# ECE750T-28: <br> Computer-aided Reasoning for Software Engineering 

# Lecture 16: Decision Procedures for Combination Theories 

Vijay Ganesh<br>(Original notes from Isil Dillig)

## Motivation

- So far, learned about decision procedures for useful theories


## Motivation

- So far, learned about decision procedures for useful theories
- Examples: Theory of equality with uninterpreted functions, theory of rationals, theory of integers


## Motivation

- So far, learned about decision procedures for useful theories
- Examples: Theory of equality with uninterpreted functions, theory of rationals, theory of integers
- But in many cases, we need to decide satisfiability of formulas involving multiple theories


## Motivation

- So far, learned about decision procedures for useful theories
- Examples: Theory of equality with uninterpreted functions, theory of rationals, theory of integers
- But in many cases, we need to decide satisfiability of formulas involving multiple theories
- Example: $1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)$


## Motivation

- So far, learned about decision procedures for useful theories
- Examples: Theory of equality with uninterpreted functions, theory of rationals, theory of integers
- But in many cases, we need to decide satisfiability of formulas involving multiple theories
- Example: $1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)$
- This formula does not belong to any individual theory


## Motivation

- So far, learned about decision procedures for useful theories
- Examples: Theory of equality with uninterpreted functions, theory of rationals, theory of integers
- But in many cases, we need to decide satisfiability of formulas involving multiple theories
- Example: $1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)$
- This formula does not belong to any individual theory
- But it does belong, for instance, to combination of $T_{=}$and $T_{\mathbb{Z}}$


## Overview

- Recall: Given two theories $T_{1}$ and $T_{2}$ that have the $=$ predicate, we define a combined theory $T_{1} \cup T_{2}$


## Overview

- Recall: Given two theories $T_{1}$ and $T_{2}$ that have the $=$ predicate, we define a combined theory $T_{1} \cup T_{2}$
- Signature of $T_{1} \cup T_{2}: \Sigma_{1} \cup \Sigma_{2}$


## Overview

- Recall: Given two theories $T_{1}$ and $T_{2}$ that have the $=$ predicate, we define a combined theory $T_{1} \cup T_{2}$
- Signature of $T_{1} \cup T_{2}: \Sigma_{1} \cup \Sigma_{2}$
- Axioms of $T_{1} \cup T_{2}: A_{1} \cup A_{2}$


## Overview

- Recall: Given two theories $T_{1}$ and $T_{2}$ that have the $=$ predicate, we define a combined theory $T_{1} \cup T_{2}$
- Signature of $T_{1} \cup T_{2}: \Sigma_{1} \cup \Sigma_{2}$
- Axioms of $T_{1} \cup T_{2}: A_{1} \cup A_{2}$
- Given decision procedures for $T_{1}$ and $T_{2}$, we want a decision procedure to decide satisfiability of formulas in $T_{1} \cup T_{2}$


## Overview

- Recall: Given two theories $T_{1}$ and $T_{2}$ that have the $=$ predicate, we define a combined theory $T_{1} \cup T_{2}$
- Signature of $T_{1} \cup T_{2}: \Sigma_{1} \cup \Sigma_{2}$
- Axioms of $T_{1} \cup T_{2}: A_{1} \cup A_{2}$
- Given decision procedures for $T_{1}$ and $T_{2}$, we want a decision procedure to decide satisfiability of formulas in $T_{1} \cup T_{2}$
- Today's lecture: Learn about Nelson-Oppen method for constructing decision procedure for combined theory $T_{1} \cup T_{2}$ from individual decision procedures for $T_{1}$ and $T_{2}$


## Nelson-Oppen Overview

$\Sigma_{1}$-theory $T_{1}$
$P_{1}$ for $T_{1}$-satisfiability


$$
P \text { for }\left(T_{1} \cup T_{2}\right) \text {-satisfiability }
$$

## Nelson-Oppen Overview

$\Sigma_{1}$-theory $T_{1}$
$P_{1}$ for $T_{1}$-satisfiability


$$
P \text { for }\left(T_{1} \cup T_{2}\right) \text {-satisfiability }
$$

- This method also allows combining arbitrary number of theories


## Nelson-Oppen Overview

$\Sigma_{1}$-theory $T_{1}$
$P_{1}$ for $T_{1}$-satisfiability
$\Sigma_{2}$-theory $T_{2}$
$P_{2}$ for $T_{2}$-satisfiability


- This method also allows combining arbitrary number of theories
- For instance, to combine $T_{1}, T_{2}, T_{3}$, first combine $T_{1}, T_{2}$


## Nelson-Oppen Overview

$\Sigma_{1}$-theory $T_{1}$
$P_{1}$ for $T_{1}$-satisfiability
$\Sigma_{2}$-theory $T_{2}$
$P_{2}$ for $T_{2}$-satisfiability


- This method also allows combining arbitrary number of theories
- For instance, to combine $T_{1}, T_{2}, T_{3}$, first combine $T_{1}, T_{2}$
- Then, combine $T_{1} \cup T_{2}$ and $T_{3}$ again using Nelson-Oppen


## Nelson-Oppen Overview

$\Sigma_{1}$-theory $T_{1}$
$P_{1}$ for $T_{1}$-satisfiability
$\Sigma_{2}$-theory $T_{2}$
$P_{2}$ for $T_{2}$-satisfiability


$$
P \text { for }\left(T_{1} \cup T_{2}\right) \text {-satisfiability }
$$

- This method also allows combining arbitrary number of theories
- For instance, to combine $T_{1}, T_{2}, T_{3}$, first combine $T_{1}, T_{2}$
- Then, combine $T_{1} \cup T_{2}$ and $T_{3}$ again using Nelson-Oppen
- However, Nelson-Oppen imposes some restrictions on theories that can be combined


## Restrictions of Nelson-Oppen

- Nelson-Oppen method imposes the following restrictions:


## Restrictions of Nelson-Oppen

- Nelson-Oppen method imposes the following restrictions:

1. Only allows combining quantifier-free fragments

## Restrictions of Nelson-Oppen

- Nelson-Oppen method imposes the following restrictions:

1. Only allows combining quantifier-free fragments
2. Only allows combining formulas without disjunctions, but not a major limitation because can convert to DNF

## Restrictions of Nelson-Oppen

- Nelson-Oppen method imposes the following restrictions:

1. Only allows combining quantifier-free fragments
2. Only allows combining formulas without disjunctions, but not a major limitation because can convert to DNF
3. Signatures can only share equality: $\Sigma_{1} \cap \Sigma_{2}=\{=\}$

## Restrictions of Nelson-Oppen

- Nelson-Oppen method imposes the following restrictions:

1. Only allows combining quantifier-free fragments
2. Only allows combining formulas without disjunctions, but not a major limitation because can convert to DNF
3. Signatures can only share equality: $\Sigma_{1} \cap \Sigma_{2}=\{=\}$
4. Theories $T_{1}$ and $T_{2}$ must be stably infinite

## Restrictions of Nelson-Oppen

- Nelson-Oppen method imposes the following restrictions:

1. Only allows combining quantifier-free fragments
2. Only allows combining formulas without disjunctions, but not a major limitation because can convert to DNF
3. Signatures can only share equality: $\Sigma_{1} \cap \Sigma_{2}=\{=\}$
4. Theories $T_{1}$ and $T_{2}$ must be stably infinite

- Theory $T$ is stably infinite iff every satisfiable qff formula is satisfiable in a universe of discourse with infinite cardinality


## Restrictions of Nelson-Oppen

- Nelson-Oppen method imposes the following restrictions:

1. Only allows combining quantifier-free fragments
2. Only allows combining formulas without disjunctions, but not a major limitation because can convert to DNF
3. Signatures can only share equality: $\Sigma_{1} \cap \Sigma_{2}=\{=\}$
4. Theories $T_{1}$ and $T_{2}$ must be stably infinite

- Theory $T$ is stably infinite iff every satisfiable qff formula is satisfiable in a universe of discourse with infinite cardinality
- In other words, if qff $F$ is satisfiable, then there exists $T$-model that satisfies $F$ and has infinite cardinality.


## Restrictions of Nelson-Oppen

- Nelson-Oppen method imposes the following restrictions:

1. Only allows combining quantifier-free fragments
2. Only allows combining formulas without disjunctions, but not a major limitation because can convert to DNF
3. Signatures can only share equality: $\Sigma_{1} \cap \Sigma_{2}=\{=\}$
4. Theories $T_{1}$ and $T_{2}$ must be stably infinite

- Theory $T$ is stably infinite iff every satisfiable qff formula is satisfiable in a universe of discourse with infinite cardinality
- In other words, if qff $F$ is satisfiable, then there exists $T$-model that satisfies $F$ and has infinite cardinality.
- Thus, theories with only finite models are not stably infinite.


## Example of Non-Stably Infinite Theory

$$
\begin{array}{ll}
\text { Signature : } & \{a, b,=\} \\
\text { Axiom : } & \forall x \cdot x=a \vee x=b
\end{array}
$$

## Example of Non-Stably Infinite Theory

$$
\begin{array}{ll}
\text { Signature: } & \{a, b,=\} \\
\text { Axiom : } & \forall x \cdot x=a \vee x=b
\end{array}
$$

- Axiom says that any object in the universe of discourse must be equal to either $a$ or $b$


## Example of Non-Stably Infinite Theory

$$
\begin{array}{ll}
\text { Signature : } & \{a, b,=\} \\
\text { Axiom : } & \forall x \cdot x=a \vee x=b
\end{array}
$$

- Axiom says that any object in the universe of discourse must be equal to either $a$ or $b$
- Now consider $U$ containing more than 2 elements


## Example of Non-Stably Infinite Theory

$$
\begin{array}{ll}
\text { Signature : } & \{a, b,=\} \\
\text { Axiom : } & \forall x \cdot x=a \vee x=b
\end{array}
$$

- Axiom says that any object in the universe of discourse must be equal to either $a$ or $b$
- Now consider $U$ containing more than 2 elements
- Then, there is at least one element distinct from both $a$ and $b$


## Example of Non-Stably Infinite Theory

$$
\begin{array}{ll}
\text { Signature : } & \{a, b,=\} \\
\text { Axiom : } & \forall x \cdot x=a \vee x=b
\end{array}
$$

- Axiom says that any object in the universe of discourse must be equal to either $a$ or $b$
- Now consider $U$ containing more than 2 elements
- Then, there is at least one element distinct from both $a$ and $b$
- Thus, any $U$ with more than 2 elements violates axiom


## Example of Non-Stably Infinite Theory

$$
\begin{array}{ll}
\text { Signature : } & \{a, b,=\} \\
\text { Axiom : } & \forall x \cdot x=a \vee x=b
\end{array}
$$

- Axiom says that any object in the universe of discourse must be equal to either $a$ or $b$
- Now consider $U$ containing more than 2 elements
- Then, there is at least one element distinct from both $a$ and $b$
- Thus, any $U$ with more than 2 elements violates axiom
- Hence, theory only has finite models, and is not stably infinite


## Examples of Stably Infinite Theories

- Fortunately, almost any theory of interest is stably infinite


## Examples of Stably Infinite Theories

- Fortunately, almost any theory of interest is stably infinite
- All theories we discussed, $T_{=}, T_{\mathbb{Q}}, T_{\mathbb{Z}}, T_{A}$, are stably infinite


## Examples of Stably Infinite Theories

- Fortunately, almost any theory of interest is stably infinite
- All theories we discussed, $T_{=}, T_{\mathbb{Q}}, T_{\mathbb{Z}}, T_{A}$, are stably infinite
- Which of these theories can we combine using Nelson-Oppen?


## Examples of Stably Infinite Theories

- Fortunately, almost any theory of interest is stably infinite
- All theories we discussed, $T_{=}, T_{\mathbb{Q}}, T_{\mathbb{Z}}, T_{A}$, are stably infinite
- Which of these theories can we combine using Nelson-Oppen?

1. $T_{=}$and $T_{\mathbb{Q}}$ ?

## Examples of Stably Infinite Theories

- Fortunately, almost any theory of interest is stably infinite
- All theories we discussed, $T_{=}, T_{\mathbb{Q}}, T_{\mathbb{Z}}, T_{A}$, are stably infinite
- Which of these theories can we combine using Nelson-Oppen?

1. $T_{=}$and $T_{\mathbb{Q}}$ ? yes

## Examples of Stably Infinite Theories

- Fortunately, almost any theory of interest is stably infinite
- All theories we discussed, $T_{=}, T_{\mathbb{Q}}, T_{\mathbb{Z}}, T_{A}$, are stably infinite
- Which of these theories can we combine using Nelson-Oppen?

1. $T_{=}$and $T_{\mathbb{Q}}$ ? yes
2. $T_{=}$and $T_{\mathbb{Z}}$ ?

## Examples of Stably Infinite Theories

- Fortunately, almost any theory of interest is stably infinite
- All theories we discussed, $T_{=}, T_{\mathbb{Q}}, T_{\mathbb{Z}}, T_{A}$, are stably infinite
- Which of these theories can we combine using Nelson-Oppen?

