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Motivation

I So far, learned about decision procedures for useful theories

I Examples: Theory of equality with uninterpreted functions, theory of
rationals, theory of integers

I But in many cases, we need to decide satisfiability of formulas involving
multiple theories

I Example: 1 ≤ x ∧ x ≤ 2 ∧ f (x) 6= f (1) ∧ f (x) 6= f (2)

I This formula does not belong to any individual theory

I But it does belong, for instance, to combination of T= and TZ
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Overview

I Recall: Given two theories T1 and T2 that have the = predicate, we define
a combined theory T1 ∪ T2

I Signature of T1 ∪ T2: Σ1 ∪ Σ2

I Axioms of T1 ∪ T2: A1 ∪A2

I Given decision procedures for T1 and T2, we want a decision procedure to
decide satisfiability of formulas in T1 ∪ T2

I Today’s lecture: Learn about Nelson-Oppen method for constructing
decision procedure for combined theory T1 ∪ T2 from individual decision
procedures for T1 and T2
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Nelson-Oppen Overview

I This method also allows combining arbitrary number of theories

I For instance, to combine T1,T2,T3, first combine T1, T2

I Then, combine T1 ∪ T2 and T3 again using Nelson-Oppen

I However, Nelson-Oppen imposes some restrictions on theories that can be
combined
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Restrictions of Nelson-Oppen

I Nelson-Oppen method imposes the following restrictions:

1. Only allows combining quantifier-free fragments

2. Only allows combining formulas without disjunctions, but not a major
limitation because can convert to DNF

3. Signatures can only share equality: Σ1 ∩ Σ2 = {=}

4. Theories T1 and T2 must be stably infinite

I Theory T is stably infinite iff every satisfiable qff formula is satisfiable in a
universe of discourse with infinite cardinality

I In other words, if qff F is satisfiable, then there exists T -model that
satisfies F and has infinite cardinality.

I Thus, theories with only finite models are not stably infinite.
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Example of Non-Stably Infinite Theory

Signature : {a, b,=}
Axiom : ∀x . x = a ∨ x = b

I Axiom says that any object in the universe of discourse must be equal to
either a or b

I Now consider U containing more than 2 elements

I Then, there is at least one element distinct from both a and b

I Thus, any U with more than 2 elements violates axiom

I Hence, theory only has finite models, and is not stably infinite
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Examples of Stably Infinite Theories

I Fortunately, almost any theory of interest is stably infinite

I All theories we discussed, T=, TQ, TZ, TA, are stably infinite

I Which of these theories can we combine using Nelson-Oppen?

1. T= and TQ?

yes

2. T= and TZ?

yes

3. TA and TZ?

yes

I In general, almost any theory we care about can be combined using
Nelson-Oppen

I More recent work has also extended Nelson-Oppen to non-stably-infinite
theories
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Nelson-Oppen Overview

I Nelson-Oppen method has conceptually two-different phases:

1. Purification: Seperate formula F in T1 ∪ T2 into two formulas F1 in T1

and F2 in T2

2. Equality propagation: Propagate all relevant equalities between theories

I Purification step is always the same for any arbitrary theory

I But equality propagation is different between convex and non-convex
theories
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I But equality propagation is different between convex and non-convex
theories
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Purification Overview

I Input to Nelson-Oppen is formula F in T1 ∪ T2

I Goal of purification is to separate F into formulas F1 and F2 such that:

1. F1 belongs only to T1 (is ”pure”)

2. F2 belong only to T2 (is ”pure”)

3. F1 ∧ F2 is equisatisfiable as F

I Resulting formula after purification is not equivalent

I But since goal is to decide satisfiability, this is good enough
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How To Purify

I To purify formula F , exhaustively apply the following:

1. Consider term f (. . . , ti , . . .). If f ∈ Σi but ti is not a term in Ti , replace ti
with fresh variable z and conjoin z = ti

2. Consider predicate p(. . . , ti , . . .). If p ∈ Σi but ti is not a term in Ti ,
replace ti with fresh variable w and conjoin w = ti

I Literals in resulting formula belong to either only T1 or T2.

