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Аннотация. Исследуются решения функциональных булевых урав-
нений. Для каждого из классов P2, T0, T1, S, T01, S01 решается вопрос
о построении систем функциональных булевых уравнений с фикси-
рованным множеством функциональных констант и одной функци-
ональной переменной, имеющих в качестве единственного решения
заданную функцию рассматриваемого класса. Для любого непусто-
го множества F n-местных булевых функций определяется система
уравнений с функциональными константами ∨,&, множеством ре-
шений которой служит F . Устанавливается, что при замкнутости
множества F относительно перехода к двойственным функциям со-
ответствующую систему уравнений можно определить без функци-
ональных констант.

Ключевые слова: функциональное булево уравнение, замкнутый
класс булевых функций.

В ряде разделов математики как отдельные функции, так и множе-
ства функций часто определяются в виде решений некоторых систем
уравнений. В дискретной математике этот способ задания функций ши-
роко применяется в теории рекурсивных функций и теории автоматов.
Немало подобных примеров имеется и в теории функций многозначной
логики. Так, функциональное булево уравнение

f(x1, . . . , xn) = f̄(x̄1, . . . , x̄n)

(все переменные x1, . . . , xn считаются связанными кванторами общно-
сти) определяет все самодвойственные булевы функции от n переменных
(и только эти функции), а уравнение

f(x1, . . . , xn) ∨ f(x1 ∨ y1, . . . , xn ∨ yn) = f(x1 ∨ y1, . . . , xn ∨ yn)

∗)Исследование выполнено при финансовой поддержке Российского фонда
фундаментальных исследований (проект 06–01–00438).
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— все монотонные функции от n переменных. Имея достаточное мно-
жество исходных функций (функциональных констант), этим способом
можно определить и многие другие множества n-местных булевых функ-
ций: линейных, квадратичных, симметрических и т. д. Такие примеры
можно найти в различных работах, касающихся, в частности, замкну-
тых классов булевых функций (см., например, [1–4, 6, 7, 11]).

В данной работе мы рассматриваем функциональные булевы уравне-
ния, которые наряду с индивидными переменными содержат функцио-
нальные булевы переменные. Цель работы — исследование общих вопро-
сов, относящихся к решениям таких систем функциональных булевых
уравнений: зависимость решений от функциональных констант, возмож-
ность построения систем уравнений с заданным единственным решением
или заданным множеством решений. При определении языка функцио-
нальных булевых уравнений мы придерживались терминологии работы
[5]. При этом некоторые из полученных нами результатов (относящие-
ся, в основном, к единственным решениям систем уравнений) близки к
соответствующим результатам из [5].

Отметим, что для булевых алгебр похожая задача рассматривалась
несколькими авторами [8–10, 12]. Ими исследовались уравнения с един-
ственной одноместной функциональной переменной (для функций, при-
нимающих значения в булевой алгебре). В качестве операций допуска-
лись все операции булевой алгебры, чему в нашей постановке соответ-
ствует полная система функциональных констант. Такая задача в рам-
ках наших определений решается весьма просто, и мы её специально не
рассматриваем.

Дадим необходимые определения. Пусть E2 = {0, 1}, P2 — множество
всех функций на E2 (множество булевых функций). Для любого n > 1
и любого множества Q ⊆ P2 обозначим через Q(n) множество всех n-
местных функций из Q.

Определим язык функциональных булевых уравнений. Предполага-
ем, что каждая функция из P2 имеет индивидуальное обозначение. Для

обозначения n-местных функций из P2 используем символы f
(n)
i , кото-

рые называем функциональными булевыми константами или, короче,
функциональными константами. Общепринятые обозначения 0, 1,−,∨,
& сохраняем за булевыми константами, отрицанием, дизъюнкцией и конъ-
юнкцией.

Наряду с функциональными константами рассматриваем функцио-

нальные булевы переменные (коротко: функциональные переменные). Для
обозначения n-местных функциональных переменных используем сим-
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волы ϕ
(n)
i . Областью значений функциональной переменной ϕ

(n)
i служит

множество P
(n)
2 . В случае, когда это не приводит к недоразумению, верх-

ние индексы у функциональных переменных будем опускать.

Помимо функциональных переменных используем обычные индивид-

ные переменные x1, x2, . . . с областью значений E2. Иногда для лучшего
понимания структуры формулы в качестве индивидных переменных бу-
дем использовать переменные y, z.