1. $T_{=}$and $T_{\mathbb{Q}}$ ? yes
2. $T_{=}$and $T_{\mathbb{Z}}$ ? yes

## Examples of Stably Infinite Theories

- Fortunately, almost any theory of interest is stably infinite
- All theories we discussed, $T_{=}, T_{\mathbb{Q}}, T_{\mathbb{Z}}, T_{A}$, are stably infinite
- Which of these theories can we combine using Nelson-Oppen?

1. $T_{=}$and $T_{\mathbb{Q}}$ ? yes
2. $T_{=}$and $T_{\mathbb{Z}}$ ? yes
3. $T_{A}$ and $T_{\mathbb{Z}}$ ?

## Examples of Stably Infinite Theories

- Fortunately, almost any theory of interest is stably infinite
- All theories we discussed, $T_{=}, T_{\mathbb{Q}}, T_{\mathbb{Z}}, T_{A}$, are stably infinite
- Which of these theories can we combine using Nelson-Oppen?

1. $T_{=}$and $T_{\mathbb{Q}}$ ? yes
2. $T_{=}$and $T_{\mathbb{Z}}$ ? yes
3. $T_{A}$ and $T_{\mathbb{Z}}$ ? yes

## Examples of Stably Infinite Theories

- Fortunately, almost any theory of interest is stably infinite
- All theories we discussed, $T_{=}, T_{\mathbb{Q}}, T_{\mathbb{Z}}, T_{A}$, are stably infinite
- Which of these theories can we combine using Nelson-Oppen?

1. $T_{=}$and $T_{\mathbb{Q}}$ ? yes
2. $T_{=}$and $T_{\mathbb{Z}}$ ? yes
3. $T_{A}$ and $T_{\mathbb{Z}}$ ? yes

- In general, almost any theory we care about can be combined using Nelson-Oppen


## Examples of Stably Infinite Theories

- Fortunately, almost any theory of interest is stably infinite
- All theories we discussed, $T_{=}, T_{\mathbb{Q}}, T_{\mathbb{Z}}, T_{A}$, are stably infinite
- Which of these theories can we combine using Nelson-Oppen?

1. $T_{=}$and $T_{\mathbb{Q}}$ ? yes
2. $T_{=}$and $T_{\mathbb{Z}}$ ? yes
3. $T_{A}$ and $T_{\mathbb{Z}}$ ? yes

- In general, almost any theory we care about can be combined using Nelson-Oppen


## Examples of Stably Infinite Theories

- Fortunately, almost any theory of interest is stably infinite
- All theories we discussed, $T_{=}, T_{\mathbb{Q}}, T_{\mathbb{Z}}, T_{A}$, are stably infinite
- Which of these theories can we combine using Nelson-Oppen?

1. $T_{=}$and $T_{\mathbb{Q}}$ ? yes
2. $T_{=}$and $T_{\mathbb{Z}}$ ? yes
3. $T_{A}$ and $T_{\mathbb{Z}}$ ? yes

- In general, almost any theory we care about can be combined using Nelson-Oppen
- More recent work has also extended Nelson-Oppen to non-stably-infinite theories


## Nelson-Oppen Overview

- Nelson-Oppen method has conceptually two-different phases:


## Nelson-Oppen Overview

- Nelson-Oppen method has conceptually two-different phases:

1. Purification: Seperate formula $F$ in $T_{1} \cup T_{2}$ into two formulas $F_{1}$ in $T_{1}$ and $F_{2}$ in $T_{2}$

## Nelson-Oppen Overview

- Nelson-Oppen method has conceptually two-different phases:

1. Purification: Seperate formula $F$ in $T_{1} \cup T_{2}$ into two formulas $F_{1}$ in $T_{1}$ and $F_{2}$ in $T_{2}$
2. Equality propagation: Propagate all relevant equalities between theories

## Nelson-Oppen Overview

- Nelson-Oppen method has conceptually two-different phases:

1. Purification: Seperate formula $F$ in $T_{1} \cup T_{2}$ into two formulas $F_{1}$ in $T_{1}$ and $F_{2}$ in $T_{2}$
2. Equality propagation: Propagate all relevant equalities between theories

- Purification step is always the same for any arbitrary theory


## Nelson-Oppen Overview

- Nelson-Oppen method has conceptually two-different phases:

1. Purification: Seperate formula $F$ in $T_{1} \cup T_{2}$ into two formulas $F_{1}$ in $T_{1}$ and $F_{2}$ in $T_{2}$
2. Equality propagation: Propagate all relevant equalities between theories

- Purification step is always the same for any arbitrary theory
- But equality propagation is different between convex and non-convex theories


## Purification Overview

- Input to Nelson-Oppen is formula $F$ in $T_{1} \cup T_{2}$


## Purification Overview

- Input to Nelson-Oppen is formula $F$ in $T_{1} \cup T_{2}$
- Goal of purification is to separate $F$ into formulas $F_{1}$ and $F_{2}$ such that:


## Purification Overview

- Input to Nelson-Oppen is formula $F$ in $T_{1} \cup T_{2}$
- Goal of purification is to separate $F$ into formulas $F_{1}$ and $F_{2}$ such that:

1. $F_{1}$ belongs only to $T_{1}$ (is "pure")

## Purification Overview

- Input to Nelson-Oppen is formula $F$ in $T_{1} \cup T_{2}$
- Goal of purification is to separate $F$ into formulas $F_{1}$ and $F_{2}$ such that:

1. $F_{1}$ belongs only to $T_{1}$ (is "pure")
2. $F_{2}$ belong only to $T_{2}$ (is "pure")

## Purification Overview

- Input to Nelson-Oppen is formula $F$ in $T_{1} \cup T_{2}$
- Goal of purification is to separate $F$ into formulas $F_{1}$ and $F_{2}$ such that:

1. $F_{1}$ belongs only to $T_{1}$ (is "pure")
2. $F_{2}$ belong only to $T_{2}$ (is "pure")
3. $F_{1} \wedge F_{2}$ is equisatisfiable as $F$

## Purification Overview

- Input to Nelson-Oppen is formula $F$ in $T_{1} \cup T_{2}$
- Goal of purification is to separate $F$ into formulas $F_{1}$ and $F_{2}$ such that:

1. $F_{1}$ belongs only to $T_{1}$ (is "pure")
2. $F_{2}$ belong only to $T_{2}$ (is "pure")
3. $F_{1} \wedge F_{2}$ is equisatisfiable as $F$

- Resulting formula after purification is not equivalent


## Purification Overview

- Input to Nelson-Oppen is formula $F$ in $T_{1} \cup T_{2}$
- Goal of purification is to separate $F$ into formulas $F_{1}$ and $F_{2}$ such that:

1. $F_{1}$ belongs only to $T_{1}$ (is "pure")
2. $F_{2}$ belong only to $T_{2}$ (is "pure")
3. $F_{1} \wedge F_{2}$ is equisatisfiable as $F$

- Resulting formula after purification is not equivalent
- But since goal is to decide satisfiability, this is good enough


## How To Purify

- To purify formula $F$, exhaustively apply the following:


## How To Purify

- To purify formula $F$, exhaustively apply the following:

1. Consider term $f\left(\ldots, t_{i}, \ldots\right)$. If $f \in \Sigma_{i}$ but $t_{i}$ is not a term in $T_{i}$, replace $t_{i}$ with fresh variable $z$ and conjoin $z=t_{i}$

## How To Purify

- To purify formula $F$, exhaustively apply the following:

1. Consider term $f\left(\ldots, t_{i}, \ldots\right)$. If $f \in \Sigma_{i}$ but $t_{i}$ is not a term in $T_{i}$, replace $t_{i}$ with fresh variable $z$ and conjoin $z=t_{i}$
2. Consider predicate $p\left(\ldots, t_{i}, \ldots\right)$. If $p \in \Sigma_{i}$ but $t_{i}$ is not a term in $T_{i}$, replace $t_{i}$ with fresh variable $w$ and conjoin $w=t_{i}$

## How To Purify

- To purify formula $F$, exhaustively apply the following:

1. Consider term $f\left(\ldots, t_{i}, \ldots\right)$. If $f \in \Sigma_{i}$ but $t_{i}$ is not a term in $T_{i}$, replace $t_{i}$ with fresh variable $z$ and conjoin $z=t_{i}$
2. Consider predicate $p\left(\ldots, t_{i}, \ldots\right)$. If $p \in \Sigma_{i}$ but $t_{i}$ is not a term in $T_{i}$, replace $t_{i}$ with fresh variable $w$ and conjoin $w=t_{i}$

- Literals in resulting formula belong to either only $T_{1}$ or $T_{2}$.


## How To Purify

- To purify formula $F$, exhaustively apply the following:

1. Consider term $f\left(\ldots, t_{i}, \ldots\right)$. If $f \in \Sigma_{i}$ but $t_{i}$ is not a term in $T_{i}$, replace $t_{i}$ with fresh variable $z$ and conjoin $z=t_{i}$
2. Consider predicate $p\left(\ldots, t_{i}, \ldots\right)$. If $p \in \Sigma_{i}$ but $t_{i}$ is not a term in $T_{i}$, replace $t_{i}$ with fresh variable $w$ and conjoin $w=t_{i}$

- Literals in resulting formula belong to either only $T_{1}$ or $T_{2}$.
- Thus, we can write $F$ as a conjunction of formulas $F_{1}$ in $T_{1}$ and $F_{2}$ in $T_{2}$


## Purification Example 1

- Consider $T_{=} \cup T_{\mathbb{Q}}$ formula $x \leq f(x)+1$


## Purification Example 1

- Consider $T_{=} \cup T_{\mathbb{Q}}$ formula $x \leq f(x)+1$
- Is this formula already pure?


## Purification Example 1

- Consider $T_{=} \cup T_{\mathbb{Q}}$ formula $x \leq f(x)+1$
- Is this formula already pure? No


## Purification Example 1

- Consider $T_{=} \cup T_{\mathbb{Q}}$ formula $x \leq f(x)+1$
- Is this formula already pure? No
- Since $f(x)$ is not in $T_{\mathbb{Q}}$, replace with new variable $y$ and add equality constraint $y=f(x)$


## Purification Example 1

- Consider $T_{=} \cup T_{\mathbb{Q}}$ formula $x \leq f(x)+1$
- Is this formula already pure? No
- Since $f(x)$ is not in $T_{\mathbb{Q}}$, replace with new variable $y$ and add equality constraint $y=f(x)$
- Thus, formula after purification:

$$
\underbrace{x \leq y+1}_{T_{\mathbb{Q}}} \wedge \underbrace{y=f(x)}_{T_{=}}
$$

## Purification Example II

- Consider following $\Sigma_{=} \cup \Sigma_{\mathbb{Z}}$ formula:

$$
f(x+g(y)) \leq g(a)+f(b)
$$

## Purification Example II

- Consider following $\Sigma_{=} \cup \Sigma_{\mathbb{Z}}$ formula:

$$
f(x+g(y)) \leq g(a)+f(b)
$$

- Easiest to purify 'inside out"


## Purification Example II

- Consider following $\Sigma_{=} \cup \Sigma_{\mathbb{Z}}$ formula:

$$
f(x+g(y)) \leq g(a)+f(b)
$$

- Easiest to purify "inside out"
- Is the term $x+g(y)$ pure?


## Purification Example II

- Consider following $\Sigma_{=} \cup \Sigma_{\mathbb{Z}}$ formula:

$$
f(x+g(y)) \leq g(a)+f(b)
$$

- Easiest to purify 'inside out"
- Is the term $x+g(y)$ pure? no


## Purification Example II

- Consider following $\Sigma_{=} \cup \Sigma_{\mathbb{Z}}$ formula:

$$
f(x+g(y)) \leq g(a)+f(b)
$$

- Easiest to purify 'inside out"
- Is the term $x+g(y)$ pure? no
- How do we purify it?


## Purification Example II

- Consider following $\Sigma_{=} \cup \Sigma_{\mathbb{Z}}$ formula:

$$
f(x+g(y)) \leq g(a)+f(b)
$$

- Easiest to purify "inside out"
- Is the term $x+g(y)$ pure? no
- How do we purify it? replace $g(y)$ with $z_{1}$, add constraint $z_{1}=g(y)$


## Purification Example II

- Consider following $\Sigma_{=} \cup \Sigma_{\mathbb{Z}}$ formula:

$$
f(x+g(y)) \leq g(a)+f(b)
$$

- Easiest to purify "inside out"
- Is the term $x+g(y)$ pure? no
- How do we purify it? replace $g(y)$ with $z_{1}$, add constraint $z_{1}=g(y)$
- Resulting formula:

$$
f\left(x+z_{1}\right) \leq g(a)+f(b) \wedge z_{1}=g(y)
$$

## Purification Example II, cont

$$
f\left(x+z_{1}\right) \leq g(a)+f(b) \wedge z_{1}=g(y)
$$

- Is $f\left(x+z_{1}\right)$ pure?


