only allows combining formulas without disjunctions, but not a major
limitation because can convert to DNF

3. Signatures can only share equality: ¥1 N ¥ = {=}

4. Theories T1 and T2 must be stably infinite

» Theory T is stably infinite iff every satisfiable gff formula is satisfiable in a
universe of discourse with infinite cardinality

> In other words, if qff F' is satisfiable, then there exists T-model that
satisfies F' and has infinite cardinality.
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Restrictions of Nelson-Oppen

» Nelson-Oppen method imposes the following restrictions:

1. Only allows combining quantifier-free fragments

2. Only allows combining formulas without disjunctions, but not a major
limitation because can convert to DNF

3. Signatures can only share equality: ¥1 N Xy = {=}

4. Theories T1 and T2 must be stably infinite

» Theory T is stably infinite iff every satisfiable gff formula is satisfiable in a
universe of discourse with infinite cardinality

> In other words, if gff F' is satisfiable, then there exists T-model that
satisfies F' and has infinite cardinality.

> Thus, theories with only finite models are not stably infinite.
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Example of Non-Stably Infinite Theory

Signature : {a,b,=
Axiom : Ve.z=aVx=2>

I
—

Vijay Ganesh(Original notes from Isil Dillig), ECE750T-28: Computer-aided Reasoning for Software Engineering Lecture 16: Decision Procedures for Combination Theories 6/44



Example of Non-Stably Infinite Theory

Signature : {a,b,=}
Axiom : Ve.z=aVz=>»

> Axiom says that any object in the universe of discourse must be equal to
either a or b
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Example of Non-Stably Infinite Theory

Signature : {a,b,=}
Axiom : Ve.z=aVz=>»

> Axiom says that any object in the universe of discourse must be equal to
either a or b

> Now consider U containing more than 2 elements
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Example of Non-Stably Infinite Theory

Signature : {a,b,=}
Axiom : Ve.z=aVz=>»

> Axiom says that any object in the universe of discourse must be equal to
either a or b

> Now consider U containing more than 2 elements

» Then, there is at least one element distinct from both a and b
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Example of Non-Stably Infinite Theory

Signature : {a,b,=}
Axiom : Ve.z=aVz=>»

> Axiom says that any object in the universe of discourse must be equal to
either a or b

v

Now consider U containing more than 2 elements

v

Then, there is at least one element distinct from both a and b

v

Thus, any U with more than 2 elements violates axiom
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Example of Non-Stably Infinite Theory

Signature : {a,b,=}
Axiom : Ve.z=aVz=>»

> Axiom says that any object in the universe of discourse must be equal to
either a or b

v

Now consider U containing more than 2 elements

v

Then, there is at least one element distinct from both a and b

v

Thus, any U with more than 2 elements violates axiom

v

Hence, theory only has finite models, and is not stably infinite
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Examples of Stably Infinite Theories

» Fortunately, almost any theory of interest is stably infinite
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» Fortunately, almost any theory of interest is stably infinite
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» Which of these theories can we combine using Nelson-Oppen?
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» Fortunately, almost any theory of interest is stably infinite

> All theories we discussed, T—, Tg, Tz, Ta, are stably infinite

» Which of these theories can we combine using Nelson-Oppen?
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Examples of Stably Infinite Theories

» Fortunately, almost any theory of interest is stably infinite

> All theories we discussed, T—, Tg, Tz, Ta, are stably infinite

» Which of these theories can we combine using Nelson-Oppen?
1. T— and Tg? yes

2. T— and T7? yes

Vijay Ganesh(Original notes from Isil Dillig), ECE750T-28: Computer-aided Reasoning for Software Engineering Lecture 16: Decision Procedures for Combination Theories 7/44



Examples of Stably Infinite Theories

» Fortunately, almost any theory of interest is stably infinite

> All theories we discussed, T—, Tg, Tz, Ta, are stably infinite

» Which of these theories can we combine using Nelson-Oppen?
1. T— and Tg? yes

2. T— and T7? yes

3. TA and Tz?
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Examples of Stably Infinite Theories

» Fortunately, almost any theory of interest is stably infinite

> All theories we discussed, T—, Tg, Tz, Ta, are stably infinite

» Which of these theories can we combine using Nelson-Oppen?
1. T— and Tg? yes

2. T— and T7? yes

3. Ty and T%7? yes
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Fortunately, almost any theory of interest is stably infinite

v

All theories we discussed, T—, Tg, Tz, Ta, are stably infinite

v

Which of these theories can we combine using Nelson-Oppen?
1. T— and Tg? yes

2. T— and T7? yes
3. Ty and T%7? yes

> In general, almost any theory we care about can be combined using
Nelson-Oppen
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Examples of Stably Infinite Theories

» Fortunately, almost any theory of interest is stably infinite

> All theories we discussed, T—, Tg, Tz, Ta, are stably infinite

» Which of these theories can we combine using Nelson-Oppen?
1. T— and Tg? yes

2. T— and T7? yes
3. Ty and T%7? yes

> In general, almost any theory we care about can be combined using
Nelson-Oppen

» More recent work has also extended Nelson-Oppen to non-stably-infinite
theories
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Nelson-Oppen Overview

» Nelson-Oppen method has conceptually two-different phases:
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1. Purification: Seperate formula F' in T7 U T3 into two formulas Fy in T}
and Fs in Ty
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and Fs in T

2. Equality propagation: Propagate all relevant equalities between theories
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Nelson-Oppen Overview

» Nelson-Oppen method has conceptually two-different phases:

1. Purification: Seperate formula F' in T7 U T3 into two formulas Fy in T}
and Fs in T

2. Equality propagation: Propagate all relevant equalities between theories
> Purification step is always the same for any arbitrary theory

» But equality propagation is different between convex and non-convex
theories
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Purification Overview

» Input to Nelson-Oppen is formula F'in T1 U Ts
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Purification Overview
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Purification Overview
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Purification Overview

» Input to Nelson-Oppen is formula F'in T1 U Ts

» Goal of purification is to separate F' into formulas F; and F> such that:
1. F; belongs only to T (is "pure”)
2. F belong only to T (is "pure”)
3. F1 A Fs is equisatisfiable as F

> Resulting formula after purification is not equivalent
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Purification Overview

» Input to Nelson-Oppen is formula F'in T1 U Ts

» Goal of purification is to separate F' into formulas F; and F> such that:
1. F; belongs only to T (is "pure”)
2. F belong only to T (is "pure”)

3. F1 A Fs is equisatisfiable as F
> Resulting formula after purification is not equivalent

» But since goal is to decide satisfiability, this is good enough
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How To Purify

> To purify formula F', exhaustively apply the following:
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How To Purify

> To purify formula F', exhaustively apply the following:

1. Consider term f(...,t;,...). If f € 3; but ¢; is not a term in T}, replace t;
with fresh variable z and conjoin z = t;
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How To Purify

> To purify formula F', exhaustively apply the following:

1. Consider term f(...,t;,...). If f € 3; but ¢; is not a term in T}, replace t;
with fresh variable z and conjoin z = t;

2. Consider predicate p(...,t;,...). If p € 3; but t; is not a term in T},
replace t; with fresh variable w and conjoin w = t;
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How To Purify

> To purify formula F', exhaustively apply the following:

1. Consider term f(...,t;,...). If f € 3; but ¢; is not a term in T}, replace t;
with fresh variable z and conjoin z = t;

2. Consider predicate p(...,t;,...). If p € 3; but t; is not a term in T},
replace t; with fresh variable w and conjoin w = t;

> Literals in resulting formula belong to either only T} or Ts.
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How To Purify

> To purify formula F', exhaustively apply the following:

1. Consider term f(...,t;,...). If f € 3; but ¢; is not a term in T}, replace t;
with fresh variable z and conjoin z = t;

2. Consider predicate p(...,t;,...). If p € 3; but t; is not a term in T},
replace t; with fresh variable w and conjoin w = t;

> Literals in resulting formula belong to either only T} or Ts.