I Thus, we can write F as a conjunction of formulas F1 in T1 and F2 in T2
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Purification Example 1

I Consider T= ∪ TQ formula x ≤ f (x) + 1

I Is this formula already pure?

No

I Since f (x) is not in TQ, replace with new variable y and add equality
constraint y = f (x)

I Thus, formula after purification:

x ≤ y + 1︸ ︷︷ ︸
TQ

∧ y = f (x)︸ ︷︷ ︸
T=
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Purification Example II

I Consider following Σ= ∪ ΣZ formula:

f (x + g(y)) ≤ g(a) + f (b)

I Easiest to purify ”inside out”

I Is the term x + g(y) pure?

no

I How do we purify it?

replace g(y) with z1, add constraint z1 = g(y)

I Resulting formula:

f (x + z1) ≤ g(a) + f (b) ∧ z1 = g(y)
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Purification Example II, cont

f (x + z1) ≤ g(a) + f (b) ∧ z1 = g(y)

I Is f (x + z1) pure?

no

I How do we purify?

replace x + z1 with z2, add constraint z2 = x + z1

I Resulting formula:

f (z2) ≤ g(a) + f (b) ∧ z1 = g(y) ∧ z2 = x + z1

I Is formula purified now?

no
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Purification Example II, cont

f (z2) ≤ g(a) + f (b) ∧ z1 = g(y) ∧ z2 = x + z1

I Which terms/predicate is impure?

g(a) + f (b)

I How do we purify?

replace g(a) with z3 and f (b) with z4, add constraint
z3 = g(a) ∧ z4 = f (b)

I Resulting formula:

f (z2) ≤ z3 + z4 ∧ z1 = g(y) ∧ z2 = x + z1 ∧ z3 = g(a) ∧ z4 = f (b)

I Is formula purified now?

no
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Purification Example II, cont
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z3 = g(a) ∧ z4 = f (b) ∧ z5 = f (z2)

I Is formula purified now?

Yes, finally!
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Shared vs. Unshared Variables

I After purification, we have decomposed a formula F into two pure
formulas F1 and F2

I If x occurs in both F1 and F2, x is called shared variable

I If y occurs only in F1 or only in F2, it is called unshared variable

I Consider the following purified formula:

w1 = x + y ∧ y = 1 ∧ w2 = 2︸ ︷︷ ︸
TZ

∧ w1 = f (x) ∧ f (x) 6= f (w2)︸ ︷︷ ︸
T=

I Which variables are shared?

w1, x ,w2

I Which variables are unshared?

y
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Two Phases of Nelson-Oppen

I Recall: Nelson-Oppen method has two different phases:

1. Purification: Seperate formula F in T1 ∪ T2 into two formulas F1 in T1

and F2 in T2

2. Equality propagation: Propagate all relevant equalities between theories

I Talk about second phase next

I But this phase is different for convex vs. non-convex theories

I So, need to talk about convex and non-convex theories
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Convex Theories

I Theory T is called convex if for every conjunctive formula F :

I If F ⇒
∨n

i=1 xi = yi for finite n

I Then, F ⇒ xi = yi for some i ∈ [1,n]

I Thus, in convex theory, if F implies disjunction of equalities, F also
implies at least one of these equalities on its own

I If a theory does not satisfy this condition, it is called non-convex
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Examples of Convex and Non-Convex Theories

I Example: Consider formula 1 ≤ x ∧ x ≤ 2 in TZ

I Does it imply x = 1 ∨ x = 2?

yes

I Does it imply x = 1?

no

I Does it imply x = 2?

no

I Is TZ convex?

no

I Theory of equality T= is convex

Vijay Ganesh(Original notes from Isil Dillig), ECE750T-28: Computer-aided Reasoning for Software Engineering Lecture 16: Decision Procedures for Combination Theories 19/44



Examples of Convex and Non-Convex Theories

I Example: Consider formula 1 ≤ x ∧ x ≤ 2 in TZ

I Does it imply x = 1 ∨ x = 2?

yes

I Does it imply x = 1?

no

I Does it imply x = 2?

no

I Is TZ convex?