## Purification Example II, cont

$$
f\left(x+z_{1}\right) \leq g(a)+f(b) \wedge z_{1}=g(y)
$$

- Is $f\left(x+z_{1}\right)$ pure? no


## Purification Example II, cont

$$
f\left(x+z_{1}\right) \leq g(a)+f(b) \wedge z_{1}=g(y)
$$

- Is $f\left(x+z_{1}\right)$ pure? no
- How do we purify?


## Purification Example II, cont

$$
f\left(x+z_{1}\right) \leq g(a)+f(b) \wedge z_{1}=g(y)
$$

- Is $f\left(x+z_{1}\right)$ pure? no
- How do we purify? replace $x+z_{1}$ with $z_{2}$, add constraint $z_{2}=x+z_{1}$


## Purification Example II, cont

$$
f\left(x+z_{1}\right) \leq g(a)+f(b) \wedge z_{1}=g(y)
$$

- Is $f\left(x+z_{1}\right)$ pure? no
- How do we purify? replace $x+z_{1}$ with $z_{2}$, add constraint $z_{2}=x+z_{1}$
- Resulting formula:

$$
f\left(z_{2}\right) \leq g(a)+f(b) \wedge z_{1}=g(y) \wedge z_{2}=x+z_{1}
$$

## Purification Example II, cont

$$
f\left(x+z_{1}\right) \leq g(a)+f(b) \wedge z_{1}=g(y)
$$

- Is $f\left(x+z_{1}\right)$ pure? no
- How do we purify? replace $x+z_{1}$ with $z_{2}$, add constraint $z_{2}=x+z_{1}$
- Resulting formula:

$$
f\left(z_{2}\right) \leq g(a)+f(b) \wedge z_{1}=g(y) \wedge z_{2}=x+z_{1}
$$

- Is formula purified now?


## Purification Example II, cont

$$
f\left(x+z_{1}\right) \leq g(a)+f(b) \wedge z_{1}=g(y)
$$

- Is $f\left(x+z_{1}\right)$ pure? no
- How do we purify? replace $x+z_{1}$ with $z_{2}$, add constraint $z_{2}=x+z_{1}$
- Resulting formula:

$$
f\left(z_{2}\right) \leq g(a)+f(b) \wedge z_{1}=g(y) \wedge z_{2}=x+z_{1}
$$

- Is formula purified now? no


## Purification Example II, cont

$$
f\left(z_{2}\right) \leq g(a)+f(b) \wedge z_{1}=g(y) \wedge z_{2}=x+z_{1}
$$

- Which terms/predicate is impure?


## Purification Example II, cont

$$
f\left(z_{2}\right) \leq g(a)+f(b) \wedge z_{1}=g(y) \wedge z_{2}=x+z_{1}
$$

- Which terms/predicate is impure? $g(a)+f(b)$


## Purification Example II, cont

$$
f\left(z_{2}\right) \leq g(a)+f(b) \wedge z_{1}=g(y) \wedge z_{2}=x+z_{1}
$$

- Which terms/predicate is impure? $g(a)+f(b)$
- How do we purify?


## Purification Example II, cont

$$
f\left(z_{2}\right) \leq g(a)+f(b) \wedge z_{1}=g(y) \wedge z_{2}=x+z_{1}
$$

- Which terms/predicate is impure? $g(a)+f(b)$
- How do we purify? replace $g(a)$ with $z_{3}$ and $f(b)$ with $z_{4}$, add constraint $z_{3}=g(a) \wedge z_{4}=f(b)$


## Purification Example II, cont

$$
f\left(z_{2}\right) \leq g(a)+f(b) \wedge z_{1}=g(y) \wedge z_{2}=x+z_{1}
$$

- Which terms/predicate is impure? $g(a)+f(b)$
- How do we purify? replace $g(a)$ with $z_{3}$ and $f(b)$ with $z_{4}$, add constraint $z_{3}=g(a) \wedge z_{4}=f(b)$
- Resulting formula:

$$
f\left(z_{2}\right) \leq z_{3}+z_{4} \wedge z_{1}=g(y) \wedge z_{2}=x+z_{1} \wedge z_{3}=g(a) \wedge z_{4}=f(b)
$$

## Purification Example II, cont

$$
f\left(z_{2}\right) \leq g(a)+f(b) \wedge z_{1}=g(y) \wedge z_{2}=x+z_{1}
$$

- Which terms/predicate is impure? $g(a)+f(b)$
- How do we purify? replace $g(a)$ with $z_{3}$ and $f(b)$ with $z_{4}$, add constraint $z_{3}=g(a) \wedge z_{4}=f(b)$
- Resulting formula:

$$
f\left(z_{2}\right) \leq z_{3}+z_{4} \wedge z_{1}=g(y) \wedge z_{2}=x+z_{1} \wedge z_{3}=g(a) \wedge z_{4}=f(b)
$$

- Is formula purified now?


## Purification Example II, cont

$$
f\left(z_{2}\right) \leq g(a)+f(b) \wedge z_{1}=g(y) \wedge z_{2}=x+z_{1}
$$

- Which terms/predicate is impure? $g(a)+f(b)$
- How do we purify? replace $g(a)$ with $z_{3}$ and $f(b)$ with $z_{4}$, add constraint $z_{3}=g(a) \wedge z_{4}=f(b)$
- Resulting formula:

$$
f\left(z_{2}\right) \leq z_{3}+z_{4} \wedge z_{1}=g(y) \wedge z_{2}=x+z_{1} \wedge z_{3}=g(a) \wedge z_{4}=f(b)
$$

- Is formula purified now? no


## Purification Example II, cont

$$
f\left(z_{2}\right) \leq z_{3}+z_{4} \wedge z_{1}=g(y) \wedge z_{2}=x+z_{1} \wedge z_{3}=g(a) \wedge z_{4}=f(b)
$$

- Which terms/predicate is impure?


## Purification Example II, cont

$$
f\left(z_{2}\right) \leq z_{3}+z_{4} \wedge z_{1}=g(y) \wedge z_{2}=x+z_{1} \wedge z_{3}=g(a) \wedge z_{4}=f(b)
$$

- Which terms/predicate is impure? $f\left(z_{2}\right) \leq z_{3}+z_{4}$


## Purification Example II, cont

$$
f\left(z_{2}\right) \leq z_{3}+z_{4} \wedge z_{1}=g(y) \wedge z_{2}=x+z_{1} \wedge z_{3}=g(a) \wedge z_{4}=f(b)
$$

- Which terms/predicate is impure? $f\left(z_{2}\right) \leq z_{3}+z_{4}$
- How do we purify?


## Purification Example II, cont

$$
f\left(z_{2}\right) \leq z_{3}+z_{4} \wedge z_{1}=g(y) \wedge z_{2}=x+z_{1} \wedge z_{3}=g(a) \wedge z_{4}=f(b)
$$

- Which terms/predicate is impure? $f\left(z_{2}\right) \leq z_{3}+z_{4}$
- How do we purify? replace $f\left(z_{2}\right)$ with $z_{5}$, add constraint $z_{5}=f\left(z_{2}\right)$


## Purification Example II, cont

$$
f\left(z_{2}\right) \leq z_{3}+z_{4} \wedge z_{1}=g(y) \wedge z_{2}=x+z_{1} \wedge z_{3}=g(a) \wedge z_{4}=f(b)
$$

- Which terms/predicate is impure? $f\left(z_{2}\right) \leq z_{3}+z_{4}$
- How do we purify? replace $f\left(z_{2}\right)$ with $z_{5}$, add constraint $z_{5}=f\left(z_{2}\right)$
- Resulting formula:

$$
\begin{gathered}
z_{5} \leq z_{3}+z_{4} \wedge z_{1}=g(y) \wedge z_{2}=x+z_{1} \wedge \\
z_{3}=g(a) \wedge z_{4}=f(b) \wedge z_{5}=f\left(z_{2}\right)
\end{gathered}
$$

## Purification Example II, cont

$$
f\left(z_{2}\right) \leq z_{3}+z_{4} \wedge z_{1}=g(y) \wedge z_{2}=x+z_{1} \wedge z_{3}=g(a) \wedge z_{4}=f(b)
$$

- Which terms/predicate is impure? $f\left(z_{2}\right) \leq z_{3}+z_{4}$
- How do we purify? replace $f\left(z_{2}\right)$ with $z_{5}$, add constraint $z_{5}=f\left(z_{2}\right)$
- Resulting formula:

$$
\begin{gathered}
z_{5} \leq z_{3}+z_{4} \wedge z_{1}=g(y) \wedge z_{2}=x+z_{1} \wedge \\
z_{3}=g(a) \wedge z_{4}=f(b) \wedge z_{5}=f\left(z_{2}\right)
\end{gathered}
$$

- Is formula purified now?


## Purification Example II, cont

$$
f\left(z_{2}\right) \leq z_{3}+z_{4} \wedge z_{1}=g(y) \wedge z_{2}=x+z_{1} \wedge z_{3}=g(a) \wedge z_{4}=f(b)
$$

- Which terms/predicate is impure? $f\left(z_{2}\right) \leq z_{3}+z_{4}$
- How do we purify? replace $f\left(z_{2}\right)$ with $z_{5}$, add constraint $z_{5}=f\left(z_{2}\right)$
- Resulting formula:

$$
\begin{gathered}
z_{5} \leq z_{3}+z_{4} \wedge z_{1}=g(y) \wedge z_{2}=x+z_{1} \wedge \\
z_{3}=g(a) \wedge z_{4}=f(b) \wedge z_{5}=f\left(z_{2}\right)
\end{gathered}
$$

- Is formula purified now? Yes, finally!


## Shared vs. Unshared Variables

- After purification, we have decomposed a formula $F$ into two pure formulas $F_{1}$ and $F_{2}$


## Shared vs. Unshared Variables

- After purification, we have decomposed a formula $F$ into two pure formulas $F_{1}$ and $F_{2}$
- If $x$ occurs in both $F_{1}$ and $F_{2}, x$ is called shared variable


## Shared vs. Unshared Variables

- After purification, we have decomposed a formula $F$ into two pure formulas $F_{1}$ and $F_{2}$
- If $x$ occurs in both $F_{1}$ and $F_{2}, x$ is called shared variable
- If $y$ occurs only in $F_{1}$ or only in $F_{2}$, it is called unshared variable


## Shared vs. Unshared Variables

- After purification, we have decomposed a formula $F$ into two pure formulas $F_{1}$ and $F_{2}$
- If $x$ occurs in both $F_{1}$ and $F_{2}, x$ is called shared variable
- If $y$ occurs only in $F_{1}$ or only in $F_{2}$, it is called unshared variable
- Consider the following purified formula:

$$
\underbrace{w_{1}=x+y \wedge y=1 \wedge w_{2}=2}_{T_{\mathbb{Z}}} \wedge \underbrace{w_{1}=f(x) \wedge f(x) \neq f\left(w_{2}\right)}_{T_{=}}
$$

## Shared vs. Unshared Variables

- After purification, we have decomposed a formula $F$ into two pure formulas $F_{1}$ and $F_{2}$
- If $x$ occurs in both $F_{1}$ and $F_{2}, x$ is called shared variable
- If $y$ occurs only in $F_{1}$ or only in $F_{2}$, it is called unshared variable
- Consider the following purified formula:

$$
\underbrace{w_{1}=x+y \wedge y=1 \wedge w_{2}=2}_{T_{\mathbb{Z}}} \wedge \underbrace{w_{1}=f(x) \wedge f(x) \neq f\left(w_{2}\right)}_{T_{=}}
$$

- Which variables are shared?


## Shared vs. Unshared Variables

- After purification, we have decomposed a formula $F$ into two pure formulas $F_{1}$ and $F_{2}$
- If $x$ occurs in both $F_{1}$ and $F_{2}, x$ is called shared variable
- If $y$ occurs only in $F_{1}$ or only in $F_{2}$, it is called unshared variable
- Consider the following purified formula:

$$
\underbrace{w_{1}=x+y \wedge y=1 \wedge w_{2}=2}_{T_{\mathbb{Z}}} \wedge \underbrace{w_{1}=f(x) \wedge f(x) \neq f\left(w_{2}\right)}_{T_{=}}
$$

- Which variables are shared? $w_{1}, x, w_{2}$


## Shared vs. Unshared Variables

- After purification, we have decomposed a formula $F$ into two pure formulas $F_{1}$ and $F_{2}$
- If $x$ occurs in both $F_{1}$ and $F_{2}, x$ is called shared variable
- If $y$ occurs only in $F_{1}$ or only in $F_{2}$, it is called unshared variable
- Consider the following purified formula:

$$
\underbrace{w_{1}=x+y \wedge y=1 \wedge w_{2}=2}_{T_{\mathbb{Z}}} \wedge \underbrace{w_{1}=f(x) \wedge f(x) \neq f\left(w_{2}\right)}_{T_{=}}
$$

- Which variables are shared? $w_{1}, x, w_{2}$
- Which variables are unshared?