» Thus, we can write F' as a conjunction of formulas F; in Ty and Fs in T»
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Purification Example 1

» Consider T— U Tg formula z < f(z) + 1
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Purification Example 1

» Consider T— U Tg formula z < f(z) + 1

> |s this formula already pure?
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Purification Example 1

» Consider T— U Tg formula z < f(z) + 1

> |s this formula already pure? No
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Purification Example 1

» Consider T— U Tg formula z < f(z) + 1
> |s this formula already pure? No

> Since f(z) is not in Tg, replace with new variable y and add equality
constraint y = f(z)
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Purification Example 1

v

Consider T— U Tp formula z < f(z) +1

v

Is this formula already pure? No

> Since f(z) is not in Tg, replace with new variable y and add equality
constraint y = f(z)

v

Thus, formula after purification:

t<y+1Ay=f(r)

TQ T—
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Purification Example Il

» Consider following Y= U ¥z formula:

flz+g(y) < gla)+ f(b)
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Purification Example Il

» Consider following Y= U ¥z formula:
[z +9(y)) < g(a)+f(b)

> Easiest to purify "inside out”

Vijay Ganesh(Original notes from Isil Dillig), ECE750T-28: Computer-aided Reasoning for Software Engineering Lecture 16: Decision Procedures for Combination Theories 12/44



Purification Example Il

» Consider following Y= U ¥z formula:
flz+9(y)) < g(a) +£(b)

> Easiest to purify "inside out”

> Is the term z + g(y) pure?
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Purification Example Il

v

Consider following ¥— U 3z formula:

flz+g(y) < gla)+ f(b)

v

Easiest to purify "inside out”

v

Is the term z + g(y) pure? no

v

How do we purify it?

Vijay Ganesh(Original notes from Isil Dillig), ECE750T-28: Computer-aided Reasoning for Software Engineering Lecture 16: Decision Procedures for Combination Theories 12/44



Purification Example Il

v

Consider following Y- U X7 formula:

flz+g(y) < gla)+ f(b)

v

Easiest to purify "inside out”

v

Is the term z + g(y) pure? no

v

How do we purify it? replace g(y) with 21, add constraint z1 = g(y)
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Purification Example Il

v

Consider following Y- U X7 formula:

flz+9(y)) < g(a) +£(b)

v

Easiest to purify "inside out”

v

Is the term z + g(y) pure? no

v

How do we purify it? replace g(y) with 21, add constraint z1 = g(y)

> Resulting formula:

fl@+21) < g(a) +F(0) Az = g(y)

Vijay Ganesh(Original notes from Isil Dillig), ECE750T-28: Computer-aided Reasoning for Software Engineering Lecture 16: Decision Procedures for Combination Theories 12/44



Purification Example Il, cont

flz+21) <gla) +f(D) Az = g(y)

> Is f(z + 1) pure?
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Purification Example Il, cont

flz+21) <gla) +f(D) Az = g(y)

> Is f(z + 2z1) pure? no
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Purification Example Il, cont
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Vijay Ganesh(Original notes from Isil Dillig), ECE750T-28: Computer-aided Reasoning for Software Engineering Lecture 16: Decision Procedures for Combination Theories 13/44



Purification Example Il, cont

flz+21) <gla) +f(D) Az = g(y)

> Is f(z + 2z1) pure? no

» How do we purify? replace x + 21 with z2, add constraint 2o = = + 21
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Purification Example Il, cont

flz+21) <gla) +f(D) Az = g(y)

> Is f(z + 2z1) pure? no
> How do we purify? replace z + 2 with 22, add constraint 2 =z + z;

> Resulting formula:

f()<gla)+fO)Nzan =gy No=2+2
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Purification Example Il, cont

f(@+21) < gla) +f(0) N = g(y)

v

Is f(z + 2z1) pure? no

> How do we purify? replace z + 2 with 22, add constraint 2 =z + z;

v

Resulting formula:

flm)<gla)+f)ANa=g(y)Nn=x+2

v

Is formula purified now?
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Purification Example Il, cont

f(@+21) < gla) +f(0) N = g(y)

v

Is f(z + 2z1) pure? no

> How do we purify? replace z + 2 with 22, add constraint 2 =z + z;

v

Resulting formula:

flm)<gla)+f)ANa=g(y)Nn=x+2

v

Is formula purified now? no

Vijay Ganesh(Original notes from Isil Dillig), ECE750T-28: Computer-aided Reasoning for Software Engineering Lecture 16: Decision Procedures for Combination Theories 13/44



Purification Example Il, cont

f(=)<gla)+f)Aa=g(y) ANn=2+2

» Which terms/predicate is impure?
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Purification Example Il, cont

f(=)<gla)+f)Aa=g(y) ANn=2+2

» Which terms/predicate is impure? g(a)+ f(b)
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Purification Example Il, cont
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Purification Example Il, cont

f(=)<gla)+f)Aa=g(y) ANn=2+2

» Which terms/predicate is impure? g(a)+ f(b)

» How do we purify? replace g(a) with z3 and f(b) with 2z, add constraint
z = g(a) Nz = f(b)
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v

Which terms/predicate is impure? g(a) + f(b)

» How do we purify? replace g(a) with z3 and f(b) with 2z, add constraint
z = g(a) Nz = f(b)

v

Resulting formula:

f(m)<zmt+ura=gly) Na=x+ 2 Az =g(a)Nzs=f(D)

v

Is formula purified now?
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Purification Example Il, cont

f(=)<gla)+f)Aa=g(y) ANn=2+2

v

Which terms/predicate is impure? g(a) + f(b)

» How do we purify? replace g(a) with z3 and f(b) with 2z, add constraint
z = g(a) Nz = f(b)

v

Resulting formula:

f(m)<zmt+ura=gly) Na=x+ 2 Az =g(a)Nzs=f(D)

v

Is formula purified now? no
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Purification Example Il, cont

f)<zm+zu Na=g(yyNn=z+2z ANz =g(a) Az =f(D)

» Which terms/predicate is impure?
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Purification Example Il, cont

f)<zm+zu Na=g(yyNn=z+2z ANz =g(a) Az =f(D)

» Which terms/predicate is impure? f(z) < 23 + 24

Vijay Ganesh(Original notes from Isil Dillig), ECE750T-28: Computer-aided Reasoning for Software Engineering Lecture 16: Decision Procedures for Combination Theories 15/44
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Purification Example Il, cont

f)<zm+zu Na=g(yyNn=z+2z ANz =g(a) Az =f(D)

» Which terms/predicate is impure? f(22) < z3 + 21

» How do we purify? replace f(z2) with 25, add constraint z5 = f(22)
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Purification Example Il, cont

fl)<mt+u Aa=g(y) Nme=x+2 Az =g(a)Azu=f()

» Which terms/predicate is impure? f(22) < z3 + 21
» How do we purify? replace f(z2) with 25, add constraint z5 = f(22)

» Resulting formula:

<zmt+zuiha=g(y)Nz=z+aA
m=gla) Nz =f(b) Nz =f(zx)
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Purification Example Il, cont

fl)<mt+u Aa=g(y) Nme=x+2 Az =g(a)Azu=f()

v

Which terms/predicate is impure? f(z2) < z3 + 24

» How do we purify? replace f(z2) with 25, add constraint z5 = f(22)

» Resulting formula:
<zmt+zuiha=g(y)Nz=z+aA
m=gla) Nz =f(b) Nz =f(zx)
> Is formula purified now?
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Purification Example Il, cont

fl)<mt+u Aa=g(y) Nme=x+2 Az =g(a)Azu=f()

v

Which terms/predicate is impure? f(z2) < z3 + 24

» How do we purify? replace f(z2) with 25, add constraint z5 = f(22)

» Resulting formula:
<zmt+zuiha=g(y)Nz=z+aA
z3=g(a) Nz =f(b) Az = f()
> |Is formula purified now? Yes, finally!
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Shared vs. Unshared Variables

» After purification, we have decomposed a formula F' into two pure
formulas F; and I
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Shared vs. Unshared Variables

» After purification, we have decomposed a formula F' into two pure
formulas F; and I

» If 2 occurs in both F; and Fs, z is called shared variable
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Shared vs. Unshared Variables

» After purification, we have decomposed a formula F' into two pure
formulas F; and I

» If 2 occurs in both F; and Fs, z is called shared variable

> If y occurs only in Fy or only in Fy, it is called unshared variable
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Shared vs. Unshared Variables

v

After purification, we have decomposed a formula F' into two pure
formulas F and F»

v

If £ occurs in both F; and Fs, z is called shared variable

v

If y occurs only in Fy or only in Fs, it is called unshared variable

\4

Consider the following purified formula:

w=z+yANy=1Aw =2 A w = f(z)Af(z) # f(w)

Ty T=
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Shared vs. Unshared Variables

v

After purification, we have decomposed a formula F' into two pure
formulas F and F»

v

If £ occurs in both F; and Fs, z is called shared variable

v

If y occurs only in Fy or only in Fs, it is called unshared variable

\4

Consider the following purified formula:

w=z+yANy=1Aw =2 A w = f(z)Af(z) # f(w)