Пусть Q ⊆ P2. Определим понятие терма над Q. Всякая индивид-

ная переменная есть терм над Q. Если t1, . . . , tn — термы над Q, f
(n)
i —

функциональная константа, являющаяся обозначением функции из Q,

ϕ
(n)
j — функциональная переменная, то выражения

f
(n)
i (t1, . . . , tn), ϕ

(n)
j (t1, . . . , tn) (1)

суть термы над Q.

Равенством над Q называем любое выражение вида t1 = t2, где t1, t2
— термы над Q. Равенства t1 = t2 и t2 = t1 в дальнейшем не различаем.
Равенства над Q называем также функциональными булевыми уравне-

ниями над Q.

Пусть t1 = t2 — функциональное булево уравнение над Q и ϕ
(n1)
i1

, . . .,

ϕ
(nm)
im

— все функциональные переменные, входящие в это уравнение. Ре-

шением уравнения t1 = t2 называем систему булевых функций {f
(n1)
j1

, . . .,

f
(nm)
jm

}, которая после замены каждой функциональной переменной ϕ
(ns)
is

соответствующей функциональной константой f
(ns)
js

превращает уравне-
ние t1 = t2 в тождество (относительно всех входящих в уравнение ин-
дивидных переменных). Отметим, что решением уравнения над Q могут
быть функции, не входящие в множество Q.

Пусть Ξ — конечная система уравнений над Q. Решением системы

уравнений Ξ называем систему булевых функций, которая является ре-
шением каждого уравнения, входящего в Ξ.

Мы хотим определять некоторые множества булевых функций (от
одного и того же числа переменных) с помощью решений систем уравне-
ний. С этой целью выделим одну из функциональных переменных систе-
мы уравнений Ξ, которую назовём главной функциональной переменной

системы Ξ. Пусть ϕ
(n)
i — главная функциональная переменная системы

уравнений Ξ, F — подмножество множества P
(n)
2 . Будем говорить, что

множество функций F определяется системой уравнений Ξ, если F явля-
ется множеством всех тех n-местных функций, которые входят в реше-
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ния системы Ξ как компоненты для переменной ϕ
(n)
i . Наконец, говорим,

что множество функций F определимо системой уравнений над Q, если
существует система уравнений над Q, которая определяет множество F .

Утверждение 1. Пусть множества функций

F0 ⊆ P
(m)
2 , F1 ⊆ P

(n)
2 , . . . , Fm ⊆ P

(n)
2

определимы системами уравнений над Q. Тогда системами уравнений

над Q определимо множество всех функций вида

g0(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)), (2)

где g0 ∈ F0, g1 ∈ F1, . . . , gm ∈ Fm.

Доказательство. Пусть Ξ0, Ξ1, . . . ,Ξm — системы уравнений над

Q с главными функциональными переменными ϕ
(m)
0 , ϕ

(n)
1 , . . . , ϕ

(n)
m , кото-

рые определяют соответственно множества F0, F1, . . . , Fm. Будем предпо-
лагать, что системы уравнений Ξ0, Ξ1, . . . ,Ξm не имеют общих функцио-
нальных переменных. Систему уравнений над Q, определяющую искомое
множество функций вида (2), зададим следующим образом: объединим
все уравнения систем Ξ0, Ξ1, . . . ,Ξm и добавим новое уравнение

ϕ(x1, . . . , xn) = ϕ0(ϕ1(x1, . . . , xn), . . . , ϕm(x1, . . . , xn)),

где ϕ — новая главная функциональная переменная. Утверждение 1 до-
казано.

Замечание. Утверждение 1 можно несколько обобщить, допуская в
(2) вместо некоторых функций g1, . . . , gm переменные x1, . . . , xn. В этом
случае, разумеется, соответствующие данным функциям системы урав-
нений следует исключить.

Напомним определение некоторых замкнутых классов булевых функ-
ций (см., например, [3]). Пусть T0, T1, S суть соответственно классы всех
функций, сохраняющих 0, всех функций, сохраняющих 1, и всех са-
модвойственных функций. Положим

T01 = T0 ∩ T1, S01 = S ∩ T01.

Исследуем вопрос о возможности построения функционального бу-
лева уравнения с заданным единственным решением. В теореме 1 мы
рассмотрим классы P2, T0, T1, S, T01, S01 и для каждого из этих классов
подберём систему Q функций (этого класса) таким образом, чтобы любая
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функция рассматриваемого класса была единственным решением подхо-
дящей системы функциональных булевых уравнений над Q, имеющих
только одну функциональную переменную.