## Shared vs. Unshared Variables

- After purification, we have decomposed a formula $F$ into two pure formulas $F_{1}$ and $F_{2}$
- If $x$ occurs in both $F_{1}$ and $F_{2}, x$ is called shared variable
- If $y$ occurs only in $F_{1}$ or only in $F_{2}$, it is called unshared variable
- Consider the following purified formula:

$$
\underbrace{w_{1}=x+y \wedge y=1 \wedge w_{2}=2}_{T_{\mathbb{Z}}} \wedge \underbrace{w_{1}=f(x) \wedge f(x) \neq f\left(w_{2}\right)}_{T_{=}}
$$

- Which variables are shared? $w_{1}, x, w_{2}$
- Which variables are unshared? y


## Two Phases of Nelson-Oppen

- Recall: Nelson-Oppen method has two different phases:

1. Purification: Seperate formula $F$ in $T_{1} \cup T_{2}$ into two formulas $F_{1}$ in $T_{1}$ and $F_{2}$ in $T_{2}$
2. Equality propagation: Propagate all relevant equalities between theories

## Two Phases of Nelson-Oppen

- Recall: Nelson-Oppen method has two different phases:

1. Purification: Seperate formula $F$ in $T_{1} \cup T_{2}$ into two formulas $F_{1}$ in $T_{1}$ and $F_{2}$ in $T_{2}$
2. Equality propagation: Propagate all relevant equalities between theories

- Talk about second phase next


## Two Phases of Nelson-Oppen

- Recall: Nelson-Oppen method has two different phases:

1. Purification: Seperate formula $F$ in $T_{1} \cup T_{2}$ into two formulas $F_{1}$ in $T_{1}$ and $F_{2}$ in $T_{2}$
2. Equality propagation: Propagate all relevant equalities between theories

- Talk about second phase next
- But this phase is different for convex vs. non-convex theories


## Two Phases of Nelson-Oppen

- Recall: Nelson-Oppen method has two different phases:

1. Purification: Seperate formula $F$ in $T_{1} \cup T_{2}$ into two formulas $F_{1}$ in $T_{1}$ and $F_{2}$ in $T_{2}$
2. Equality propagation: Propagate all relevant equalities between theories

- Talk about second phase next
- But this phase is different for convex vs. non-convex theories
- So, need to talk about convex and non-convex theories


## Convex Theories

- Theory $T$ is called convex if for every conjunctive formula $F$ :


## Convex Theories

- Theory $T$ is called convex if for every conjunctive formula $F$ :
- If $F \Rightarrow \bigvee_{i=1}^{n} x_{i}=y_{i}$ for finite $n$


## Convex Theories

- Theory $T$ is called convex if for every conjunctive formula $F$ :
- If $F \Rightarrow \bigvee_{i=1}^{n} x_{i}=y_{i}$ for finite $n$
- Then, $F \Rightarrow x_{i}=y_{i}$ for some $i \in[1, n]$


## Convex Theories

- Theory $T$ is called convex if for every conjunctive formula $F$ :
- If $F \Rightarrow \bigvee_{i=1}^{n} x_{i}=y_{i}$ for finite $n$
- Then, $F \Rightarrow x_{i}=y_{i}$ for some $i \in[1, n]$
- Thus, in convex theory, if $F$ implies disjunction of equalities, $F$ also implies at least one of these equalities on its own


## Convex Theories

- Theory $T$ is called convex if for every conjunctive formula $F$ :
- If $F \Rightarrow \bigvee_{i=1}^{n} x_{i}=y_{i}$ for finite $n$
- Then, $F \Rightarrow x_{i}=y_{i}$ for some $i \in[1, n]$
- Thus, in convex theory, if $F$ implies disjunction of equalities, $F$ also implies at least one of these equalities on its own
- If a theory does not satisfy this condition, it is called non-convex


## Examples of Convex and Non-Convex Theories

- Example: Consider formula $1 \leq x \wedge x \leq 2$ in $T_{\mathbb{Z}}$


## Examples of Convex and Non-Convex Theories

- Example: Consider formula $1 \leq x \wedge x \leq 2$ in $T_{\mathbb{Z}}$
- Does it imply $x=1 \vee x=2$ ?


## Examples of Convex and Non-Convex Theories

- Example: Consider formula $1 \leq x \wedge x \leq 2$ in $T_{\mathbb{Z}}$
- Does it imply $x=1 \vee x=2$ ? yes


## Examples of Convex and Non-Convex Theories

- Example: Consider formula $1 \leq x \wedge x \leq 2$ in $T_{\mathbb{Z}}$
- Does it imply $x=1 \vee x=2$ ? yes
- Does it imply $x=1$ ?


## Examples of Convex and Non-Convex Theories

- Example: Consider formula $1 \leq x \wedge x \leq 2$ in $T_{\mathbb{Z}}$
- Does it imply $x=1 \vee x=2$ ? yes
- Does it imply $x=1$ ? no


## Examples of Convex and Non-Convex Theories

- Example: Consider formula $1 \leq x \wedge x \leq 2$ in $T_{\mathbb{Z}}$
- Does it imply $x=1 \vee x=2$ ? yes
- Does it imply $x=1$ ? no
- Does it imply $x=2$ ?


## Examples of Convex and Non-Convex Theories

- Example: Consider formula $1 \leq x \wedge x \leq 2$ in $T_{\mathbb{Z}}$
- Does it imply $x=1 \vee x=2$ ? yes
- Does it imply $x=1$ ? no
- Does it imply $x=2$ ? no


## Examples of Convex and Non-Convex Theories

- Example: Consider formula $1 \leq x \wedge x \leq 2$ in $T_{\mathbb{Z}}$
- Does it imply $x=1 \vee x=2$ ? yes
- Does it imply $x=1$ ? no
- Does it imply $x=2$ ? no
- Is $T_{\mathbb{Z}}$ convex?


## Examples of Convex and Non-Convex Theories

- Example: Consider formula $1 \leq x \wedge x \leq 2$ in $T_{\mathbb{Z}}$
- Does it imply $x=1 \vee x=2$ ? yes
- Does it imply $x=1$ ? no
- Does it imply $x=2$ ? no
- Is $T_{\mathbb{Z}}$ convex? no


## Examples of Convex and Non-Convex Theories

- Example: Consider formula $1 \leq x \wedge x \leq 2$ in $T_{\mathbb{Z}}$
- Does it imply $x=1 \vee x=2$ ? yes
- Does it imply $x=1$ ? no
- Does it imply $x=2$ ? no
- Is $T_{\mathbb{Z}}$ convex? no


## Examples of Convex and Non-Convex Theories

- Example: Consider formula $1 \leq x \wedge x \leq 2$ in $T_{\mathbb{Z}}$
- Does it imply $x=1 \vee x=2$ ? yes
- Does it imply $x=1$ ? no
- Does it imply $x=2$ ? no
- Is $T_{\mathbb{Z}}$ convex? no
- Theory of equality $T_{=}$is convex


## Nelson-Oppen for Convex vs Non-Convex Theories

- Combining decision procedures for two convex theories is easier and more efficient


## Nelson-Oppen for Convex vs Non-Convex Theories

- Combining decision procedures for two convex theories is easier and more efficient
- Intuition: When we have convexity, there are fewer facts that need to be communicated between theories


## Nelson-Oppen for Convex vs Non-Convex Theories

- Combining decision procedures for two convex theories is easier and more efficient
- Intuition: When we have convexity, there are fewer facts that need to be communicated between theories
- Unfortunately, some theories of interest such as $T_{\mathbb{Z}}$ and theory of arrays are non-convex


## Nelson-Oppen for Convex vs Non-Convex Theories

- Combining decision procedures for two convex theories is easier and more efficient
- Intuition: When we have convexity, there are fewer facts that need to be communicated between theories
- Unfortunately, some theories of interest such as $T_{\mathbb{Z}}$ and theory of arrays are non-convex
- If one of the theories we want to combine is non-convex, decision procedure for combination theory is much less efficent


## Nelson-Oppen for Convex vs Non-Convex Theories

- Combining decision procedures for two convex theories is easier and more efficient
- Intuition: When we have convexity, there are fewer facts that need to be communicated between theories
- Unfortunately, some theories of interest such as $T_{\mathbb{Z}}$ and theory of arrays are non-convex
- If one of the theories we want to combine is non-convex, decision procedure for combination theory is much less efficent
- We'll first talk about Nelson-Oppen method for convex theories, then for non-convex theories


## Nelson-Oppen Method for Convex Theories

- Given formula $F$ in $T_{1} \cup T_{2}\left(T_{1}, T_{2}\right.$ convex), want to decide if $F$ is satisfiable


## Nelson-Oppen Method for Convex Theories

- Given formula $F$ in $T_{1} \cup T_{2}\left(T_{1}, T_{2}\right.$ convex), want to decide if $F$ is satisfiable
- First, purify $F$ into $F_{1}$ and $F_{2}$


## Nelson-Oppen Method for Convex Theories

- Given formula $F$ in $T_{1} \cup T_{2}\left(T_{1}, T_{2}\right.$ convex), want to decide if $F$ is satisfiable
- First, purify $F$ into $F_{1}$ and $F_{2}$
- Run decision procedures for $T_{1}, T_{2}$ to decide sat. of $F_{1}, F_{2}$


## Nelson-Oppen Method for Convex Theories

- Given formula $F$ in $T_{1} \cup T_{2}\left(T_{1}, T_{2}\right.$ convex), want to decide if $F$ is satisfiable
- First, purify $F$ into $F_{1}$ and $F_{2}$
- Run decision procedures for $T_{1}, T_{2}$ to decide sat. of $F_{1}, F_{2}$
- If either is unsat, $F$ is unsatisfiable. Why?


## Nelson-Oppen Method for Convex Theories

- Given formula $F$ in $T_{1} \cup T_{2}\left(T_{1}, T_{2}\right.$ convex), want to decide if $F$ is satisfiable
- First, purify $F$ into $F_{1}$ and $F_{2}$
- Run decision procedures for $T_{1}, T_{2}$ to decide sat. of $F_{1}, F_{2}$
- If either is unsat, $F$ is unsatisfiable. Why?
- Because $F$ is equisatisfiable to $F_{1} \wedge F_{2}$, which is unsat


## Nelson-Oppen Method for Convex Theories

- If both are SAT, does this mean $F$ is sat?


## Nelson-Oppen Method for Convex Theories

- If both are SAT, does this mean $F$ is sat?
- No because if $F_{1}$ and $F_{2}$ are individually satisfiable, $F_{1} \wedge F_{2}$ does not have to be satisfiable


## Nelson-Oppen Method for Convex Theories

- If both are SAT, does this mean $F$ is sat?
- No because if $F_{1}$ and $F_{2}$ are individually satisfiable, $F_{1} \wedge F_{2}$ does not have to be satisfiable
- Example:

$$
\underbrace{x+y=2 \wedge x=1}_{T_{\mathbb{Z}}} \wedge \underbrace{f(x) \neq f(y)}_{T_{=}}
$$

## Nelson-Oppen Method for Convex Theories

- If both are SAT, does this mean $F$ is sat?
- No because if $F_{1}$ and $F_{2}$ are individually satisfiable, $F_{1} \wedge F_{2}$ does not have to be satisfiable
- Example:

$$
\underbrace{x+y=2 \wedge x=1}_{T_{\mathbb{Z}}} \wedge \underbrace{f(x) \neq f(y)}_{T_{=}}
$$

- Here, $F_{1}$ and $F_{2}$ are individually sat, but their combination is unsat $\mathrm{b} / \mathrm{c}$ $T_{\mathbb{Z}}$ implies $x=y$


## Nelson-Oppen Method for Convex Theories

- If both are SAT, does this mean $F$ is sat?
- No because if $F_{1}$ and $F_{2}$ are individually satisfiable, $F_{1} \wedge F_{2}$ does not have to be satisfiable
- Example:

$$
\underbrace{x+y=2 \wedge x=1}_{T_{\mathbb{Z}}} \wedge \underbrace{f(x) \neq f(y)}_{T_{=}}
$$

- Here, $F_{1}$ and $F_{2}$ are individually sat, but their combination is unsat $\mathrm{b} / \mathrm{c}$ $T_{\mathbb{Z}}$ implies $x=y$
- In the case where $F_{1}$ and $F_{2}$ are sat, theories have to exchange all implied equalities


## Nelson-Oppen Method for Convex Theories

- If both are SAT, does this mean $F$ is sat?
- No because if $F_{1}$ and $F_{2}$ are individually satisfiable, $F_{1} \wedge F_{2}$ does not have to be satisfiable
- Example:

$$
\underbrace{x+y=2 \wedge x=1}_{T_{\mathbb{Z}}} \wedge \underbrace{f(x) \neq f(y)}_{T_{=}}
$$

- Here, $F_{1}$ and $F_{2}$ are individually sat, but their combination is unsat $\mathrm{b} / \mathrm{c}$ $T_{\mathbb{Z}}$ implies $x=y$
- In the case where $F_{1}$ and $F_{2}$ are sat, theories have to exchange all implied equalities
-Why only equalities?