Ty T=

v

Which variables are shared?
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Shared vs. Unshared Variables

v

After purification, we have decomposed a formula F' into two pure
formulas F and F»

v

If £ occurs in both F; and Fs, z is called shared variable

v

If y occurs only in Fy or only in Fs, it is called unshared variable

\4

Consider the following purified formula:

w=z+yANy=1Aw =2 A w = f(z)Af(z) # f(w)

Ty T=

v

Which variables are shared? wi, z, ws
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Shared vs. Unshared Variables

» After purification, we have decomposed a formula F' into two pure
formulas F and F»

» If 2 occurs in both F; and Fs, z is called shared variable
> If y occurs only in Fy or only in Fy, it is called unshared variable

» Consider the following purified formula:

w=z+yANy=1Aw =2 A w = f(z)Af(z) # f(w)

Ty T=

» Which variables are shared? w1, z, wo

» Which variables are unshared?
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Shared vs. Unshared Variables

» After purification, we have decomposed a formula F' into two pure
formulas F and F»

» If 2 occurs in both F; and Fs, z is called shared variable
> If y occurs only in Fy or only in Fy, it is called unshared variable

» Consider the following purified formula:

w=z+yANy=1Aw =2 A w = f(z)Af(z) # f(w)

Ty T=

» Which variables are shared? w1, z, wo

» Which variables are unshared? y
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Two Phases of Nelson-Oppen

> Recall: Nelson-Oppen method has two different phases:

1. Purification: Seperate formula F' in T7 U T3 into two formulas Fy in T}
and Fs in Ty

2. Equality propagation: Propagate all relevant equalities between theories
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> Recall: Nelson-Oppen method has two different phases:

1. Purification: Seperate formula F' in T7 U T3 into two formulas Fy in T}
and Fs in Ty

2. Equality propagation: Propagate all relevant equalities between theories

» Talk about second phase next
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Two Phases of Nelson-Oppen

> Recall: Nelson-Oppen method has two different phases:

1. Purification: Seperate formula F' in T7 U T3 into two formulas Fy in T}
and Fs in Ty

2. Equality propagation: Propagate all relevant equalities between theories
» Talk about second phase next

» But this phase is different for convex vs. non-convex theories
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Two Phases of Nelson-Oppen

> Recall: Nelson-Oppen method has two different phases:

1. Purification: Seperate formula F' in T7 U T3 into two formulas Fy in T}
and F5 in T

2. Equality propagation: Propagate all relevant equalities between theories
» Talk about second phase next
» But this phase is different for convex vs. non-convex theories

» So, need to talk about convex and non-convex theories
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Convex Theories

» Theory T is called convex if for every conjunctive formula F':

Vijay Ganesh(Original notes from Isil Dillig), ECE750T-28: Computer-aided Reasoning for Software Engineering Lecture 16: Decision Procedures for Combination Theories 18/44



Convex Theories

» Theory T is called convex if for every conjunctive formula F':

> If FF = \/I" | z; = y; for finite n
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Convex Theories

» Theory T is called convex if for every conjunctive formula F':
> If FF = \/I" | z; = y; for finite n

> Then, F = z; = y; for some 1 € [1, n]
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Convex Theories

» Theory T is called convex if for every conjunctive formula F':
> If FF = \/I" | z; = y; for finite n
> Then, F = z; = y; for some i € [1,n]

» Thus, in convex theory, if F' implies disjunction of equalities, F' also
implies at least one of these equalities on its own

Vijay Ganesh(Original notes from Isil Dillig), ECE750T-28: Computer-aided Reasoning for Software Engineering Lecture 16: Decision Procedures for Combination Theories 18/44



Convex Theories

» Theory T is called convex if for every conjunctive formula F':
> If FF = \/I" | z; = y; for finite n
> Then, F = z; = y; for some i € [1,n]

» Thus, in convex theory, if F' implies disjunction of equalities, F' also
implies at least one of these equalities on its own

> If a theory does not satisfy this condition, it is called non-convex
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Examples of Convex and Non-Convex Theories

» Example: Consider formula 1 <z Az <2in Ty
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Examples of Convex and Non-Convex Theories

» Example: Consider formula 1 <z Az <2in Ty

» Does it imply z =1V =27
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Examples of Convex and Non-Convex Theories

» Example: Consider formula 1 <z Az <2in Ty

> Does it imply z =1V z = 27 yes
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Examples of Convex and Non-Convex Theories

» Example: Consider formula 1 <z Az <2in Ty
> Does it imply z =1V z = 27 yes

» Does it imply z =17
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Examples of Convex and Non-Convex Theories

v

Example: Consider formula 1 <z Az <2in Ty
> Does it imply z =1V z = 27 yes
» Does it imply z =17 no

> Does it imply z = 27
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Examples of Convex and Non-Convex Theories

v

Example: Consider formula 1 <z Az <2in Ty
> Does it imply z =1V z = 27 yes

» Does it imply z =17 no

> Does it imply z = 27 no

» |Is Ty convex?

Vijay Ganesh(Original notes from Isil Dillig), ECE750T-28: Computer-aided Reasoning for Software Engineering Lecture 16: Decision Procedures for Combination Theories 19/44



Examples of Convex and Non-Convex Theories

v

Example: Consider formula 1 <z Az <2in Ty
> Does it imply z =1V z = 27 yes
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Example: Consider formula 1 <z Az <2in Ty
> Does it imply z =1V z = 27 yes

» Does it imply z =17 no

> Does it imply z = 27 no

> |Is Ty convex? no
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Examples of Convex and Non-Convex Theories

v

Example: Consider formula 1 <z Az <2in Ty
> Does it imply z =1V z = 27 yes

» Does it imply z =17 no

> Does it imply z = 27 no

> |Is Ty convex? no

v

Theory of equality T— is convex
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Nelson-Oppen for Convex vs Non-Convex Theories

» Combining decision procedures for two convex theories is easier and more
efficient
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Nelson-Oppen for Convex vs Non-Convex Theories

» Combining decision procedures for two convex theories is easier and more
efficient

> Intuition: When we have convexity, there are fewer facts that need to be
communicated between theories
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Nelson-Oppen for Convex vs Non-Convex Theories

» Combining decision procedures for two convex theories is easier and more
efficient

> Intuition: When we have convexity, there are fewer facts that need to be
communicated between theories

» Unfortunately, some theories of interest such as 77 and theory of arrays
are non-convex
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» Combining decision procedures for two convex theories is easier and more
efficient

> Intuition: When we have convexity, there are fewer facts that need to be
communicated between theories

» Unfortunately, some theories of interest such as 77 and theory of arrays
are non-convex

> |f one of the theories we want to combine is non-convex, decision
procedure for combination theory is much less efficent
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Nelson-Oppen for Convex vs Non-Convex Theories

» Combining decision procedures for two convex theories is easier and more
efficient

> Intuition: When we have convexity, there are fewer facts that need to be
communicated between theories

» Unfortunately, some theories of interest such as 77 and theory of arrays
are non-convex

> |f one of the theories we want to combine is non-convex, decision
procedure for combination theory is much less efficent

» We'll first talk about Nelson-Oppen method for convex theories, then for
non-convex theories
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Nelson-Oppen Method for Convex Theories

> Given formula F in Ty U T (T1, T2 convex), want to decide if F is
satisfiable
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Nelson-Oppen Method for Convex Theories

> Given formula F in Ty U T (T1, T2 convex), want to decide if F is
satisfiable

» First, purify F' into Fi and F>
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Nelson-Oppen Method for Convex Theories

> Given formula F in Ty U T (T1, T2 convex), want to decide if F is
satisfiable

» First, purify F' into Fi and F>

» Run decision procedures for T, T2 to decide sat. of Iy, F»
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Nelson-Oppen Method for Convex Theories

> Given formula F in Ty U T (T1, T2 convex), want to decide if F is
satisfiable

v

First, purify F' into Fi and F>

» Run decision procedures for T, T2 to decide sat. of Iy, F»

v

If either is unsat, F' is unsatisfiable. Why?
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Nelson-Oppen Method for Convex Theories

> Given formula F in Ty U T (T1, T2 convex), want to decide if F is
satisfiable

» First, purify F' into Fi and F>
» Run decision procedures for T, T2 to decide sat. of Iy, F»
> If either is unsat, F' is unsatisfiable. Why?