Теорема 1. Для каждого из классов P2, T0, T1, S, T01, S01 пусть сим-

вол Q обозначает соответственно множество функций

{0, 1}, {0}, {1}, {x̄}, {∨, &}, ∅.

Тогда для любой функции g из рассматриваемого класса существует си-

стема функциональных булевых уравнений над Q c одной функциональ-

ной переменной, единственным решением которой служит функция g.

Доказательство. Сначала рассмотрим классы P2, T0, T1, S. Нетруд-
но видеть, что любая функция g от n переменных любого из этих классов
может быть полностью задана системой из 2n равенств вида

g(g1(x), . . . , gn(x)) = h(x), (3)

где для класса P2 система функций {g1, . . . , gn, h} принадлежит множе-
ству {0, 1}, для класса T0 — множеству {0, x}, для класса T1 — множеству
{1, x} и для класса S — множеству {x, x̄}. В самом деле, для класса P2

функции g1, . . . , gn суть произвольные константы a1, . . . , an, а функция
h — константа, равная g(a1, . . . , an). Для класса T0 одно из равенств (3)
имеет вид g(0, . . . , 0) = 0, все остальные равенства определяют значения
функции g на двух наборах, один из которых — нулевой (поэтому ра-
венство g(0, . . . , 0) = 0, вообще говоря, можно исключить). Для класса S
каждое из равенств (3) определяет значения функции g на двух проти-
воположных наборах (здесь систему равенств можно сократить наполо-
вину, беря из двух равенств (3) и g(ḡ1(x), . . . , ḡn(x)) = h̄(x) только одно).

В соответствии с обнаруженным свойством для каждого из классов
P2, T0, T1, S искомая система уравнений будет состоять из уравнений ви-
да

ϕ(g1(x), . . . , gn(x)) = h(x),

где функции g1, . . . , gn, h принадлежат указанным множествам {0, 1},
{0, x}, {1, x}, {x, x̄} и подчиняются соотношениям (3).

Обратимся к классам T01, S01. Заметим, что все функции множества

T
(2)
01 суть x1, x2, x1 ∨ x2, x1&x2, а множества S

(2)
01 — x1, x2. Поэтому если

g — произвольная функция от n переменных из класса T01 или S01, то g
полностью определяется системой из 2n равенств вида

g(g1(x1, x2), . . . , gn(x1, x2)) = h(x1, x2), (4)
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где g1(x1, x2), . . . , gn(x1, x2) суть переменные x1, x2 и для класса T01 функ-
ция h(x1, x2) принадлежит множеству {x1, x2, x1∨x2, x1&x2}, а для клас-
са S01 — множеству {x1, x2}. Легко видеть, что из двух равенств вида (4),
отличающихся перестановкой переменных x1, x2, можно оставить толь-
ко одно. Поэтому искомая система уравнений над множеством Q будет
состоять из 2n−1 уравнений вида

ϕ(g1(x1, x2), . . . , gn(x1, x2)) = h(x1, x2),

где g1(x1, x2), . . . , gn(x1, x2) суть переменные x1, x2, а функция h(x1, x2)
удовлетворяет соотношению (4). Теорема 1 доказана.

Скажем несколько слов о роли классов P2, T0, T1, S, T01, S01 в теоре-
ме 1. Пусть задано множество булевых функций Q и мы хотим найти
множество RQ всех тех функций g, для которых существует система
функциональных булевых уравнений над Q, имеющая единственным ре-
шением функцию g. Согласно теореме 1 при любом Q имеем S01 ⊆ RQ.
В частности, это включение справедливо при Q ⊆ S01.

Пусть Q 6⊆ S01. Тогда в силу известных результатов о замкнутых
классах булевых функций (см., например, [3]) замыкание [Q ∪ S01] сов-
падает с одним из классов P2, T0, T1, S, T01. Если, например, Q ⊆ T01 (и,
значит, [Q∪ S01] = T01), то суперпозициями функций множества Q∪ S01

можно получить, в частности, функции x1∨x2 и x1&x2. Поэтому согласно
утверждению 1 можно построить такие системы Ξ1 и Ξ2 функциональ-
ных булевых уравнений над Q, которые определяют функции x1 ∨ x2,
x1&x2. Пользуясь далее теоремой 1 и утверждением 1, мы для любой
функции g из T01 можем образовать такую систему Ξ функциональных
булевых уравнений над Q, которая имеет единственным решением (по
главной функциональной переменной) функцию g. Правда, в отличие от
систем из теоремы 1 система уравнений Ξ может иметь несколько функ-
циональных переменных. Таким образом, в этом случае мы приходим к
включению T01 ⊆ RQ (полностью вопрос об объёме множества RQ будет
решён в теореме 2).