## Nelson-Oppen Method for Convex Theories

- If both are SAT, does this mean $F$ is sat?
- No because if $F_{1}$ and $F_{2}$ are individually satisfiable, $F_{1} \wedge F_{2}$ does not have to be satisfiable
- Example:

$$
\underbrace{x+y=2 \wedge x=1}_{T_{\mathbb{Z}}} \wedge \underbrace{f(x) \neq f(y)}_{T_{=}}
$$

- Here, $F_{1}$ and $F_{2}$ are individually sat, but their combination is unsat $\mathrm{b} / \mathrm{c}$ $T_{\mathbb{Z}}$ implies $x=y$
- In the case where $F_{1}$ and $F_{2}$ are sat, theories have to exchange all implied equalities
- Why only equalities? b/c it is the only shared symbol


## Nelson-Oppen Method for Convex Theories

- For each pair of shared variables $x, y$, determine if:


## Nelson-Oppen Method for Convex Theories

- For each pair of shared variables $x, y$, determine if:

1. $F_{1} \Rightarrow x=y$

## Nelson-Oppen Method for Convex Theories

- For each pair of shared variables $x, y$, determine if:

1. $F_{1} \Rightarrow x=y$
2. $F_{2} \Rightarrow x=y$

## Nelson-Oppen Method for Convex Theories

- For each pair of shared variables $x, y$, determine if:

1. $F_{1} \Rightarrow x=y$
2. $F_{2} \Rightarrow x=y$

- If (1) holds but not (2), conjoin $x=y$ with $F_{2}$


## Nelson-Oppen Method for Convex Theories

- For each pair of shared variables $x, y$, determine if:

1. $F_{1} \Rightarrow x=y$
2. $F_{2} \Rightarrow x=y$

- If (1) holds but not (2), conjoin $x=y$ with $F_{2}$
- If (2) holds but not (1), conjoin $x=y$ with $F_{1}$


## Nelson-Oppen Method for Convex Theories

- For each pair of shared variables $x, y$, determine if:

1. $F_{1} \Rightarrow x=y$
2. $F_{2} \Rightarrow x=y$

- If (1) holds but not (2), conjoin $x=y$ with $F_{2}$
- If (2) holds but not (1), conjoin $x=y$ with $F_{1}$
- Let $F_{1}^{\prime}$ and $F_{2}^{\prime}$ denote new formulas


## Nelson-Oppen Method for Convex Theories

- For each pair of shared variables $x, y$, determine if:

1. $F_{1} \Rightarrow x=y$
2. $F_{2} \Rightarrow x=y$

- If (1) holds but not (2), conjoin $x=y$ with $F_{2}$
- If (2) holds but not (1), conjoin $x=y$ with $F_{1}$
- Let $F_{1}^{\prime}$ and $F_{2}^{\prime}$ denote new formulas
- Check satisfiability of $F_{1}^{\prime}$ and $F_{2}^{\prime}$


## Nelson-Oppen Method for Convex Theories

- For each pair of shared variables $x, y$, determine if:

1. $F_{1} \Rightarrow x=y$
2. $F_{2} \Rightarrow x=y$

- If (1) holds but not (2), conjoin $x=y$ with $F_{2}$
- If (2) holds but not (1), conjoin $x=y$ with $F_{1}$
- Let $F_{1}^{\prime}$ and $F_{2}^{\prime}$ denote new formulas
- Check satisfiability of $F_{1}^{\prime}$ and $F_{2}^{\prime}$
- Repeat until either formula becomes unsat or no new equalities can be inferred


## Example

- Use Nelson-Oppen to decide sat of following $T_{=} \cup T_{\mathbb{Q}}$ formula:

$$
f(f(x)-f(y)) \neq f(z) \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z
$$

## Example

- Use Nelson-Oppen to decide sat of following $T_{=} \cup T_{\mathbb{Q}}$ formula:

$$
f(f(x)-f(y)) \neq f(z) \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z
$$

- First, we need to purify:


## Example

- Use Nelson-Oppen to decide sat of following $T_{=} \cup T_{\mathbb{Q}}$ formula:

$$
f(f(x)-f(y)) \neq f(z) \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z
$$

- First, we need to purify:
- Replace $f(x)$ with new variable $w_{1}$


## Example

- Use Nelson-Oppen to decide sat of following $T_{=} \cup T_{\mathbb{Q}}$ formula:

$$
f(f(x)-f(y)) \neq f(z) \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z
$$

- First, we need to purify:
- Replace $f(x)$ with new variable $w_{1}$
- Replace $f(y)$ with new variable $w_{2}$


## Example

- Use Nelson-Oppen to decide sat of following $T_{=} \cup T_{\mathbb{Q}}$ formula:

$$
f(f(x)-f(y)) \neq f(z) \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z
$$

- First, we need to purify:
- Replace $f(x)$ with new variable $w_{1}$
- Replace $f(y)$ with new variable $w_{2}$
- $f(x)-f(y)$ is now replaced with $w_{1}-w_{2}$ and we conjoin

$$
w_{1}=f(x) \wedge w_{2}=f(y)
$$

## Example

- Use Nelson-Oppen to decide sat of following $T_{=} \cup T_{\mathbb{Q}}$ formula:

$$
f(f(x)-f(y)) \neq f(z) \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z
$$

- First, we need to purify:
- Replace $f(x)$ with new variable $w_{1}$
- Replace $f(y)$ with new variable $w_{2}$
- $f(x)-f(y)$ is now replaced with $w_{1}-w_{2}$ and we conjoin

$$
w_{1}=f(x) \wedge w_{2}=f(y)
$$

- First literal is now $f\left(w_{1}-w_{2}\right) \neq f(z)$; still not pure!


## Example

- Use Nelson-Oppen to decide sat of following $T_{=} \cup T_{\mathbb{Q}}$ formula:

$$
f(f(x)-f(y)) \neq f(z) \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z
$$

- First, we need to purify:
- Replace $f(x)$ with new variable $w_{1}$
- Replace $f(y)$ with new variable $w_{2}$
- $f(x)-f(y)$ is now replaced with $w_{1}-w_{2}$ and we conjoin

$$
w_{1}=f(x) \wedge w_{2}=f(y)
$$

- First literal is now $f\left(w_{1}-w_{2}\right) \neq f(z)$; still not pure!
- Replace $w_{1}-w_{2}$ with $w_{3}$ and add equality $w_{3}=w_{1}-w_{2}$


## Example, cont

- Purified formula is $F_{1} \wedge F_{2}$ where:

$$
\begin{array}{ll}
F_{1}: & w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \\
F_{2}: & w_{3}=w_{1}-w_{2} \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z
\end{array}
$$

## Example, cont

- Purified formula is $F_{1} \wedge F_{2}$ where:

$$
\begin{array}{ll}
F_{1}: & w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \\
F_{2}: & w_{3}=w_{1}-w_{2} \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z
\end{array}
$$

- Which variables are shared?


## Example, cont

- Purified formula is $F_{1} \wedge F_{2}$ where:

$$
\begin{array}{ll}
F_{1}: & w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \\
F_{2}: & w_{3}=w_{1}-w_{2} \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z
\end{array}
$$

- Which variables are shared? all


## Example, cont

- Purified formula is $F_{1} \wedge F_{2}$ where:

$$
\begin{array}{ll}
F_{1}: & w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \\
F_{2}: & w_{3}=w_{1}-w_{2} \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z
\end{array}
$$

- Which variables are shared? all
- Check sat of $F_{1}$. Is it SAT?


## Example, cont

- Purified formula is $F_{1} \wedge F_{2}$ where:

$$
\begin{array}{ll}
F_{1}: & w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \\
F_{2}: & w_{3}=w_{1}-w_{2} \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z
\end{array}
$$

- Which variables are shared? all
- Check sat of $F_{1}$. Is it SAT? yes


## Example, cont

- Purified formula is $F_{1} \wedge F_{2}$ where:

$$
\begin{array}{ll}
F_{1}: & w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \\
F_{2}: & w_{3}=w_{1}-w_{2} \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z
\end{array}
$$

- Which variables are shared? all
- Check sat of $F_{1}$. Is it SAT? yes
- Check sat of $F_{2}$. Is it SAT?


## Example, cont

- Purified formula is $F_{1} \wedge F_{2}$ where:

$$
\begin{array}{ll}
F_{1}: & w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \\
F_{2}: & w_{3}=w_{1}-w_{2} \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z
\end{array}
$$

- Which variables are shared? all
- Check sat of $F_{1}$. Is it SAT? yes
- Check sat of $F_{2}$. Is it SAT? yes


## Example, cont

- Purified formula is $F_{1} \wedge F_{2}$ where:

$$
\begin{array}{ll}
F_{1}: & w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \\
F_{2}: & w_{3}=w_{1}-w_{2} \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z
\end{array}
$$

- Which variables are shared? all
- Check sat of $F_{1}$. Is it SAT? yes
- Check sat of $F_{2}$. Is it SAT? yes
- Now, for each pair of shared variable $x_{i}, x_{j}$, we query whether $F_{1}$ or $F_{2}$ imply $x_{i}=x_{j}$


## Example, cont

$$
\begin{array}{ll}
F_{1}: & w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \\
F_{2}: & w_{3}=w_{1}-w_{2} \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z
\end{array}
$$

- Consider the query $x=y$ - is it implied by either $F_{1}$ or $F_{2}$ ?


## Example, cont

$$
\begin{array}{ll}
F_{1}: & w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \\
F_{2}: & w_{3}=w_{1}-w_{2} \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z
\end{array}
$$

- Consider the query $x=y$ - is it implied by either $F_{1}$ or $F_{2}$ ? implied by $F_{2}$


## Example, cont

$$
\begin{array}{ll}
F_{1}: & w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \\
F_{2}: & w_{3}=w_{1}-w_{2} \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z
\end{array}
$$

- Consider the query $x=y$ - is it implied by either $F_{1}$ or $F_{2}$ ? implied by $F_{2}$
- $y+z \leq x \wedge 0 \leq z$ imply $0 \leq z \leq x-y$, i.e., $y \leq x$


## Example, cont

$$
\begin{array}{ll}
F_{1}: & w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \\
F_{2}: & w_{3}=w_{1}-w_{2} \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z
\end{array}
$$

- Consider the query $x=y$ - is it implied by either $F_{1}$ or $F_{2}$ ? implied by $F_{2}$
- $y+z \leq x \wedge 0 \leq z$ imply $0 \leq z \leq x-y$, i.e., $y \leq x$
- Since we also have $x \leq y, T_{\mathbb{Q}}$ implies $x=y$


## Example, cont

$$
\begin{array}{ll}
F_{1}: & w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \\
F_{2}: & w_{3}=w_{1}-w_{2} \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z
\end{array}
$$

- Consider the query $x=y$ - is it implied by either $F_{1}$ or $F_{2}$ ? implied by $F_{2}$
- $y+z \leq x \wedge 0 \leq z$ imply $0 \leq z \leq x-y$, i.e., $y \leq x$
- Since we also have $x \leq y, T_{\mathbb{Q}}$ implies $x=y$
- Now, propagate this to $T_{=}$, so $F_{1}^{\prime}$ becomes:

$$
F_{1}^{\prime}: w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \wedge x=y
$$

## Example, cont

$$
\begin{array}{ll}
F_{1}: & w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \\
F_{2}: & w_{3}=w_{1}-w_{2} \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z
\end{array}
$$

- Consider the query $x=y$ - is it implied by either $F_{1}$ or $F_{2}$ ? implied by $F_{2}$
- $y+z \leq x \wedge 0 \leq z$ imply $0 \leq z \leq x-y$, i.e., $y \leq x$
- Since we also have $x \leq y, T_{\mathbb{Q}}$ implies $x=y$
- Now, propagate this to $T_{=}$, so $F_{1}^{\prime}$ becomes:

$$
F_{1}^{\prime}: w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \wedge x=y
$$

- Check sat of $F_{1}^{\prime}$. Is it SAT?


## Example, cont

$$
\begin{array}{ll}
F_{1}: & w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \\
F_{2}: & w_{3}=w_{1}-w_{2} \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z
\end{array}
$$

- Consider the query $x=y$ - is it implied by either $F_{1}$ or $F_{2}$ ? implied by $F_{2}$
- $y+z \leq x \wedge 0 \leq z$ imply $0 \leq z \leq x-y$, i.e., $y \leq x$
- Since we also have $x \leq y, T_{\mathbb{Q}}$ implies $x=y$
- Now, propagate this to $T_{=}$, so $F_{1}^{\prime}$ becomes:

$$
F_{1}^{\prime}: w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \wedge x=y
$$

- Check sat of $F_{1}^{\prime}$. Is it SAT? yes


## Example, cont

$$
\begin{array}{ll}
F_{1}: & w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \\
F_{2}: & w_{3}=w_{1}-w_{2} \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z
\end{array}
$$

- Consider the query $x=y$ - is it implied by either $F_{1}$ or $F_{2}$ ? implied by $F_{2}$
- $y+z \leq x \wedge 0 \leq z$ imply $0 \leq z \leq x-y$, i.e., $y \leq x$
- Since we also have $x \leq y, T_{\mathbb{Q}}$ implies $x=y$
- Now, propagate this to $T_{=}$, so $F_{1}^{\prime}$ becomes:

$$
F_{1}^{\prime}: w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \wedge x=y
$$

- Check sat of $F_{1}^{\prime}$. Is it SAT? yes
- Are we done?