» Because F' is equisatisfiable to F1 A F2, which is unsat
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Nelson-Oppen Method for Convex Theories

» |If both are SAT, does this mean F' is sat?
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Nelson-Oppen Method for Convex Theories

» |If both are SAT, does this mean F' is sat?

» No because if F1 and Fs are individually satisfiable, F; A F> does not have
to be satisfiable
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Nelson-Oppen Method for Convex Theories

» |If both are SAT, does this mean F' is sat?

» No because if F1 and Fs are individually satisfiable, F; A F> does not have
to be satisfiable

» Example: z+y=2Nz=1A f(z)#[(y)

Ty T_

Vijay Ganesh(Original notes from Isil Dillig), ECE750T-28: Computer-aided Reasoning for Software Engineering Lecture 16: Decision Procedures for Combination Theories 22/44



Nelson-Oppen Method for Convex Theories

v

If both are SAT, does this mean F' is sat?

v

No because if Fi and Fs are individually satisfiable, F; A F> does not have
to be satisfiable

» Example: z+y=2Nz=1A f(z)#[(y)

T, T_

> Here, 1 and F> are individually sat, but their combination is unsat b/c
Tz implies x = y
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Nelson-Oppen Method for Convex Theories

v

v

v

If both are SAT, does this mean F' is sat?

No because if Fi and Fs are individually satisfiable, F; A F> does not have
to be satisfiable

Example: z+y=2Nz=1A f(z)#[(y)

T, T_

Here, 1 and F> are individually sat, but their combination is unsat b/c
Tz implies x = y

In the case where F; and F> are sat, theories have to exchange all implied
equalities
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Nelson-Oppen Method for Convex Theories

» |If both are SAT, does this mean F' is sat?

» No because if F1 and Fs are individually satisfiable, F; A F> does not have
to be satisfiable

» Example: z+y=2Nz=1A f(z)#[(y)

T, T_

> Here, 1 and F> are individually sat, but their combination is unsat b/c
Tz implies x = y

> In the case where F; and F> are sat, theories have to exchange all implied
equalities

» Why only equalities?
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Nelson-Oppen Method for Convex Theories

» |If both are SAT, does this mean F' is sat?

» No because if F1 and Fs are individually satisfiable, F; A F> does not have
to be satisfiable

» Example: z+y=2Nz=1A f(z)#[(y)

T, T_

> Here, 1 and F> are individually sat, but their combination is unsat b/c
Tz implies x = y

> In the case where F; and F> are sat, theories have to exchange all implied
equalities

» Why only equalities? b/c it is the only shared symbol
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Nelson-Oppen Method for Convex Theories

» For each pair of shared variables z, y, determine if:
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Nelson-Oppen Method for Convex Theories

» For each pair of shared variables z, y, determine if:

1. Fi=z=y

Vijay Ganesh(Original notes from Isil Dillig), ECE750T-28: Computer-aided Reasoning for Software Engineering Lecture 16: Decision Procedures for Combination Theories 23/44



Nelson-Oppen Method for Convex Theories

» For each pair of shared variables z, y, determine if:

1. Fi=z=y

2. Fo=>z=y
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Nelson-Oppen Method for Convex Theories

» For each pair of shared variables z, y, determine if:

1. Fi=z=y
2. Fo=>z=y

> If (1) holds but not (2), conjoin z = y with F»
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Nelson-Oppen Method for Convex Theories

» For each pair of shared variables z, y, determine if:

1. Fi=z=y
2. Fo =z =y
> If (1) holds but not (2), conjoin z = y with F»

> If (2) holds but not (1), conjoin z = y with F;
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Nelson-Oppen Method for Convex Theories

» For each pair of shared variables z, y, determine if:
1. i=z=y
2. Fha=a=y

> If (1) holds but not (2), conjoin z = y with F»

> If (2) holds but not (1), conjoin z = y with F;

» Let F{ and Fj denote new formulas
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Nelson-Oppen Method for Convex Theories

» For each pair of shared variables z, y, determine if:
1. i=z=y
2. Fha=a=y

> If (1) holds but not (2), conjoin z = y with F»

> If (2) holds but not (1), conjoin z = y with F;

» Let F{ and Fj denote new formulas

» Check satisfiability of F| and F}
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Nelson-Oppen Method for Convex Theories

v

For each pair of shared variables z, y, determine if:

1. i=z=y

2. Fp= =y
> If (1) holds but not (2), conjoin z = y with F»
> If (2) holds but not (1), conjoin z = y with F;
» Let F{ and Fj denote new formulas
» Check satisfiability of F| and F}

> Repeat until either formula becomes unsat or no new equalities can be
inferred
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Example

> Use Nelson-Oppen to decide sat of following 7— U Ty formula:

fF@) —fw) #f() Ne<y ANy+z<z A0<z

Vijay Ganesh(Original notes from Isil Dillig), ECE750T-28: Computer-aided Reasoning for Software Engineering Lecture 16: Decision Procedures for Combination Theories 24/44



Example

> Use Nelson-Oppen to decide sat of following 7— U Ty formula:
fU@) —fW) #f) ANe<y ANy+z<z AN0<z

» First, we need to purify:
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Example

> Use Nelson-Oppen to decide sat of following 7— U Ty formula:
ff@)—fy) #f(z) Ne<y ANy+z<z A0<z
» First, we need to purify:

> Replace f(z) with new variable w;
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Example

> Use Nelson-Oppen to decide sat of following 7— U Ty formula:
f(f@)—f) #f(z) Na<y ANy+z<z A0<z
» First, we need to purify:

> Replace f(z) with new variable w;

> Replace f(y) with new variable wy
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Example

> Use Nelson-Oppen to decide sat of following 7— U Ty formula:
f(f@)—f) #f(z) Na<y ANy+z<z A0<z
» First, we need to purify:

> Replace f(z) with new variable w;
> Replace f(y) with new variable wy

> f(z) — f(y) is now replaced with wi — w2 and we conjoin

wr = f(z) Awz2 = f(y)
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Example

> Use Nelson-Oppen to decide sat of following 7— U Ty formula:
f(f@)—f) #f(z) Na<y ANy+z<z A0<z
» First, we need to purify:

> Replace f(z) with new variable w;
> Replace f(y) with new variable wy

> f(z) — f(y) is now replaced with wi — w2 and we conjoin

wr = f(z) Awz2 = f(y)

> First literal is now f(w1 — wa) # f(z); still not purel
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Example

> Use Nelson-Oppen to decide sat of following 7— U Ty formula:
f(f@)—f) #f(z) Na<y ANy+z<z A0<z
» First, we need to purify:

> Replace f(z) with new variable w;

v

Replace f(y) with new variable w2

> f(z) — f(y) is now replaced with wi — w2 and we conjoin

wi = f(z) A w2 = f(y)
> First literal is now f(w1 — wa) # f(z); still not purel

> Replace w1 — wy with w3 and add equality ws = w; — wa
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Example, cont

» Purified formula is Fy A F> where:

Fi: w=f(z) Awe = f(y) Af(ws) # f(2)
Fo: ws=wi—w2 N x<y ANy+z<zxz AN0<z

Vijay Ganesh(Original notes from Isil Dillig), ECE750T-28: Computer-aided Reasoning for Software Engineering Lecture 16: Decision Procedures for Combination Theories 25/44



Example, cont

» Purified formula is Fy A F> where:

wi = f(z) Nwz = f(y) A f(ws) # f(2)

F12
wy=w —w2 N z<y ANy+z<z A0z

FQZ

» Which variables are shared?

25/44
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Example, cont

» Purified formula is Fy A F> where:

wi = f(z) Nwz = f(y) A f(ws) # f(2)

F12
wy=w —w2 N z<y ANy+z<z A0z

FQZ

» Which variables are shared? all

25/44
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Example, cont

» Purified formula is Fy A F> where:

wi = f(z) Nwz = f(y) A f(ws) # f(2)

F12
wy=w —w2 N z<y ANy+z<z A0z

F2 :
» Which variables are shared? all

» Check sat of Fy. Is it SAT?