no

I Theory of equality T= is convex

Vijay Ganesh(Original notes from Isil Dillig), ECE750T-28: Computer-aided Reasoning for Software Engineering Lecture 16: Decision Procedures for Combination Theories 19/44



Examples of Convex and Non-Convex Theories

I Example: Consider formula 1 ≤ x ∧ x ≤ 2 in TZ

I Does it imply x = 1 ∨ x = 2? yes

I Does it imply x = 1?

no

I Does it imply x = 2?

no

I Is TZ convex?

no

I Theory of equality T= is convex

Vijay Ganesh(Original notes from Isil Dillig), ECE750T-28: Computer-aided Reasoning for Software Engineering Lecture 16: Decision Procedures for Combination Theories 19/44



Examples of Convex and Non-Convex Theories

I Example: Consider formula 1 ≤ x ∧ x ≤ 2 in TZ

I Does it imply x = 1 ∨ x = 2? yes

I Does it imply x = 1?

no

I Does it imply x = 2?

no

I Is TZ convex?

no

I Theory of equality T= is convex

Vijay Ganesh(Original notes from Isil Dillig), ECE750T-28: Computer-aided Reasoning for Software Engineering Lecture 16: Decision Procedures for Combination Theories 19/44



Examples of Convex and Non-Convex Theories

I Example: Consider formula 1 ≤ x ∧ x ≤ 2 in TZ

I Does it imply x = 1 ∨ x = 2? yes

I Does it imply x = 1? no

I Does it imply x = 2?

no

I Is TZ convex?

no

I Theory of equality T= is convex

Vijay Ganesh(Original notes from Isil Dillig), ECE750T-28: Computer-aided Reasoning for Software Engineering Lecture 16: Decision Procedures for Combination Theories 19/44



Examples of Convex and Non-Convex Theories

I Example: Consider formula 1 ≤ x ∧ x ≤ 2 in TZ

I Does it imply x = 1 ∨ x = 2? yes

I Does it imply x = 1? no

I Does it imply x = 2?

no

I Is TZ convex?

no

I Theory of equality T= is convex

Vijay Ganesh(Original notes from Isil Dillig), ECE750T-28: Computer-aided Reasoning for Software Engineering Lecture 16: Decision Procedures for Combination Theories 19/44



Examples of Convex and Non-Convex Theories

I Example: Consider formula 1 ≤ x ∧ x ≤ 2 in TZ

I Does it imply x = 1 ∨ x = 2? yes

I Does it imply x = 1? no

I Does it imply x = 2? no

I Is TZ convex?

no

I Theory of equality T= is convex

Vijay Ganesh(Original notes from Isil Dillig), ECE750T-28: Computer-aided Reasoning for Software Engineering Lecture 16: Decision Procedures for Combination Theories 19/44



Examples of Convex and Non-Convex Theories

I Example: Consider formula 1 ≤ x ∧ x ≤ 2 in TZ

I Does it imply x = 1 ∨ x = 2? yes

I Does it imply x = 1? no

I Does it imply x = 2? no

I Is TZ convex?

no

I Theory of equality T= is convex

Vijay Ganesh(Original notes from Isil Dillig), ECE750T-28: Computer-aided Reasoning for Software Engineering Lecture 16: Decision Procedures for Combination Theories 19/44



Examples of Convex and Non-Convex Theories

I Example: Consider formula 1 ≤ x ∧ x ≤ 2 in TZ

I Does it imply x = 1 ∨ x = 2? yes

I Does it imply x = 1? no

I Does it imply x = 2? no

I Is TZ convex? no

I Theory of equality T= is convex

Vijay Ganesh(Original notes from Isil Dillig), ECE750T-28: Computer-aided Reasoning for Software Engineering Lecture 16: Decision Procedures for Combination Theories 19/44



Examples of Convex and Non-Convex Theories

I Example: Consider formula 1 ≤ x ∧ x ≤ 2 in TZ

I Does it imply x = 1 ∨ x = 2? yes

I Does it imply x = 1? no

I Does it imply x = 2? no

I Is TZ convex? no

I Theory of equality T= is convex

Vijay Ganesh(Original notes from Isil Dillig), ECE750T-28: Computer-aided Reasoning for Software Engineering Lecture 16: Decision Procedures for Combination Theories 19/44