## Example, cont

$$
\begin{array}{ll}
F_{1}: & w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \\
F_{2}: & w_{3}=w_{1}-w_{2} \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z
\end{array}
$$

- Consider the query $x=y$ - is it implied by either $F_{1}$ or $F_{2}$ ? implied by $F_{2}$
- $y+z \leq x \wedge 0 \leq z$ imply $0 \leq z \leq x-y$, i.e., $y \leq x$
- Since we also have $x \leq y, T_{\mathbb{Q}}$ implies $x=y$
- Now, propagate this to $T_{=}$, so $F_{1}^{\prime}$ becomes:

$$
F_{1}^{\prime}: w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \wedge x=y
$$

- Check sat of $F_{1}^{\prime}$. Is it SAT? yes
- Are we done? no


## Example, cont

$$
\begin{array}{ll}
F_{1}: & w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \wedge x=y \\
F_{2}: & w_{3}=w_{1}-w_{2} \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z
\end{array}
$$

- Since $F_{1}$ changed, need to check if it implies any new equality


## Example, cont

$$
\begin{array}{ll}
F_{1}: & w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \wedge x=y \\
F_{2}: & w_{3}=w_{1}-w_{2} \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z
\end{array}
$$

- Since $F_{1}$ changed, need to check if it implies any new equality
- Does it imply a new equality?


## Example, cont

$$
\begin{array}{ll}
F_{1}: & w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \wedge x=y \\
F_{2}: & w_{3}=w_{1}-w_{2} \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z
\end{array}
$$

- Since $F_{1}$ changed, need to check if it implies any new equality
- Does it imply a new equality? yes, $w_{1}=w_{2}$


## Example, cont

$$
\begin{array}{ll}
F_{1}: & w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \wedge x=y \\
F_{2}: & w_{3}=w_{1}-w_{2} \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z
\end{array}
$$

- Since $F_{1}$ changed, need to check if it implies any new equality
- Does it imply a new equality? yes, $w_{1}=w_{2}$
- Now, we add $w_{1}=w_{2}$ to $F_{2}$ :

$$
F_{2}: w_{3}=w_{1}-w_{2} \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z \wedge w_{1}=w_{2}
$$

## Example, cont

$$
\begin{array}{ll}
F_{1}: & w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \wedge x=y \\
F_{2}: & w_{3}=w_{1}-w_{2} \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z
\end{array}
$$

- Since $F_{1}$ changed, need to check if it implies any new equality
- Does it imply a new equality? yes, $w_{1}=w_{2}$
- Now, we add $w_{1}=w_{2}$ to $F_{2}$ :

$$
F_{2}: w_{3}=w_{1}-w_{2} \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z \wedge w_{1}=w_{2}
$$

- We recheck sat of $F_{2}$. Is it SAT?


## Example, cont

$$
\begin{array}{ll}
F_{1}: & w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \wedge x=y \\
F_{2}: & w_{3}=w_{1}-w_{2} \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z
\end{array}
$$

- Since $F_{1}$ changed, need to check if it implies any new equality
- Does it imply a new equality? yes, $w_{1}=w_{2}$
- Now, we add $w_{1}=w_{2}$ to $F_{2}$ :

$$
F_{2}: w_{3}=w_{1}-w_{2} \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z \wedge w_{1}=w_{2}
$$

- We recheck sat of $F_{2}$. Is it SAT? yes


## Example, cont

$$
\begin{array}{ll}
F_{1}: & w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \wedge x=y \\
F_{2}: & w_{3}=w_{1}-w_{2} \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z
\end{array}
$$

- Since $F_{1}$ changed, need to check if it implies any new equality
- Does it imply a new equality? yes, $w_{1}=w_{2}$
- Now, we add $w_{1}=w_{2}$ to $F_{2}$ :

$$
F_{2}: w_{3}=w_{1}-w_{2} \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z \wedge w_{1}=w_{2}
$$

- We recheck sat of $F_{2}$. Is it SAT? yes
- Still not done $\mathrm{b} / \mathrm{c}$ need to check if $F_{2}$ implies any new equalities


## Example, cont

$$
\begin{array}{ll}
F_{1}: & w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \wedge x=y \\
F_{2}: & w_{3}=w_{1}-w_{2} \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z \wedge w_{1}=w_{2}
\end{array}
$$

- Consider the query $w_{3}=z$ ?


## Example, cont

$$
\begin{array}{ll}
F_{1}: & w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \wedge x=y \\
F_{2}: & w_{3}=w_{1}-w_{2} \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z \wedge w_{1}=w_{2}
\end{array}
$$

- Consider the query $w_{3}=z$ ?
- $w_{3}=w_{1}-w_{2}$ and $w_{1}=w_{2}$ imply $w_{3}=0$


## Example, cont

$$
\begin{array}{ll}
F_{1}: & w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \wedge x=y \\
F_{2}: & w_{3}=w_{1}-w_{2} \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z \wedge w_{1}=w_{2}
\end{array}
$$

- Consider the query $w_{3}=z$ ?
- $w_{3}=w_{1}-w_{2}$ and $w_{1}=w_{2}$ imply $w_{3}=0$
- Since $x=y, y+z \leq x$ implies $z \leq 0$


## Example, cont

$$
\begin{array}{ll}
F_{1}: & w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \wedge x=y \\
F_{2}: & w_{3}=w_{1}-w_{2} \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z \wedge w_{1}=w_{2}
\end{array}
$$

- Consider the query $w_{3}=z$ ?
- $w_{3}=w_{1}-w_{2}$ and $w_{1}=w_{2}$ imply $w_{3}=0$
- Since $x=y, y+z \leq x$ implies $z \leq 0$
- Since $z \leq 0$ and $0 \leq z$, we have $z=0$


## Example, cont

$$
\begin{array}{ll}
F_{1}: & w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \wedge x=y \\
F_{2}: & w_{3}=w_{1}-w_{2} \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z \wedge w_{1}=w_{2}
\end{array}
$$

- Consider the query $w_{3}=z$ ?
- $w_{3}=w_{1}-w_{2}$ and $w_{1}=w_{2}$ imply $w_{3}=0$
- Since $x=y, y+z \leq x$ implies $z \leq 0$
- Since $z \leq 0$ and $0 \leq z$, we have $z=0$
- Thus, $T_{\mathbb{Q}}$ answer "yes" for query $w_{3}=z$


## Example, cont

- Now, propagate $w_{3}=z$ to $F_{1}$ :

$$
F_{1}: w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \wedge x=y \wedge w_{3}=z
$$

## Example, cont

- Now, propagate $w_{3}=z$ to $F_{1}$ :

$$
F_{1}: w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \wedge x=y \wedge w_{3}=z
$$

- Is this sat?


## Example, cont

- Now, propagate $w_{3}=z$ to $F_{1}$ :

$$
F_{1}: w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \wedge x=y \wedge w_{3}=z
$$

- Is this sat?
- No, because $w_{3}=z$ implies $f\left(w_{3}\right)=f(z)$


## Example, cont

- Now, propagate $w_{3}=z$ to $F_{1}$ :

$$
F_{1}: w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \wedge x=y \wedge w_{3}=z
$$

- Is this sat?
- No, because $w_{3}=z$ implies $f\left(w_{3}\right)=f(z)$
- This contradicts $f\left(w_{3}\right) \neq f(z)$


## Example, cont

- Now, propagate $w_{3}=z$ to $F_{1}$ :

$$
F_{1}: w_{1}=f(x) \wedge w_{2}=f(y) \wedge f\left(w_{3}\right) \neq f(z) \wedge x=y \wedge w_{3}=z
$$

- Is this sat?
- No, because $w_{3}=z$ implies $f\left(w_{3}\right)=f(z)$
- This contradicts $f\left(w_{3}\right) \neq f(z)$
- Thus, original formula is UNSAT


## Non-Convex Theories

- Unfortunately, technique discussed so far does not work for non-convex theories


## Non-Convex Theories

- Unfortunately, technique discussed so far does not work for non-convex theories
- Consider the following $T_{\mathbb{Z}} \cup T_{=}$formula:

$$
1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)
$$

## Non-Convex Theories

- Unfortunately, technique discussed so far does not work for non-convex theories
- Consider the following $T_{\mathbb{Z}} \cup T_{=}$formula:

$$
1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)
$$

- Is this formula SAT?


## Non-Convex Theories

- Unfortunately, technique discussed so far does not work for non-convex theories
- Consider the following $T_{\mathbb{Z}} \cup T_{=}$formula:

$$
1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)
$$

- Is this formula SAT? no


## Non-Convex Theories

- Unfortunately, technique discussed so far does not work for non-convex theories
- Consider the following $T_{\mathbb{Z}} \cup T_{=}$formula:

$$
1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)
$$

- Is this formula SAT? no
- Let's see what happens if we use technique described so far


## Non-Convex Theories

- Unfortunately, technique discussed so far does not work for non-convex theories
- Consider the following $T_{\mathbb{Z}} \cup T_{=}$formula:

$$
1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)
$$

- Is this formula SAT? no
- Let's see what happens if we use technique described so far
- If we purify, we get the following formulas:

$$
\begin{array}{lc}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{2}\right) \\
F_{2}: & 1 \leq x \wedge x \leq 2 \wedge w_{1}=1 \wedge w_{2}=2
\end{array}
$$

## Example, cont

$$
\begin{array}{lc}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{2}\right) \\
F_{2}: & 1 \leq x \wedge x \leq 2 \wedge w_{1}=1 \wedge w_{2}=2
\end{array}
$$

- Is $F_{1}$ SAT?


## Example, cont

$$
\begin{array}{lc}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{2}\right) \\
F_{2}: & 1 \leq x \wedge x \leq 2 \wedge w_{1}=1 \wedge w_{2}=2
\end{array}
$$

- Is $F_{1}$ SAT? yes


## Example, cont

$$
\begin{array}{lc}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{2}\right) \\
F_{2}: & 1 \leq x \wedge x \leq 2 \wedge w_{1}=1 \wedge w_{2}=2
\end{array}
$$

- Is $F_{1}$ SAT? yes
- Is $F_{2}$ SAT?


## Example, cont

$$
\begin{array}{lc}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{2}\right) \\
F_{2}: & 1 \leq x \wedge x \leq 2 \wedge w_{1}=1 \wedge w_{2}=2
\end{array}
$$

- Is $F_{1}$ SAT? yes
- Is $F_{2}$ SAT? yes


## Example, cont

$$
\begin{array}{lc}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{2}\right) \\
F_{2}: & 1 \leq x \wedge x \leq 2 \wedge w_{1}=1 \wedge w_{2}=2
\end{array}
$$

- Is $F_{1}$ SAT? yes
- Is $F_{2}$ SAT? yes
- Does $F_{1}$ imply a new equality by itself?


## Example, cont

$$
\begin{array}{lc}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{2}\right) \\
F_{2}: & 1 \leq x \wedge x \leq 2 \wedge w_{1}=1 \wedge w_{2}=2
\end{array}
$$

- Is $F_{1}$ SAT? yes
- Is $F_{2}$ SAT? yes
- Does $F_{1}$ imply a new equality by itself? no


## Example, cont

$$
\begin{array}{lc}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{2}\right) \\
F_{2}: & 1 \leq x \wedge x \leq 2 \wedge w_{1}=1 \wedge w_{2}=2
\end{array}
$$

- Is $F_{1}$ SAT? yes
- Is $F_{2}$ SAT? yes
- Does $F_{1}$ imply a new equality by itself? no
- Does $F_{2}$ imply a new equality by itself?


## Example, cont

$$
\begin{array}{lc}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{2}\right) \\
F_{2}: & 1 \leq x \wedge x \leq 2 \wedge w_{1}=1 \wedge w_{2}=2
\end{array}
$$

- Is $F_{1}$ SAT? yes
- Is $F_{2}$ SAT? yes
- Does $F_{1}$ imply a new equality by itself? no
- Does $F_{2}$ imply a new equality by itself? no


## Example, cont

$$
\begin{array}{lc}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{2}\right) \\
F_{2}: & 1 \leq x \wedge x \leq 2 \wedge w_{1}=1 \wedge w_{2}=2
\end{array}
$$

- Is $F_{1}$ SAT? yes
- Is $F_{2}$ SAT? yes
- Does $F_{1}$ imply a new equality by itself? no
- Does $F_{2}$ imply a new equality by itself? no
- Thus technique discussed so far returns sat, although formula in unsat


## Nelson-Oppen with Non-Convex Theories

- Problem is that in non-convex theories, a formula might imply a disjunction of equalities


## Nelson-Oppen with Non-Convex Theories

- Problem is that in non-convex theories, a formula might imply a disjunction of equalities
- But it doesn't have to imply any single equality on its own


## Nelson-Oppen with Non-Convex Theories

- Problem is that in non-convex theories, a formula might imply a disjunction of equalities
- But it doesn't have to imply any single equality on its own
- Thus, it is not enough to query individual equality relations between variables


## Nelson-Oppen with Non-Convex Theories

- Problem is that in non-convex theories, a formula might imply a disjunction of equalities
- But it doesn't have to imply any single equality on its own
- Thus, it is not enough to query individual equality relations between variables
- We also have to query and propagate disjunctions of equalities


## Nelson-Oppen with Non-Convex Theories

- Problem is that in non-convex theories, a formula might imply a disjunction of equalities
- But it doesn't have to imply any single equality on its own
- Thus, it is not enough to query individual equality relations between variables
- We also have to query and propagate disjunctions of equalities
- Two questions:


## Nelson-Oppen with Non-Convex Theories

- Problem is that in non-convex theories, a formula might imply a disjunction of equalities
- But it doesn't have to imply any single equality on its own
- Thus, it is not enough to query individual equality relations between variables
- We also have to query and propagate disjunctions of equalities
- Two questions:

1. Which disjunctions do we query?

## Nelson-Oppen with Non-Convex Theories

- Problem is that in non-convex theories, a formula might imply a disjunction of equalities
- But it doesn't have to imply any single equality on its own
- Thus, it is not enough to query individual equality relations between variables
- We also have to query and propagate disjunctions of equalities
- Two questions:

1. Which disjunctions do we query?
2. How do we propagate disjunctions since we are considering disjunction-free formulas?