25/44
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Example, cont

» Purified formula is Fy A F> where:

wi = f(z) Nwz = f(y) A f(ws) # f(2)

F12
wy=w —w2 N z<y ANy+z<z A0z

F2 :
» Which variables are shared? all

> Check sat of Fy. Is it SAT? yes

25/44
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Example, cont

v

Purified formula is Fy A F where:

Fr:ow=f(z) Awe = f(y) Af(ws) # f(2)
Fo: ws=wi—w2 N x<y ANy+z<zxz AN0<z

v

Which variables are shared? all

v

Check sat of Fi. Is it SAT? yes

v

Check sat of Fs. Is it SAT?
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Example, cont

v

Purified formula is Fy A F where:

Fr:ow=f(z) Awe = f(y) Af(ws) # f(2)
Fo: ws=wi—w2 N x<y ANy+z<zxz AN0<z

v

Which variables are shared? all

v

Check sat of Fi. Is it SAT? yes

v

Check sat of Fs. Is it SAT? yes
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Example, cont

\4

Purified formula is Fy A F where:

= f(z) Nw2 = f(y) A f(ws) # f(2)
Fo: ws=wi—w2 N x<y ANy+z<zxz AN0<z

=
E
|

v

Which variables are shared? all

v

Check sat of Fi. Is it SAT? yes

v

Check sat of Fs. Is it SAT? yes

> Now, for each pair of shared variable z;, z;, we query whether F or F»
imply z; = z;
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Example, cont

Fr:ow = fz) Awe = f(y) A f(ws) # f(2)
Fo: ws=wi—w Nz<y ANy+z<z N0z

» Consider the query z = y — is it implied by either F; or F5?
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Example, cont

Fr:ow = fz) Awe = f(y) A f(ws) # f(2)
Fo: ws=wi—w Nz<y ANy+z<z N0z

» Consider the query z = y — is it implied by either F; or F? implied by F>
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Example, cont
Fr:ow = fz) Awe = f(y) A f(ws) # f(2)
Fo: ws=w—w2 ANz<yANy+z<z AN0<z
» Consider the query z = y — is it implied by either F; or F>? implied by Fo

> y+2<zAN0<zimply0<z<z—y, ie,y<z
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Example, cont
Fr:ow = fz) Awe = f(y) A f(ws) # f(2)
Fo: ws=w—w2 ANz<yANy+z<z AN0<z
» Consider the query z = y — is it implied by either F; or F>? implied by Fo
> y+2<zAN0<zimply0<z<z—y, ie,y<z

> Since we also have z <y, Tg implies z = y
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Example, cont

Fr:ow = fz) Awe = f(y) A f(ws) # f(2)
Fo: ws=w—w2 Nz<yANy+z<z AN0<z

v

Consider the query © = y —is it implied by either F; or F2? implied by Fo
> y+2<zAN0<zimply0<z2<z—y, ie,y<z
> Since we also have z <y, Tg implies z = y

» Now, propagate this to T—, so F{ becomes:

F{:w = f(z) Nwe = f(y) Af(ws) # f(2) o=y
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Example, cont

Fr:ow = fz) Awe = f(y) A f(ws) # f(2)
Fo: ws=w—w2 Nz<yANy+z<z AN0<z

v

Consider the query © = y —is it implied by either F; or F2? implied by Fo
> y+2<zAN0<zimply0<z2<z—y, ie,y<z
> Since we also have z <y, Tg implies z = y

» Now, propagate this to T—, so F{ becomes:

F{:w = f(z) Nwe = f(y) Af(ws) # f(2) o=y

v

Check sat of Fy. Is it SAT?
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Example, cont

Fr:ow = fz) Awe = f(y) A f(ws) # f(2)
Fo: ws=w—w2 Nz<yANy+z<z AN0<z

v

Consider the query © = y —is it implied by either F; or F2? implied by Fo
> y+2<zAN0<zimply0<z2<z—y, ie,y<z
> Since we also have z <y, Tg implies z = y

» Now, propagate this to T—, so F{ becomes:

F{:w = f(z) Nwe = f(y) Af(ws) # f(2) o=y

v

Check sat of FY. Is it SAT? yes
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Example, cont

Fi:oow = f(z) Awe = f(y) A f(ws) # f(2)
Fo: ws=w—w2 Nz<yANy+z<z AN0<z

v

Consider the query © = y —is it implied by either F; or F2? implied by Fo
> y+2<zAN0<zimply0<z2<z—y, ie,y<z
> Since we also have z <y, Tg implies z = y

» Now, propagate this to T—, so F{ becomes:

F{:w = f(z) Nwe = f(y) Af(ws) # f(2) o=y

v

Check sat of FY. Is it SAT? yes

> Are we done?
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Example, cont

Fi:oow = f(z) Awe = f(y) A f(ws) # f(2)
Fo: ws=w—w2 Nz<yANy+z<z AN0<z

v

Consider the query © = y —is it implied by either F; or F2? implied by Fo
> y+2<zAN0<zimply0<z2<z—y, ie,y<z
> Since we also have z <y, Tg implies z = y

» Now, propagate this to T—, so F{ becomes:

F{:w = f(z) Nwe = f(y) Af(ws) # f(2) o=y

v

Check sat of FY. Is it SAT? yes

» Are we done? no
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Example, cont

Fio wi=f@)Aw=fy)Aflws)#f(z)Az=1y

Fo: ws=wi—w2 Nz <y Ny+z<z A0z

» Since F; changed, need to check if it implies any new equality
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Example, cont

Fr:ow=f(z) Awe = f(y) Af(ws) # f(z) Az =y
Fo: ws=wi—w2 Nz <y Ny+z<z A0z

> Since F changed, need to check if it implies any new equality

» Does it imply a new equality?
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Example, cont

Fr:ow=f(z) Awe = f(y) Af(ws) # f(z) Az =y
Fo: ws=wi—w2 Nz <y Ny+z<z A0z

> Since F changed, need to check if it implies any new equality

» Does it imply a new equality? yes, wi = w2
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Example, cont

Fiow=f(x)ANwe = fy) ANf(ws) #f(z) Nz =y
Fo: ws=wi—w2 Nz <y Ny+z<z A0z

> Since F changed, need to check if it implies any new equality
» Does it imply a new equality? yes, wi = w2

» Now, we add w; = ws to Fa:

Foruws=wi—we N xa<y ANy+z<zxz AN0< 2z A w =u
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Example, cont

Froown=f(z)ANwe = f(y) ANf(ws) #f(2) Nz =y
Fo: ws=wi—w2 Nz <y Ny+z<z A0z

\4

Since F changed, need to check if it implies any new equality
» Does it imply a new equality? yes, wi = w2

» Now, we add w; = ws to Fa:

Foruws=wi—we N xa<y ANy+z<zxz AN0< 2z A w =u

v

We recheck sat of Fs. Is it SAT?
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Example, cont

Froown=f(z)ANwe = f(y) ANf(ws) #f(2) Nz =y
Fo: ws=wi—w2 Nz <y Ny+z<z A0z

\4

Since F changed, need to check if it implies any new equality
» Does it imply a new equality? yes, wi = w2

» Now, we add w; = ws to Fa:

Foruws=wi—we N xa<y ANy+z<zxz AN0< 2z A w =u

v

We recheck sat of Fy. Is it SAT? yes
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Example, cont

Froow=f(z)Awe=f(y) Af(ws) #f(z) Nz =y
Fo: ws=wi—w2 Nz <y Ny+z<z A0z

\4

Since F changed, need to check if it implies any new equality
» Does it imply a new equality? yes, wi = w2

» Now, we add w; = ws to Fa:

Foruws=wi—we N xa<y ANy+z<zxz AN0< 2z A w =u

v

We recheck sat of Fy. Is it SAT? yes

v

Still not done b/c need to check if F» implies any new equalities
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Example, cont

Fr:oow =f(z)Awe = f(y) Af(ws) #f(z) Az =y

Fo: wys=w—w2 ANz <y ANy+z<z AN0<z A wi =u

» Consider the query w3 = 2?
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Example, cont

Fr:oow =f(z)Awe = f(y) Af(ws) #f(z) Az =y

Fo: wys=w—w2 ANz <y ANy+z<z AN0<z A wi =u

» Consider the query w3 = 2?