Examples of Convex and Non-Convex Theories

I Example: Consider formula 1 ≤ x ∧ x ≤ 2 in TZ

I Does it imply x = 1 ∨ x = 2? yes

I Does it imply x = 1? no

I Does it imply x = 2? no

I Is TZ convex? no

I Theory of equality T= is convex

Vijay Ganesh(Original notes from Isil Dillig), ECE750T-28: Computer-aided Reasoning for Software Engineering Lecture 16: Decision Procedures for Combination Theories 19/44



Nelson-Oppen for Convex vs Non-Convex Theories

I Combining decision procedures for two convex theories is easier and more
efficient

I Intuition: When we have convexity, there are fewer facts that need to be
communicated between theories

I Unfortunately, some theories of interest such as TZ and theory of arrays
are non-convex

I If one of the theories we want to combine is non-convex, decision
procedure for combination theory is much less efficent

I We’ll first talk about Nelson-Oppen method for convex theories, then for
non-convex theories
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Nelson-Oppen Method for Convex Theories

I Given formula F in T1 ∪ T2 (T1,T2 convex), want to decide if F is
satisfiable

I First, purify F into F1 and F2

I Run decision procedures for T1, T2 to decide sat. of F1, F2

I If either is unsat, F is unsatisfiable. Why?

I Because F is equisatisfiable to F1 ∧ F2, which is unsat
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Nelson-Oppen Method for Convex Theories

I If both are SAT, does this mean F is sat?

I No because if F1 and F2 are individually satisfiable, F1 ∧ F2 does not have
to be satisfiable

I Example: x + y = 2 ∧ x = 1︸ ︷︷ ︸
TZ

∧ f (x) 6= f (y)︸ ︷︷ ︸
T=

I Here, F1 and F2 are individually sat, but their combination is unsat b/c
TZ implies x = y

I In the case where F1 and F2 are sat, theories have to exchange all implied
equalities

I Why only equalities?

b/c it is the only shared symbol
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Nelson-Oppen Method for Convex Theories

I For each pair of shared variables x , y , determine if:

1. F1 ⇒ x = y

2. F2 ⇒ x = y

I If (1) holds but not (2), conjoin x = y with F2

I If (2) holds but not (1), conjoin x = y with F1

I Let F ′
1 and F ′

2 denote new formulas

I Check satisfiability of F ′
1 and F ′

2

I Repeat until either formula becomes unsat or no new equalities can be
inferred
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Example

I Use Nelson-Oppen to decide sat of following T= ∪ TQ formula:

f (f (x)− f (y)) 6= f (z ) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z

I First, we need to purify:

I Replace f (x) with new variable w1

I Replace f (y) with new variable w2

I f (x)− f (y) is now replaced with w1 − w2 and we conjoin

w1 = f (x) ∧ w2 = f (y)

I First literal is now f (w1 − w2) 6= f (z ); still not pure!

I Replace w1 − w2 with w3 and add equality w3 = w1 − w2
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Example, cont

I Purified formula is F1 ∧ F2 where:

F1 : w1 = f (x) ∧ w2 = f (y) ∧ f (w3) 6= f (z )
F2 : w3 = w1 − w2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z

I Which variables are shared?

all

I Check sat of F1. Is it SAT?

yes

I Check sat of F2. Is it SAT?

yes

I Now, for each pair of shared variable xi , xj , we query whether F1 or F2

imply xi = xj
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Example, cont

F1 : w1 = f (x) ∧ w2 = f (y) ∧ f (w3) 6= f (z )
F2 : w3 = w1 − w2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z

I Consider the query x = y – is it implied by either F1 or F2?

implied by F2

I y + z ≤ x ∧ 0 ≤ z imply 0 ≤ z ≤ x − y , i.e., y ≤ x

I Since we also have x ≤ y , TQ implies x = y

I Now, propagate this to T=, so F ′
1 becomes:

F ′
1 : w1 = f (x) ∧ w2 = f (y) ∧ f (w3) 6= f (z ) ∧ x = y

I Check sat of F ′
1. Is it SAT?