## What Disjunctions to Query?

- Recall: We only have a finite set of shared variables


## What Disjunctions to Query?

- Recall: We only have a finite set of shared variables
- From these, we can only generate a finite number of disjunctions of equalities


## What Disjunctions to Query?

- Recall: We only have a finite set of shared variables
- From these, we can only generate a finite number of disjunctions of equalities
- Thus, for each possible disjunction, we need to issue a query


## What Disjunctions to Query?

- Recall: We only have a finite set of shared variables
- From these, we can only generate a finite number of disjunctions of equalities
- Thus, for each possible disjunction, we need to issue a query
- Example: If we have shared variables $x, y, z$, which queries do we need to issue?


## What Disjunctions to Query?

- Recall: We only have a finite set of shared variables
- From these, we can only generate a finite number of disjunctions of equalities
- Thus, for each possible disjunction, we need to issue a query
- Example: If we have shared variables $x, y, z$, which queries do we need to issue?

$$
\begin{gathered}
x=y \\
x=z \\
y=z \\
x=y \vee x=z
\end{gathered}
$$

## Propagating Disjunctions

- Suppose answer to some disjunctive query $\bigvee_{i=1}^{n} x_{i}=y_{i}$ is yes


## Propagating Disjunctions

- Suppose answer to some disjunctive query $\bigvee_{i=1}^{n} x_{i}=y_{i}$ is yes
- In this case, we need to branch and consider all $n$ possibilities


## Propagating Disjunctions

- Suppose answer to some disjunctive query $\bigvee_{i=1}^{n} x_{i}=y_{i}$ is yes
- In this case, we need to branch and consider all $n$ possibilities
- Thus, create $n$ subproblems where we propagate $x_{i}=y_{i}$ in $i$ 'th subproblem


## Propagating Disjunctions

- Suppose answer to some disjunctive query $\bigvee_{i=1}^{n} x_{i}=y_{i}$ is yes
- In this case, we need to branch and consider all $n$ possibilities
- Thus, create $n$ subproblems where we propagate $x_{i}=y_{i}$ in $i$ 'th subproblem
- If there is any subproblem that is satisfiable, original formula is satisfiable


## Propagating Disjunctions

- Suppose answer to some disjunctive query $\bigvee_{i=1}^{n} x_{i}=y_{i}$ is yes
- In this case, we need to branch and consider all $n$ possibilities
- Thus, create $n$ subproblems where we propagate $x_{i}=y_{i}$ in $i$ 'th subproblem
- If there is any subproblem that is satisfiable, original formula is satisfiable
- If every subproblem is unsatisfiable, then original formula is unsatisfiable


## Example

- Consider $T=\cup T_{\mathbb{Z}}$ formula:

$$
1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)
$$

## Example

- Consider $T_{=} \cup T_{\mathbb{Z}}$ formula:

$$
1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)
$$

- After purification, we get:

$$
\begin{array}{lc}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{2}\right) \\
F_{2}: & 1 \leq x \wedge x \leq 2 \wedge w_{1}=1 \wedge w_{2}=2
\end{array}
$$

## Example

- Consider $T_{=} \cup T_{\mathbb{Z}}$ formula:

$$
1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)
$$

- After purification, we get:

$$
\begin{array}{lc}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{2}\right) \\
F_{2}: & 1 \leq x \wedge x \leq 2 \wedge w_{1}=1 \wedge w_{2}=2
\end{array}
$$

- Which queries do we need to issue?


## Example

- Consider $T_{=} \cup T_{\mathbb{Z}}$ formula:

$$
1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)
$$

- After purification, we get:

$$
\begin{array}{lc}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{2}\right) \\
F_{2}: & 1 \leq x \wedge x \leq 2 \wedge w_{1}=1 \wedge w_{2}=2
\end{array}
$$

- Which queries do we need to issue?

$$
\begin{aligned}
& \text { (1) } x=w_{1} \\
& \text { (2) } x=w_{2} \\
& \text { (3) } x=w_{1} \vee x=w_{2}
\end{aligned}
$$

## Example

- Consider $T_{=} \cup T_{\mathbb{Z}}$ formula:

$$
1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)
$$

- After purification, we get:

$$
\begin{array}{lc}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{2}\right) \\
F_{2}: & 1 \leq x \wedge x \leq 2 \wedge w_{1}=1 \wedge w_{2}=2
\end{array}
$$

- Which queries do we need to issue?

$$
\text { (1) } x=w_{1}
$$

(2) $x=w_{2}$
(3) $x=w_{1} \vee x=w_{2}$

- Answer to queries (1) and (2) are no, but $F_{2}$ implies query (3)


## Example, cont

- Now, we create two subproblems, one where we propagate $x=w_{1}$ and $x=w_{2}$


## Example, cont

- Now, we create two subproblems, one where we propagate $x=w_{1}$ and $x=w_{2}$
- First subproblem:

$$
\begin{array}{lc}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{2}\right) \wedge x=w_{1} \\
F_{2}: & 1 \leq x \wedge x \leq 2 \wedge w_{1}=1 \wedge w_{2}=2
\end{array}
$$

## Example, cont

- Now, we create two subproblems, one where we propagate $x=w_{1}$ and $x=w_{2}$
- First subproblem:

$$
\begin{array}{lc}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{2}\right) \wedge x=w_{1} \\
F_{2}: & 1 \leq x \wedge x \leq 2 \wedge w_{1}=1 \wedge w_{2}=2
\end{array}
$$

- Is this satisfiable?


## Example, cont

- Now, we create two subproblems, one where we propagate $x=w_{1}$ and $x=w_{2}$
- First subproblem:

$$
\begin{array}{lc}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{2}\right) \wedge x=w_{1} \\
F_{2}: & 1 \leq x \wedge x \leq 2 \wedge w_{1}=1 \wedge w_{2}=2
\end{array}
$$

- Is this satisfiable?
- No because $x=w_{1}$ implies $f(x)=f\left(w_{1}\right)$


## Example, cont

- Second subproblem:

$$
\begin{array}{lc}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{2}\right) \wedge x=w_{2} \\
F_{2}: & 1 \leq x \wedge x \leq 2 \wedge w_{1}=1 \wedge w_{2}=2
\end{array}
$$

## Example, cont

- Second subproblem:

$$
\begin{array}{lc}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{2}\right) \wedge x=w_{2} \\
F_{2}: & 1 \leq x \wedge x \leq 2 \wedge w_{1}=1 \wedge w_{2}=2
\end{array}
$$

- Is this satisfiable?


## Example, cont

- Second subproblem:

$$
\begin{array}{lc}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{2}\right) \wedge x=w_{2} \\
F_{2}: & 1 \leq x \wedge x \leq 2 \wedge w_{1}=1 \wedge w_{2}=2
\end{array}
$$

- Is this satisfiable?
- No because $x=w_{2}$ implies $f(x)=f\left(w_{2}\right)$


## Example, cont

- Second subproblem:

$$
\begin{array}{lc}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{2}\right) \wedge x=w_{2} \\
F_{2}: & 1 \leq x \wedge x \leq 2 \wedge w_{1}=1 \wedge w_{2}=2
\end{array}
$$

- Is this satisfiable?
- No because $x=w_{2}$ implies $f(x)=f\left(w_{2}\right)$
- Since neither subproblem is satisfiable, Nelson-Oppen returns unsat for original formula


## Example II

- Consider the following $T_{=} \cup T_{\mathbb{Z}}$ formula:

$$
1 \leq x \wedge x \leq 3 \wedge f(x) \neq f(1) \wedge f(x) \neq f(3) \wedge f(1) \neq f(2)
$$

## Example II

- Consider the following $T_{=} \cup T_{\mathbb{Z}}$ formula:

$$
1 \leq x \wedge x \leq 3 \wedge f(x) \neq f(1) \wedge f(x) \neq f(3) \wedge f(1) \neq f(2)
$$

- Formulas after purification:

$$
\begin{array}{lc}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{3}\right) \wedge f\left(w_{1}\right) \neq f\left(w_{2}\right) \\
F_{2}: & 1 \leq x \wedge x \leq 3 \wedge w_{1}=1 \wedge w_{2}=2 \wedge w_{3}=3
\end{array}
$$

## Example II

- Consider the following $T_{=} \cup T_{\mathbb{Z}}$ formula:

$$
1 \leq x \wedge x \leq 3 \wedge f(x) \neq f(1) \wedge f(x) \neq f(3) \wedge f(1) \neq f(2)
$$

- Formulas after purification:

$$
\begin{array}{lc}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{3}\right) \wedge f\left(w_{1}\right) \neq f\left(w_{2}\right) \\
F_{2}: & 1 \leq x \wedge x \leq 3 \wedge w_{1}=1 \wedge w_{2}=2 \wedge w_{3}=3
\end{array}
$$

- Consider the query $x=w_{1} \vee x=w_{2} \vee x=w_{3}$


## Example II

- Consider the following $T_{=} \cup T_{\mathbb{Z}}$ formula:

$$
1 \leq x \wedge x \leq 3 \wedge f(x) \neq f(1) \wedge f(x) \neq f(3) \wedge f(1) \neq f(2)
$$

- Formulas after purification:

$$
\begin{array}{lc}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{3}\right) \wedge f\left(w_{1}\right) \neq f\left(w_{2}\right) \\
F_{2}: & 1 \leq x \wedge x \leq 3 \wedge w_{1}=1 \wedge w_{2}=2 \wedge w_{3}=3
\end{array}
$$

- Consider the query $x=w_{1} \vee x=w_{2} \vee x=w_{3}$
- Does either formula imply this query?


## Example II

- Consider the following $T_{=} \cup T_{\mathbb{Z}}$ formula:

$$
1 \leq x \wedge x \leq 3 \wedge f(x) \neq f(1) \wedge f(x) \neq f(3) \wedge f(1) \neq f(2)
$$

- Formulas after purification:

$$
\begin{array}{lc}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{3}\right) \wedge f\left(w_{1}\right) \neq f\left(w_{2}\right) \\
F_{2}: & 1 \leq x \wedge x \leq 3 \wedge w_{1}=1 \wedge w_{2}=2 \wedge w_{3}=3
\end{array}
$$

- Consider the query $x=w_{1} \vee x=w_{2} \vee x=w_{3}$
- Does either formula imply this query? Yes


## Example II, cont

- First subproblem:

$$
\begin{array}{ll}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{3}\right) \wedge f\left(w_{1}\right) \neq f\left(w_{2}\right) \wedge x=w_{1} \\
F_{2}: & 1 \leq x \wedge x \leq 3 \wedge w_{1}=1 \wedge w_{2}=2 \wedge w_{3}=3
\end{array}
$$

## Example II, cont

- First subproblem:

$$
\begin{array}{ll}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{3}\right) \wedge f\left(w_{1}\right) \neq f\left(w_{2}\right) \wedge x=w_{1} \\
F_{2}: & 1 \leq x \wedge x \leq 3 \wedge w_{1}=1 \wedge w_{2}=2 \wedge w_{3}=3
\end{array}
$$

- Is this satisfiable?