> w3 = w; — w2 and wy = we imply w3 =0
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Example, cont

Fiiowi=f(a) Aws=f(y) Af(uws) £ f() As =y

Fo: wys=w—w2 ANz <y ANy+z<z AN0<z A wi =u

» Consider the query w3 = 2?
> w3 = w; — w2 and wy = we imply w3 =0

> Sincez =y, y+ 2z < z implies z <0
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Example, cont

Fr:oow =f(z)Awe = f(y) Af(ws) #f(z) Az =y

Fo: ws=wi—w2 Nz<yAy+z<z A0<z A w =uw

> Consider the query ws = 27
> w3 = w; — we and wi; = we imply ws = 0
» Sincez =y, y+ 2z < x implies 2 <0

» Since z <0 and 0 < z, we have 2 =0
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Example, cont

Fiiowi=f(a) Aws=f(y) Af(uws) £ f() As =y

Fo: ws=wi—w2 Nz<yAy+z<z A0<z A w =uw

> Consider the query ws = 27
> w3 = w; — we and wi; = we imply ws = 0
» Sincez =y, y+ 2z < x implies z <0

» Since z <0 and 0 < z, we have 2 =0

v

Thus, Tq answer "yes” for query ws = 2
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Example, cont

> Now, propagate wz = z to Fi:

Froun=f(@)ANwe=f(y) ANf(ws) #f(2)ANz=y Nws =2
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Example, cont

> Now, propagate wz = z to Fi:

Froun=f(@)ANwe=f(y) ANf(ws) #f(2)ANz=y Nws =2

> |s this sat?
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Example, cont

> Now, propagate wz = z to Fi:

Froun=f(@)ANwe=f(y) ANf(ws) #f(2)ANz=y Nws =2

> |s this sat?

> No, because w3 = z implies f(ws) = f(z)

Vijay Ganesh(Original notes from Isil Dillig), ECE750T-28: Computer-aided Reasoning for Software Engineering Lecture 16: Decision Procedures for Combination Theories 29/44



Example, cont

» Now, propagate ws = z to Fi:

Froun=f(@)ANwe=f(y) ANf(ws) #f(2)ANz=y Nws =2

Is this sat?

v

> No, because w3 = z implies f(ws) = f(z)

v

This contradicts f(ws) # f(2)
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Example, cont

» Now, propagate ws = z to Fi:

Froun=f(@)ANwe=f(y) ANf(ws) #f(2)ANz=y Nws =2

Is this sat?

v

> No, because w3 = z implies f(ws) = f(z)

v

This contradicts f(ws) # f(2)

» Thus, original formula is UNSAT
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Non-Convex Theories

> Unfortunately, technique discussed so far does not work for non-convex
theories

Vijay Ganesh(Original notes from Isil Dillig), ECE750T-28: Computer-aided Reasoning for Software Engineering Lecture 16: Decision Procedures for Combination Theories 30/44



Non-Convex Theories

» Unfortunately, technique discussed so far does not work for non-convex
theories

» Consider the following Tz U T— formula:

1<z Az <2Af(z) # F() A f() # F(2)
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Non-Convex Theories

» Unfortunately, technique discussed so far does not work for non-convex
theories

» Consider the following Tz U T— formula:
L<zAz <2Af(x) # () Af(z) # f(2)

> |s this formula SAT?
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Non-Convex Theories

» Unfortunately, technique discussed so far does not work for non-convex
theories

» Consider the following Tz U T— formula:
L<zAz <2Af(x) # () Af(z) # f(2)

» |s this formula SAT? no
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Non-Convex Theories

v

Unfortunately, technique discussed so far does not work for non-convex
theories

» Consider the following Tz U T— formula:

1<z Az <2Af(z) # F() A f() # F(2)

v

Is this formula SAT? no

> Let's see what happens if we use technique described so far
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Non-Convex Theories

v

Unfortunately, technique discussed so far does not work for non-convex
theories

» Consider the following Tz U T— formula:

1<z Az <2Af(z) # F() A f() # F(2)

v

Is this formula SAT? no

> Let's see what happens if we use technique described so far

v

If we purify, we get the following formulas:

Fooo fle) # fw) Af(z) # f(w2)

Fo: 1<zNhNz<2ANwi=1Awy =2
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Example, cont

Fioo f(2) # f(w) Af(z) # f(w2)

Fo: 1<zANz<2ANw =1Awx =2

> Is 1 SAT?
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Example, cont

Fioo f(2) # f(w) Af(z) # f(w2)

Fo: 1<zANz<2ANw =1Awx =2

> Is Fy SAT? yes
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Example, cont

Fioo f(2) # f(w) Af(z) # f(w2)

Fo: 1<zANz<2ANw =1Awx =2
> Is Fy SAT? yes

> Is 'y SAT?
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Example, cont

Fioo f(2) # f(w) Af(z) # f(w2)

Fo: 1<zANz<2ANw =1Awx =2
> Is Fy SAT? yes

> Is F SAT? yes
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Example, cont

Fioo f(2) # f(w) Af(z) # f(w2)

Fo: 1<zANz<2ANw =1Awx =2
> Is Fy SAT? yes
> Is F SAT? yes

» Does F imply a new equality by itself?
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Example, cont

Fioo f(2) # f(w) Af(z) # f(w2)

Fo: 1<zANz<2ANw =1Awx =2
> Is Fy SAT? yes
> Is F SAT? yes

> Does Fi imply a new equality by itself? no
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Example, cont

Fioo f(2) # f(w) Af(z) # f(w2)

Fo: 1<zANz<2ANw =1Awx =2

v

Is F1 SAT? yes

v

Is Fo SAT? yes
> Does Fi imply a new equality by itself? no

» Does F> imply a new equality by itself?
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Example, cont

Fioo f(2) # f(w) Af(z) # f(w2)

Fo: 1<zANz<2ANw =1Awx =2

v

Is F1 SAT? yes

v

Is Fo SAT? yes
> Does Fi imply a new equality by itself? no

» Does F> imply a new equality by itself? no
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Example, cont

Fioo f(2) # f(w) Af(z) # f(w2)

Fo: 1<zANz<2ANw =1Awx =2

v

Is F1 SAT? yes

v

Is Fo SAT? yes
> Does Fi imply a new equality by itself? no

» Does F> imply a new equality by itself? no

v

Thus technique discussed so far returns sat, although formula in unsat
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Nelson-Oppen with Non-Convex Theories

> Problem is that in non-convex theories, a formula might imply a
disjunction of equalities
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Nelson-Oppen with Non-Convex Theories

> Problem is that in non-convex theories, a formula might imply a
disjunction of equalities

> But it doesn’t have to imply any single equality on its own
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Nelson-Oppen with Non-Convex Theories
> Problem is that in non-convex theories, a formula might imply a
disjunction of equalities
> But it doesn’t have to imply any single equality on its own

» Thus, it is not enough to query individual equality relations between
variables
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Nelson-Oppen with Non-Convex Theories

v

Problem is that in non-convex theories, a formula might imply a
disjunction of equalities

v

But it doesn't have to imply any single equality on its own

» Thus, it is not enough to query individual equality relations between
variables

v

We also have to query and propagate disjunctions of equalities
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Nelson-Oppen with Non-Convex Theories
> Problem is that in non-convex theories, a formula might imply a
disjunction of equalities
> But it doesn’t have to imply any single equality on its own

» Thus, it is not enough to query individual equality relations between
variables

» We also have to query and propagate disjunctions of equalities

» Two questions:
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Nelson-Oppen with Non-Convex Theories

v

Problem is that in non-convex theories, a formula might imply a
disjunction of equalities

> But it doesn’t have to imply any single equality on its own

» Thus, it is not enough to query individual equality relations between
variables

» We also have to query and propagate disjunctions of equalities
» Two questions:

1. Which disjunctions do we query?
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Nelson-Oppen with Non-Convex Theories

> Problem is that in non-convex theories, a formula might imply a
disjunction of equalities

> But it doesn’t have to imply any single equality on its own

» Thus, it is not enough to query individual equality relations between
variables

» We also have to query and propagate disjunctions of equalities
» Two questions:
1. Which disjunctions do we query?

2. How do we propagate disjunctions since we are considering disjunction-free
formulas?
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What Disjunctions to Query?

> Recall: We only have a finite set of shared variables
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What Disjunctions to Query?

» Recall: We only have a finite set of shared variables

» From these, we can only generate a finite number of disjunctions of
equalities

Vijay Ganesh(Original notes from Isil Dillig), ECE750T-28: Computer-aided Reasoning for Software Engineering Lecture 16: Decision Procedures for Combination Theories 33/44



What Disjunctions to Query?

» Recall: We only have a finite set of shared variables

» From these, we can only generate a finite number of disjunctions of
equalities

> Thus, for each possible disjunction, we need to issue a query
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What Disjunctions to Query?

» Recall: We only have a finite set of shared variables

» From these, we can only generate a finite number of disjunctions of
equalities

> Thus, for each possible disjunction, we need to issue a query

» Example: If we have shared variables z, y, z, which queries do we need to
issue?
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What Disjunctions to Query?