yes

I Are we done?

no
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I Consider the query x = y – is it implied by either F1 or F2? implied by F2

I y + z ≤ x ∧ 0 ≤ z imply 0 ≤ z ≤ x − y , i.e., y ≤ x

I Since we also have x ≤ y , TQ implies x = y

I Now, propagate this to T=, so F ′
1 becomes:

F ′
1 : w1 = f (x) ∧ w2 = f (y) ∧ f (w3) 6= f (z ) ∧ x = y

I Check sat of F ′
1. Is it SAT?

yes

I Are we done?

no
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Example, cont

F1 : w1 = f (x) ∧ w2 = f (y) ∧ f (w3) 6= f (z ) ∧ x = y
F2 : w3 = w1 − w2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z

I Since F1 changed, need to check if it implies any new equality

I Does it imply a new equality?

yes, w1 = w2

I Now, we add w1 = w2 to F2:

F2 : w3 = w1 − w2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w1 = w2

I We recheck sat of F2. Is it SAT?

yes

I Still not done b/c need to check if F2 implies any new equalities
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Example, cont

F1 : w1 = f (x) ∧ w2 = f (y) ∧ f (w3) 6= f (z ) ∧ x = y
F2 : w3 = w1 − w2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w1 = w2

I Consider the query w3 = z?

I w3 = w1 − w2 and w1 = w2 imply w3 = 0

I Since x = y , y + z ≤ x implies z ≤ 0

I Since z ≤ 0 and 0 ≤ z , we have z = 0

I Thus, TQ answer ”yes” for query w3 = z
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Example, cont

I Now, propagate w3 = z to F1:

F1 : w1 = f (x) ∧ w2 = f (y) ∧ f (w3) 6= f (z ) ∧ x = y ∧ w3 = z

I Is this sat?

I No, because w3 = z implies f (w3) = f (z )

I This contradicts f (w3) 6= f (z )

I Thus, original formula is UNSAT
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Non-Convex Theories

I Unfortunately, technique discussed so far does not work for non-convex
theories

I Consider the following TZ ∪ T= formula:

1 ≤ x ∧ x ≤ 2 ∧ f (x) 6= f (1) ∧ f (x) 6= f (2)

I Is this formula SAT?

no

I Let’s see what happens if we use technique described so far

I If we purify, we get the following formulas:

F1 : f (x) 6= f (w1) ∧ f (x) 6= f (w2)
F2 : 1 ≤ x ∧ x ≤ 2 ∧ w1 = 1 ∧ w2 = 2
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Example, cont

F1 : f (x) 6= f (w1) ∧ f (x) 6= f (w2)
F2 : 1 ≤ x ∧ x ≤ 2 ∧ w1 = 1 ∧ w2 = 2

I Is F1 SAT?

yes

I Is F2 SAT?

yes

I Does F1 imply a new equality by itself?

no

I Does F2 imply a new equality by itself?

no

I Thus technique discussed so far returns sat, although formula in unsat
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Nelson-Oppen with Non-Convex Theories

I Problem is that in non-convex theories, a formula might imply a
disjunction of equalities

I But it doesn’t have to imply any single equality on its own

I Thus, it is not enough to query individual equality relations between
variables

I We also have to query and propagate disjunctions of equalities

I Two questions:

1. Which disjunctions do we query?

2. How do we propagate disjunctions since we are considering disjunction-free
formulas?
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What Disjunctions to Query?

I Recall: We only have a finite set of shared variables

I From these, we can only generate a finite number of disjunctions of
equalities

I Thus, for each possible disjunction, we need to issue a query

I Example: If we have shared variables x , y , z , which queries do we need to
issue?

x = y
x = z
y = z

x = y ∨ x = z
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Propagating Disjunctions

I Suppose answer to some disjunctive query
∨n

i=1 xi = yi is yes

I In this case, we need to branch and consider all n possibilities

I Thus, create n subproblems where we propagate xi = yi in i ’th
subproblem

I If there is any subproblem that is satisfiable, original formula is satisfiable

I If every subproblem is unsatisfiable, then original formula is unsatisfiable
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Example

I Consider T= ∪ TZ formula:

1 ≤ x ∧ x ≤ 2 ∧ f (x) 6= f (1) ∧ f (x) 6= f (2)

I After purification, we get:

F1 : f (x) 6= f (w1) ∧ f (x) 6= f (w2)
F2 : 1 ≤ x ∧ x ≤ 2 ∧ w1 = 1 ∧ w2 = 2

I Which queries do we need to issue?