## Example II, cont

- First subproblem:

$$
\begin{array}{ll}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{3}\right) \wedge f\left(w_{1}\right) \neq f\left(w_{2}\right) \wedge x=w_{1} \\
F_{2}: & 1 \leq x \wedge x \leq 3 \wedge w_{1}=1 \wedge w_{2}=2 \wedge w_{3}=3
\end{array}
$$

- Is this satisfiable? no


## Example II, cont

- First subproblem:

$$
\begin{array}{ll}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{3}\right) \wedge f\left(w_{1}\right) \neq f\left(w_{2}\right) \wedge x=w_{1} \\
F_{2}: & 1 \leq x \wedge x \leq 3 \wedge w_{1}=1 \wedge w_{2}=2 \wedge w_{3}=3
\end{array}
$$

- Is this satisfiable? no
- Second subproblem:

$$
\begin{array}{ll}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{3}\right) \wedge f\left(w_{1}\right) \neq f\left(w_{2}\right) \wedge x=w_{2} \\
F_{2}: & 1 \leq x \wedge x \leq 3 \wedge w_{1}=1 \wedge w_{2}=2 \wedge w_{3}=3
\end{array}
$$

## Example II, cont

- First subproblem:

$$
\begin{array}{ll}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{3}\right) \wedge f\left(w_{1}\right) \neq f\left(w_{2}\right) \wedge x=w_{1} \\
F_{2}: & 1 \leq x \wedge x \leq 3 \wedge w_{1}=1 \wedge w_{2}=2 \wedge w_{3}=3
\end{array}
$$

- Is this satisfiable? no
- Second subproblem:

$$
\begin{array}{ll}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{3}\right) \wedge f\left(w_{1}\right) \neq f\left(w_{2}\right) \wedge x=w_{2} \\
F_{2}: & 1 \leq x \wedge x \leq 3 \wedge w_{1}=1 \wedge w_{2}=2 \wedge w_{3}=3
\end{array}
$$

- Is this satisfiable?


## Example II, cont

- First subproblem:

$$
\begin{array}{ll}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{3}\right) \wedge f\left(w_{1}\right) \neq f\left(w_{2}\right) \wedge x=w_{1} \\
F_{2}: & 1 \leq x \wedge x \leq 3 \wedge w_{1}=1 \wedge w_{2}=2 \wedge w_{3}=3
\end{array}
$$

- Is this satisfiable? no
- Second subproblem:

$$
\begin{array}{ll}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{3}\right) \wedge f\left(w_{1}\right) \neq f\left(w_{2}\right) \wedge x=w_{2} \\
F_{2}: & 1 \leq x \wedge x \leq 3 \wedge w_{1}=1 \wedge w_{2}=2 \wedge w_{3}=3
\end{array}
$$

- Is this satisfiable? Yes


## Example II, cont

Second subproblem:

$$
\begin{array}{ll}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{3}\right) \wedge f\left(w_{1}\right) \neq f\left(w_{2}\right) \wedge x=w_{2} \\
F_{2}: & 1 \leq x \wedge x \leq 3 \wedge w_{1}=1 \wedge w_{2}=2 \wedge w_{3}=3
\end{array}
$$

- So it's satisfiable, are we done?


## Example II, cont

Second subproblem:

$$
\begin{array}{ll}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{3}\right) \wedge f\left(w_{1}\right) \neq f\left(w_{2}\right) \wedge x=w_{2} \\
F_{2}: & 1 \leq x \wedge x \leq 3 \wedge w_{1}=1 \wedge w_{2}=2 \wedge w_{3}=3
\end{array}
$$

- So it's satisfiable, are we done? No, need to check for new equalities


## Example II, cont

Second subproblem:

$$
\begin{array}{ll}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{3}\right) \wedge f\left(w_{1}\right) \neq f\left(w_{2}\right) \wedge x=w_{2} \\
F_{2}: & 1 \leq x \wedge x \leq 3 \wedge w_{1}=1 \wedge w_{2}=2 \wedge w_{3}=3
\end{array}
$$

- So it's satisfiable, are we done? No, need to check for new equalities
- Thus, we now issue new queries such as $x=w_{1}, x=w_{2}$, etc


## Example II, cont

Second subproblem:

$$
\begin{array}{ll}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{3}\right) \wedge f\left(w_{1}\right) \neq f\left(w_{2}\right) \wedge x=w_{2} \\
F_{2}: & 1 \leq x \wedge x \leq 3 \wedge w_{1}=1 \wedge w_{2}=2 \wedge w_{3}=3
\end{array}
$$

- So it's satisfiable, are we done? No, need to check for new equalities
- Thus, we now issue new queries such as $x=w_{1}, x=w_{2}$, etc
- Are there any new implied equalities or disjunctions of equalities?


## Example II, cont

Second subproblem:

$$
\begin{array}{ll}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{3}\right) \wedge f\left(w_{1}\right) \neq f\left(w_{2}\right) \wedge x=w_{2} \\
F_{2}: & 1 \leq x \wedge x \leq 3 \wedge w_{1}=1 \wedge w_{2}=2 \wedge w_{3}=3
\end{array}
$$

- So it's satisfiable, are we done? No, need to check for new equalities
- Thus, we now issue new queries such as $x=w_{1}, x=w_{2}$, etc
- Are there any new implied equalities or disjunctions of equalities? No


## Example II, cont

Second subproblem:

$$
\begin{array}{ll}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{3}\right) \wedge f\left(w_{1}\right) \neq f\left(w_{2}\right) \wedge x=w_{2} \\
F_{2}: & 1 \leq x \wedge x \leq 3 \wedge w_{1}=1 \wedge w_{2}=2 \wedge w_{3}=3
\end{array}
$$

- So it's satisfiable, are we done? No, need to check for new equalities
- Thus, we now issue new queries such as $x=w_{1}, x=w_{2}$, etc
- Are there any new implied equalities or disjunctions of equalities? No
- Thus, second subproblem is satisfiable


## Example II, cont

Second subproblem:

$$
\begin{array}{ll}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{3}\right) \wedge f\left(w_{1}\right) \neq f\left(w_{2}\right) \wedge x=w_{2} \\
F_{2}: & 1 \leq x \wedge x \leq 3 \wedge w_{1}=1 \wedge w_{2}=2 \wedge w_{3}=3
\end{array}
$$

- So it's satisfiable, are we done? No, need to check for new equalities
- Thus, we now issue new queries such as $x=w_{1}, x=w_{2}$, etc
- Are there any new implied equalities or disjunctions of equalities? No
- Thus, second subproblem is satisfiable
- Do we need to check third subproblem?


## Example II, cont

Second subproblem:

$$
\begin{array}{ll}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{3}\right) \wedge f\left(w_{1}\right) \neq f\left(w_{2}\right) \wedge x=w_{2} \\
F_{2}: & 1 \leq x \wedge x \leq 3 \wedge w_{1}=1 \wedge w_{2}=2 \wedge w_{3}=3
\end{array}
$$

- So it's satisfiable, are we done? No, need to check for new equalities
- Thus, we now issue new queries such as $x=w_{1}, x=w_{2}$, etc
- Are there any new implied equalities or disjunctions of equalities? No
- Thus, second subproblem is satisfiable
- Do we need to check third subproblem? No


## Example II, cont

Second subproblem:

$$
\begin{array}{ll}
F_{1}: & f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{3}\right) \wedge f\left(w_{1}\right) \neq f\left(w_{2}\right) \wedge x=w_{2} \\
F_{2}: & 1 \leq x \wedge x \leq 3 \wedge w_{1}=1 \wedge w_{2}=2 \wedge w_{3}=3
\end{array}
$$

- So it's satisfiable, are we done? No, need to check for new equalities
- Thus, we now issue new queries such as $x=w_{1}, x=w_{2}$, etc
- Are there any new implied equalities or disjunctions of equalities? No
- Thus, second subproblem is satisfiable
- Do we need to check third subproblem? No
- Thus, original formula is satisfiable


## Optimization

- In presentation so far, we issued some disjuctive queries


## Optimization

- In presentation so far, we issued some disjuctive queries
- As soon as answer was yes to some query, we propagated it by performing case split


## Optimization

- In presentation so far, we issued some disjuctive queries
- As soon as answer was yes to some query, we propagated it by performing case split
- But really, we want to find a minimal query that is implied.


## Optimization

- In presentation so far, we issued some disjuctive queries
- As soon as answer was yes to some query, we propagated it by performing case split
- But really, we want to find a minimal query that is implied.
- Minimal query is one where dropping any disjunct causes query to no longer be implied


## Optimization

- In presentation so far, we issued some disjuctive queries
- As soon as answer was yes to some query, we propagated it by performing case split
- But really, we want to find a minimal query that is implied.
- Minimal query is one where dropping any disjunct causes query to no longer be implied
- Why do we want minimal query?


## Optimization

- In presentation so far, we issued some disjuctive queries
- As soon as answer was yes to some query, we propagated it by performing case split
- But really, we want to find a minimal query that is implied.
- Minimal query is one where dropping any disjunct causes query to no longer be implied
- Why do we want minimal query?

1. Since $x=y \vee y=z$ already implies $x=y \vee y=z \vee z=w$, no need to consider latter to decide satisfiability

## Optimization

- In presentation so far, we issued some disjuctive queries
- As soon as answer was yes to some query, we propagated it by performing case split
- But really, we want to find a minimal query that is implied.
- Minimal query is one where dropping any disjunct causes query to no longer be implied
- Why do we want minimal query?

1. Since $x=y \vee y=z$ already implies $x=y \vee y=z \vee z=w$, no need to consider latter to decide satisfiability
2. When we propagate the query, using minimal query creates fewer subproblems

## Optimization, cont.

- To find minimal query, start with disjunction of all possible equalities


## Optimization, cont.

- To find minimal query, start with disjunction of all possible equalities
- If this isn't implied, no subset will be implied, so we are done


## Optimization, cont.

- To find minimal query, start with disjunction of all possible equalities
- If this isn't implied, no subset will be implied, so we are done
- If it is implied, drop one equality


## Optimization, cont.

- To find minimal query, start with disjunction of all possible equalities
- If this isn't implied, no subset will be implied, so we are done
- If it is implied, drop one equality
- If it is still implied, continue with smaller disjunction


## Optimization, cont.

- To find minimal query, start with disjunction of all possible equalities
- If this isn't implied, no subset will be implied, so we are done
- If it is implied, drop one equality
- If it is still implied, continue with smaller disjunction
- Otherwise, restore equality and continue with next one


## Optimization, cont.

- To find minimal query, start with disjunction of all possible equalities
- If this isn't implied, no subset will be implied, so we are done
- If it is implied, drop one equality
- If it is still implied, continue with smaller disjunction
- Otherwise, restore equality and continue with next one
- This ensures we find a minimal disjunction that is implied


## Optimization, cont.

- To find minimal query, start with disjunction of all possible equalities
- If this isn't implied, no subset will be implied, so we are done
- If it is implied, drop one equality
- If it is still implied, continue with smaller disjunction
- Otherwise, restore equality and continue with next one
- This ensures we find a minimal disjunction that is implied
- Thist strategy much better than using any disjunction that is implied


## Nelson-Oppen for Convex vs. Non-Convex Theories

- Nelson-Oppen method is much more efficient for convex theories than for non-convex theories


## Nelson-Oppen for Convex vs. Non-Convex Theories

- Nelson-Oppen method is much more efficient for convex theories than for non-convex theories
- In convex theories:

1. need to issue one query for each pair of shared variables

## Nelson-Oppen for Convex vs. Non-Convex Theories

- Nelson-Oppen method is much more efficient for convex theories than for non-convex theories
- In convex theories:

1. need to issue one query for each pair of shared variables
2. If decision procedures for $T_{1}$ and $T_{2}$ have polynomial time complexity, combination using Nelson-Oppen also has polynomial complexity

## Nelson-Oppen for Convex vs. Non-Convex Theories

- Nelson-Oppen method is much more efficient for convex theories than for non-convex theories
- In convex theories:

1. need to issue one query for each pair of shared variables
2. If decision procedures for $T_{1}$ and $T_{2}$ have polynomial time complexity, combination using Nelson-Oppen also has polynomial complexity

- In non-convex theories:

1. need to consider disjunctions of equalities between each pair of shared variables

## Nelson-Oppen for Convex vs. Non-Convex Theories

- Nelson-Oppen method is much more efficient for convex theories than for non-convex theories
- In convex theories:

1. need to issue one query for each pair of shared variables
2. If decision procedures for $T_{1}$ and $T_{2}$ have polynomial time complexity, combination using Nelson-Oppen also has polynomial complexity

- In non-convex theories:

1. need to consider disjunctions of equalities between each pair of shared variables
2. If decision procedures for $T_{1}$ and $T_{2}$ have $N P$ time complexity, combination using Nelson-Oppen also has $N P$ time complexity

## Summary

- Nelson-Oppen method gives a sound and complete decision procedure for combination theories


## Summary

- Nelson-Oppen method gives a sound and complete decision procedure for combination theories
- However, it only works for quantifier-free theories that are infinitely stable


## Summary

- Nelson-Oppen method gives a sound and complete decision procedure for combination theories
- However, it only works for quantifier-free theories that are infinitely stable
- Not a severe restriction because most theories of interest are infinitely stable


## Summary

- Nelson-Oppen method gives a sound and complete decision procedure for combination theories
- However, it only works for quantifier-free theories that are infinitely stable
- Not a severe restriction because most theories of interest are infinitely stable
- Next lecture: How to decide satisfiability in first-order theories without converting to DNF


## Summary

- Nelson-Oppen method gives a sound and complete decision procedure for combination theories
- However, it only works for quantifier-free theories that are infinitely stable
- Not a severe restriction because most theories of interest are infinitely stable
- Next lecture: How to decide satisfiability in first-order theories without converting to DNF
- Reminder: homework due next lecture