» Recall: We only have a finite set of shared variables

» From these, we can only generate a finite number of disjunctions of
equalities

> Thus, for each possible disjunction, we need to issue a query

» Example: If we have shared variables z, y, z, which queries do we need to
issue?
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Propagating Disjunctions

> Suppose answer to some disjunctive query \/7_, z; = y; is yes
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Propagating Disjunctions

> Suppose answer to some disjunctive query \/7_, z; = y; is yes

> In this case, we need to branch and consider all n possibilities
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Propagating Disjunctions

> Suppose answer to some disjunctive query \/7_, z; = y; is yes
> In this case, we need to branch and consider all n possibilities

» Thus, create n subproblems where we propagate x; = y; in i'th
subproblem
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Propagating Disjunctions

> Suppose answer to some disjunctive query \/7_, z; = y; is yes

\4

In this case, we need to branch and consider all n possibilities

» Thus, create n subproblems where we propagate x; = y; in i'th
subproblem

v

If there is any subproblem that is satisfiable, original formula is satisfiable
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Propagating Disjunctions

> Suppose answer to some disjunctive query \/"_, z; = y; is yes
> In this case, we need to branch and consider all n possibilities

» Thus, create n subproblems where we propagate x; = y; in i'th
subproblem

> If there is any subproblem that is satisfiable, original formula is satisfiable

> If every subproblem is unsatisfiable, then original formula is unsatisfiable
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Example

» Consider T— U Tz formula:

L<aoAe<2Af(2) # () Af(2) # F(2)
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Example

» Consider T— U Tz formula:
L<aha<2Af() # () Af(2) £ [(2)

> After purification, we get:

Fi: f(x) # flwn) A f(z) # fws)

Fo: 1<zANz<2ANw=1ANws =2
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Example

» Consider T— U Tz formula:
L<anz <2Af(2) £ () Af(@) £ (2)

> After purification, we get:

Fi: f(x) # flwn) A f(z) # fws)

Fo: 1<zAz<2Aur=1Awy =2

» Which queries do we need to issue?
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Example

» Consider T— U Tz formula:
L<anz <2Af(2) £ () Af(@) £ (2)

> After purification, we get:

Fi: f(x) # flwn) A f(z) # fws)

Fo: 1<zAz<2Aur=1Awy =2

» Which queries do we need to issue?

(1) z=wn
(2) z = ws
B)z=wVz=u
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Example

v

Consider T— U Tz formula:

1<zAhz<2Af(z)#fQ)AN[f(z) #f(2)

v

After purification, we get:

Fi: f(x) # flwn) A f(z) # fws)

Fo: 1<zAz<2Aur=1Awy =2

» Which queries do we need to issue?
(1) z=wn
(2) z = ws
B)z=wVz=u

» Answer to queries (1) and (2) are no, but F» implies query (3)
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Example, cont

» Now, we create two subproblems, one where we propagate x = w; and
T = w2
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Example, cont

» Now, we create two subproblems, one where we propagate x = w; and
Tr = W2

» First subproblem:

Foo f(z) # f(w) Af(z) # f(ue) Ao = wn

Fs: 1<zAz<2ANw =1Aw =2
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Example, cont

» Now, we create two subproblems, one where we propagate x = w; and
Tr = W2

» First subproblem:

Foo f(z) # f(w) Af(z) # f(ue) Ao = wn

Fs: 1<zAz<2ANw =1Aw =2

> |s this satisfiable?
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Example, cont

» Now, we create two subproblems, one where we propagate x = w; and
Tr = W2

» First subproblem:
Fuoo f(x) # f(w) Af(z) # f(w2) Ao = wn
Fs: 1<zAz<2ANw =1Aw =2
> |s this satisfiable?
» No because z = wy implies f(z) = f(w1)
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Example, cont

» Second subproblem:

Froo f(z) # flw) A f(z) # flw2) Ao = wp
<

Fs . 1<zAz<2ANw =1Aw =2
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Example, cont

» Second subproblem:

Froo f(z) # flw) A f(z) # flw2) Ao = wp
<z

Fs: 1 AN <2ANw =1Awy =2

> |s this satisfiable?
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Example, cont

» Second subproblem:

Froo f(z) # flw) A f(z) # flw2) Ao = wp
<

Fs . 1<zAz<2ANw =1Aw =2
> |s this satisfiable?

» No because z = wy implies f(z) = f(w2)
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Example, cont

» Second subproblem:
Fi: f(z) # f(wn) A f(z) # flw) Ao = we
Fs: 1<zAz<2ANw =1Aw =2
> |s this satisfiable?

» No because z = w» implies f(z) = f(w2)

v

Since neither subproblem is satisfiable, Nelson-Oppen returns unsat for
original formula
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Example Il

» Consider the following T— U T% formula:

L<zAz<3Af(z)#fFQ)Af(z)#FB)AFQ) #£f(2)
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Example Il

» Consider the following T— U T7 formula:
L<ane <3AS(2) () AS() # F(3) AJ(L) # F(2)
» Formulas after purification:

Fyoo f(a) # fw) Af(z) # f(ws) A f(wn) # fws)

Fs - 1<zAz<3ANwi=1ANw=2Aws =3

: :
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Example Il

» Consider the following T— U T7 formula:
L<znz <3Af(x) #F)Af(z) #FB)AFQ) #f(2)

» Formulas after purification:

Fyoo f(a) # fw) Af(z) # f(ws) A f(wn) # fws)

Fs - 1<zAz<3ANwi=1ANw=2Aws =3

» Consider the query z = wi Vo = wa V 2 = w3
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Example Il

» Consider the following T— U T7 formula:

1<azAz <3Af(z)#F)Af(z)#FB)AFL) #F(2)

v

Formulas after purification:

Fyoo f(a) # fw) Af(z) # f(ws) A f(wn) # fws)

Fy - 1<zAz<3ANwi=1Aw=2Aws =3

» Consider the query z = wi Vo = wa V 2 = w3

v

Does either formula imply this query?
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Example Il

» Consider the following T— U T7 formula:

1<azAz <3Af(z)#F)Af(z)#FB)AFL) #F(2)

v

Formulas after purification:

Fyoo f(a) # fw) Af(z) # f(ws) A f(wn) # fws)

Fy - 1<zAz<3ANwi=1Aw=2Aws =3

» Consider the query z = wi Vo = wa V 2 = w3

v

Does either formula imply this query? Yes
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Example I, cont

» First subproblem:

Fooo fz) # fw) Af(x) # f(ws) Af(wn) # f(wz) Az = wn

Fo: 1<zAhNz<3Awi=1Aw=2Aws=3
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Example I, cont

» First subproblem:

Fooo fz) # fw) Af(x) # f(ws) Af(wn) # f(wz) Az = wn

Fo: 1<zAhNz<3Awi=1Aw=2Aws=3

> |s this satisfiable?
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Example I, cont

» First subproblem:

Fooo fz) # fw) Af(x) # f(ws) Af(wn) # f(wz) Az = wn

Fo: 1<zAhNz<3Awi=1Aw=2Aws=3
» |s this satisfiable? no

» Second subproblem:

Fuooo fz) # f(w) A f(x) # f(ws) Af(un) # f(wz) Ao = wo

Fo: 1<zAhNz<3Awi=1Aw=2Aws=3
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» First subproblem:

Fooo fz) # fw) Af(x) # f(ws) Af(wn) # f(wz) Az = wn

Fo: 1<zAhNz<3Awi=1Aw=2Aws=3

v

Is this satisfiable? no

v

Second subproblem:

Fooo f(z) # fw) Af(z) # fws) A f(wn) # flwz) Az = ws

Fo: 1<zAhNz<3Awi=1Aw=2Aws=3

v

Is this satisfiable?
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Example I, cont

» First subproblem:

Fooo fz) # fw) Af(x) # f(ws) Af(wn) # f(wz) Az = wn

Fo: 1<zAhNz<3Awi=1Aw=2Aws=3

v

Is this satisfiable? no

v

Second subproblem:

Fooo f(z) # fw) Af(z) # fws) A f(wn) # flwz) Az = ws

Fo: 1<zAhNz<3Awi=1Aw=2Aws=3

v

Is this satisfiable? Yes
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Example I, cont

Second subproblem:

Fi: f(z) # flw) Af(z) # f(ws) Af(wr) # flw) Ao = we
Fo: 1<zANz<3ANwr=1ANwy=2Aw3=3

» So it's satisfiable, are we done?
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Second subproblem:

Fi: f(z) # flw) Af(z) # f(ws) Af(wr) # flw) Ao = we
Fo: 1<zANz<3ANwr=1ANwy=2Aw3=3