(1) x = w1

(2) x = w2

(3) x = w1 ∨ x = w2

I Answer to queries (1) and (2) are no, but F2 implies query (3)
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Example, cont

I Now, we create two subproblems, one where we propagate x = w1 and
x = w2

I First subproblem:

F1 : f (x) 6= f (w1) ∧ f (x) 6= f (w2) ∧ x = w1

F2 : 1 ≤ x ∧ x ≤ 2 ∧ w1 = 1 ∧ w2 = 2

I Is this satisfiable?

I No because x = w1 implies f (x) = f (w1)
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Example, cont

I Second subproblem:

F1 : f (x) 6= f (w1) ∧ f (x) 6= f (w2) ∧ x = w2

F2 : 1 ≤ x ∧ x ≤ 2 ∧ w1 = 1 ∧ w2 = 2

I Is this satisfiable?

I No because x = w2 implies f (x) = f (w2)

I Since neither subproblem is satisfiable, Nelson-Oppen returns unsat for
original formula
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Example II

I Consider the following T= ∪ TZ formula:

1 ≤ x ∧ x ≤ 3 ∧ f (x) 6= f (1) ∧ f (x) 6= f (3) ∧ f (1) 6= f (2)

I Formulas after purification:

F1 : f (x) 6= f (w1) ∧ f (x) 6= f (w3) ∧ f (w1) 6= f (w2)
F2 : 1 ≤ x ∧ x ≤ 3 ∧ w1 = 1 ∧ w2 = 2 ∧ w3 = 3

I Consider the query x = w1 ∨ x = w2 ∨ x = w3

I Does either formula imply this query?

Yes
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Example II, cont

I First subproblem:

F1 : f (x) 6= f (w1) ∧ f (x) 6= f (w3) ∧ f (w1) 6= f (w2) ∧ x = w1

F2 : 1 ≤ x ∧ x ≤ 3 ∧ w1 = 1 ∧ w2 = 2 ∧ w3 = 3

I Is this satisfiable?

no

I Second subproblem:

F1 : f (x) 6= f (w1) ∧ f (x) 6= f (w3) ∧ f (w1) 6= f (w2) ∧ x = w2

F2 : 1 ≤ x ∧ x ≤ 3 ∧ w1 = 1 ∧ w2 = 2 ∧ w3 = 3

I Is this satisfiable?

Yes
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Example II, cont

Second subproblem:

F1 : f (x) 6= f (w1) ∧ f (x) 6= f (w3) ∧ f (w1) 6= f (w2) ∧ x = w2

F2 : 1 ≤ x ∧ x ≤ 3 ∧ w1 = 1 ∧ w2 = 2 ∧ w3 = 3

I So it’s satisfiable, are we done?

No, need to check for new equalities

I Thus, we now issue new queries such as x = w1, x = w2, etc

I Are there any new implied equalities or disjunctions of equalities?

No

I Thus, second subproblem is satisfiable

I Do we need to check third subproblem?

No

I Thus, original formula is satisfiable
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Optimization

I In presentation so far, we issued some disjuctive queries

I As soon as answer was yes to some query, we propagated it by performing
case split

I But really, we want to find a minimal query that is implied.

I Minimal query is one where dropping any disjunct causes query to no
longer be implied

I Why do we want minimal query?

1. Since x = y ∨ y = z already implies x = y ∨ y = z ∨ z = w , no need to
consider latter to decide satisfiability

2. When we propagate the query, using minimal query creates fewer
subproblems
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Optimization, cont.