» So it's satisfiable, are we done? No, need to check for new equalities
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Second subproblem:
Fi: f(z) # flw) Af(z) # f(ws) Af(wr) # flw) Ao = we
Fo: 1<zANz<3ANwr=1ANwy=2Aw3=3

» So it's satisfiable, are we done? No, need to check for new equalities

» Thus, we now issue new queries such as z = w;, z = we, etc
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Example I, cont

Second subproblem:

Fi:o f(@) # flwn) Af(z) # f(ws) Af(wn) # flw) Ao = wp
Fo: 1<zANz<3ANwr=1ANwy=2Aw3=3
» So it's satisfiable, are we done? No, need to check for new equalities

» Thus, we now issue new queries such as z = w;, z = we, etc

> Are there any new implied equalities or disjunctions of equalities?
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Second subproblem:

Fi:o f(@) # flwn) Af(z) # f(ws) Af(wn) # flw) Ao = wp
Fo: 1<zANz<3ANwr=1ANwy=2Aw3=3
» So it's satisfiable, are we done? No, need to check for new equalities

» Thus, we now issue new queries such as z = w;, z = we, etc

> Are there any new implied equalities or disjunctions of equalities? No
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Example I, cont

Second subproblem:

Py f(z) # f(w) A f(@) # flws) A f(wn) # fwz) Ao = we
Fo: 1<zANz<3ANwr=1ANwy=2Aw3=3

» So it's satisfiable, are we done? No, need to check for new equalities
» Thus, we now issue new queries such as z = w;, z = we, etc
>

Are there any new implied equalities or disjunctions of equalities? No

» Thus, second subproblem is satisfiable
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Example I, cont

Second subproblem:
Fi:o f(z) # f(uw) Af(z) # f(ws) A f(wn) # flwe) Az = ws
Fo: 1<zANz<3ANwr=1ANwy=2Aw3=3
» So it's satisfiable, are we done? No, need to check for new equalities
» Thus, we now issue new queries such as z = w;, z = we, etc
> Are there any new implied equalities or disjunctions of equalities? No

» Thus, second subproblem is satisfiable

» Do we need to check third subproblem?
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Example I, cont

Second subproblem:
Fi:o f(z) # f(uw) Af(z) # f(ws) A f(wn) # flwe) Az = ws
Fo: 1<zANz<3ANwr=1ANwy=2Aw3=3
» So it's satisfiable, are we done? No, need to check for new equalities
» Thus, we now issue new queries such as z = w;, z = we, etc
> Are there any new implied equalities or disjunctions of equalities? No

» Thus, second subproblem is satisfiable

» Do we need to check third subproblem? No
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Example I, cont

Second subproblem:
Fii f(2) # f(w) Af(@) # F(ws) Af(wn) # fwe) Az = uz
Fo: 1<zANz<3ANwr=1ANwy=2Aw3=3
» So it's satisfiable, are we done? No, need to check for new equalities
» Thus, we now issue new queries such as z = w;, z = we, etc
> Are there any new implied equalities or disjunctions of equalities? No
» Thus, second subproblem is satisfiable

» Do we need to check third subproblem? No

» Thus, original formula is satisfiable
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Optimization

> In presentation so far, we issued some disjuctive queries
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> As soon as answer was yes to some query, we propagated it by performing
case split
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Optimization

> In presentation so far, we issued some disjuctive queries

> As soon as answer was yes to some query, we propagated it by performing
case split

> But really, we want to find a minimal query that is implied.

» Minimal query is one where dropping any disjunct causes query to no
longer be implied
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» Minimal query is one where dropping any disjunct causes query to no
longer be implied
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Optimization

> In presentation so far, we issued some disjuctive queries

> As soon as answer was yes to some query, we propagated it by performing
case split

> But really, we want to find a minimal query that is implied.

» Minimal query is one where dropping any disjunct causes query to no
longer be implied

» Why do we want minimal query?

1. Since z = y V y = z already implies z = y V y = z V z = w, no need to
consider latter to decide satisfiability
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Optimization

» In presentation so far, we issued some disjuctive queries

> As soon as answer was yes to some query, we propagated it by performing
case split

> But really, we want to find a minimal query that is implied.

» Minimal query is one where dropping any disjunct causes query to no
longer be implied

» Why do we want minimal query?

1. Since z = y V y = z already implies z = y V y = z V z = w, no need to
consider latter to decide satisfiability

2. When we propagate the query, using minimal query creates fewer
subproblems
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Optimization, cont.

» To find minimal query, start with disjunction of all possible equalities
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Optimization, cont.

» To find minimal query, start with disjunction of all possible equalities

» If this isn't implied, no subset will be implied, so we are done
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Optimization, cont.

» To find minimal query, start with disjunction of all possible equalities
» If this isn't implied, no subset will be implied, so we are done

» If it is implied, drop one equality
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Optimization, cont.

v

To find minimal query, start with disjunction of all possible equalities

v

If this isn't implied, no subset will be implied, so we are done

v

If it is implied, drop one equality

v

If it is still implied, continue with smaller disjunction
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Optimization, cont.

v

To find minimal query, start with disjunction of all possible equalities

v

If this isn't implied, no subset will be implied, so we are done

v

If it is implied, drop one equality

v

If it is still implied, continue with smaller disjunction

» Otherwise, restore equality and continue with next one
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Optimization, cont.

v

To find minimal query, start with disjunction of all possible equalities

v

If this isn't implied, no subset will be implied, so we are done

v

If it is implied, drop one equality

v

If it is still implied, continue with smaller disjunction
» Otherwise, restore equality and continue with next one

> This ensures we find a minimal disjunction that is implied
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Optimization, cont.

» To find minimal query, start with disjunction of all possible equalities
» If this isn't implied, no subset will be implied, so we are done

» If it is implied, drop one equality

» If it is still implied, continue with smaller disjunction

» Otherwise, restore equality and continue with next one

> This ensures we find a minimal disjunction that is implied

» Thist strategy much better than using any disjunction that is implied
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Nelson-Oppen for Convex vs. Non-Convex Theories

> Nelson-Oppen method is much more efficient for convex theories than for
non-convex theories
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> Nelson-Oppen method is much more efficient for convex theories than for
non-convex theories

> In convex theories:
1. need to issue one query for each pair of shared variables
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> Nelson-Oppen method is much more efficient for convex theories than for
non-convex theories

> In convex theories:
1. need to issue one query for each pair of shared variables

2. If decision procedures for 71 and T2 have polynomial time complexity,
combination using Nelson-Oppen also has polynomial complexity

Vijay Ganesh(Original notes from Isil Dillig), ECE750T-28: Computer-aided Reasoning for Software Engineering Lecture 16: Decision Procedures for Combination Theories ~ 43/44



Nelson-Oppen for Convex vs. Non-Convex Theories

> Nelson-Oppen method is much more efficient for convex theories than for
non-convex theories

> In convex theories:
1. need to issue one query for each pair of shared variables

2. If decision procedures for 71 and T2 have polynomial time complexity,
combination using Nelson-Oppen also has polynomial complexity

» In non-convex theories:

1. need to consider disjunctions of equalities between each pair of shared
variables
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Nelson-Oppen for Convex vs. Non-Convex Theories

> Nelson-Oppen method is much more efficient for convex theories than for
non-convex theories

> In convex theories:
1. need to issue one query for each pair of shared variables

2. If decision procedures for 71 and T2 have polynomial time complexity,
combination using Nelson-Oppen also has polynomial complexity

» In non-convex theories:

1. need to consider disjunctions of equalities between each pair of shared
variables

2. If decision procedures for T and T3 have NP time complexity,
combination using Nelson-Oppen also has NP time complexity
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Summary

> Nelson-Oppen method gives a sound and complete decision procedure for
combination theories
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Summary
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» However, it only works for quantifier-free theories that are infinitely stable

> Not a severe restriction because most theories of interest are infinitely
stable
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Summary

> Nelson-Oppen method gives a sound and complete decision procedure for
combination theories

» However, it only works for quantifier-free theories that are infinitely stable

> Not a severe restriction because most theories of interest are infinitely
stable

» Next lecture: How to decide satisfiability in first-order theories without
converting to DNF
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Summary

> Nelson-Oppen method gives a sound and complete decision procedure for
combination theories

» However, it only works for quantifier-free theories that are infinitely stable

> Not a severe restriction because most theories of interest are infinitely
stable

» Next lecture: How to decide satisfiability in first-order theories without
converting to DNF

» Reminder: homework due next lecture
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