I To find minimal query, start with disjunction of all possible equalities

I If this isn’t implied, no subset will be implied, so we are done

I If it is implied, drop one equality

I If it is still implied, continue with smaller disjunction

I Otherwise, restore equality and continue with next one

I This ensures we find a minimal disjunction that is implied

I Thist strategy much better than using any disjunction that is implied
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Nelson-Oppen for Convex vs. Non-Convex Theories

I Nelson-Oppen method is much more efficient for convex theories than for
non-convex theories

I In convex theories:

1. need to issue one query for each pair of shared variables

2. If decision procedures for T1 and T2 have polynomial time complexity,
combination using Nelson-Oppen also has polynomial complexity

I In non-convex theories:

1. need to consider disjunctions of equalities between each pair of shared
variables

2. If decision procedures for T1 and T2 have NP time complexity,
combination using Nelson-Oppen also has NP time complexity

Vijay Ganesh(Original notes from Isil Dillig), ECE750T-28: Computer-aided Reasoning for Software Engineering Lecture 16: Decision Procedures for Combination Theories 43/44



Nelson-Oppen for Convex vs. Non-Convex Theories

I Nelson-Oppen method is much more efficient for convex theories than for
non-convex theories

I In convex theories:
1. need to issue one query for each pair of shared variables

2. If decision procedures for T1 and T2 have polynomial time complexity,
combination using Nelson-Oppen also has polynomial complexity

I In non-convex theories:

1. need to consider disjunctions of equalities between each pair of shared
variables

2. If decision procedures for T1 and T2 have NP time complexity,
combination using Nelson-Oppen also has NP time complexity

Vijay Ganesh(Original notes from Isil Dillig), ECE750T-28: Computer-aided Reasoning for Software Engineering Lecture 16: Decision Procedures for Combination Theories 43/44



Nelson-Oppen for Convex vs. Non-Convex Theories

I Nelson-Oppen method is much more efficient for convex theories than for
non-convex theories

I In convex theories:
1. need to issue one query for each pair of shared variables

2. If decision procedures for T1 and T2 have polynomial time complexity,
combination using Nelson-Oppen also has polynomial complexity

I In non-convex theories:

1. need to consider disjunctions of equalities between each pair of shared
variables

2. If decision procedures for T1 and T2 have NP time complexity,
combination using Nelson-Oppen also has NP time complexity

Vijay Ganesh(Original notes from Isil Dillig), ECE750T-28: Computer-aided Reasoning for Software Engineering Lecture 16: Decision Procedures for Combination Theories 43/44



Nelson-Oppen for Convex vs. Non-Convex Theories

I Nelson-Oppen method is much more efficient for convex theories than for
non-convex theories

I In convex theories:
1. need to issue one query for each pair of shared variables

2. If decision procedures for T1 and T2 have polynomial time complexity,
combination using Nelson-Oppen also has polynomial complexity

I In non-convex theories:
1. need to consider disjunctions of equalities between each pair of shared

variables

2. If decision procedures for T1 and T2 have NP time complexity,
combination using Nelson-Oppen also has NP time complexity

Vijay Ganesh(Original notes from Isil Dillig), ECE750T-28: Computer-aided Reasoning for Software Engineering Lecture 16: Decision Procedures for Combination Theories 43/44



Nelson-Oppen for Convex vs. Non-Convex Theories

I Nelson-Oppen method is much more efficient for convex theories than for
non-convex theories

I In convex theories:
1. need to issue one query for each pair of shared variables

2. If decision procedures for T1 and T2 have polynomial time complexity,
combination using Nelson-Oppen also has polynomial complexity

I In non-convex theories:
1. need to consider disjunctions of equalities between each pair of shared

variables

2. If decision procedures for T1 and T2 have NP time complexity,
combination using Nelson-Oppen also has NP time complexity

Vijay Ganesh(Original notes from Isil Dillig), ECE750T-28: Computer-aided Reasoning for Software Engineering Lecture 16: Decision Procedures for Combination Theories 43/44



Summary

I Nelson-Oppen method gives a sound and complete decision procedure for
combination theories

I However, it only works for quantifier-free theories that are infinitely stable

I Not a severe restriction because most theories of interest are infinitely
stable

I Next lecture: How to decide satisfiability in first-order theories without
converting to DNF

I Reminder: homework due next lecture
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