Сходные рассуждения можно провести и в тех случаях, когда мно-
жество Q ∪ S01 порождает один из классов P2, T0, T1, S.

Пусть g — n-местная функция. Характеристическим рядом функ-
ции g назовём упорядоченную последовательность всех функций вида
g(xi1 , . . . , xin), где i1, . . . , in ∈ {1, 2}. Принцип упорядочения может быть,
например, лексикографическим:

g(x1, . . . , x1), g(x1, . . . , x1, x2), . . . , g(x2, . . . , x2, x1), g(x2, . . . , x2).
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Пусть {g1(x1, x2), . . . , g2n(x1, x2)} — характеристический ряд функ-
ции g, где для единообразия функции g(x1, . . . , x1) и g(x2, . . . , x2) счи-
таем зависящими от обеих переменных x1, x2. Нетрудно заметить, что
характеристический ряд функции полностью определяет данную функ-
цию. Действительно, набор (g1(0, 1), . . . , g2n(0, 1)) есть вектор значений
функции g, принимаемых ею на всех 2n наборах из En

2 .

Теорема 2. Пусть n > 1, F ⊆ P
(n)
2 и F 6= ∅. Тогда существует систе-

ма функциональных булевых уравнений с функциональными константа-

ми ∨, & и двумя функциональными переменными, которая определяет

множество F .

Доказательство. Определим в классе T01 (2n + 4)-местную функ-
цию h(x1, x2, y1, y2, z1, . . . , z2n). Для любой функции g из F пусть

h(x1, x2, y1, y2, g1(x1, x2), . . . , g2n(x1, x2)) = y1 (5)

и
h(x1, x2, y1, y2, z1, . . . , z2n) = y2 (6)

для всех остальных значений z1, . . . , z2n .
Функция h сохраняет константы 0 и 1, поскольку её значения сов-

падают со значениями переменных y1, y2. Предположим, что n-местная
функция g′ не входит в множество F . Тогда равенство (5) для функции
g′ не может выполняться при всех значениях переменных x1, x2. В самом
деле, в противном случае согласно определению функции h, например,
для значений x1 = 0, x2 = 1 существует такая функция g ∈ F , что
выполняется равенство

(0, 1, g′1(0, 1), . . . , g′2n(0, 1)) = (0, 1, g1(0, 1), . . . , g2n(0, 1)). (7)

Однако, как отмечено выше, вектор (g′1(0, 1), . . . , g′2n(0, 1)) полностью
определяет функцию g′. Следовательно, равенство (7) противоречит со-
отношениям g′ /∈ F, g ∈ F .

Из доказанного следует, что произвольная функция g из P
(n)
2 при-

надлежит множеству F тогда и только тогда, когда соотношение (5)
выполняется тождественно по переменным x1, x2, y1, y2. Отсюда легко
получить искомую систему функциональных булевых уравнений с дву-
мя функциональными переменными. Именно, сначала согласно теореме 1
строим систему функциональных уравнений Ξ1 с одной функциональной
переменной ϕ1 и функциональными константами ∨, &, которая опреде-
ляет функцию h. Затем вводим новую (главную) функциональную пе-
ременную ϕ2 и в соответствии с равенством (5) добавляем к системе Ξ1
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уравнение

ϕ1(x1, x2, y1, y2, ϕ2(x1, . . . , x1), ϕ2(x1, . . . , x1, x2), . . . ,

ϕ2(x2, . . . , x2, x1), ϕ2(x2, . . . , x2)) = y1,

в котором распределение переменных x1, x2 под знаком функциональной
переменной ϕ2 соответствует их распределению при получении характе-
ристического ряда функции g в равенстве (5). Теорема 2 доказана.

Утверждение 2. Пусть Q — множество самодвойственных булевых

функций, и система функциональных булевых уравнений над Q опреде-

ляет множество функций F . Тогда множество F вместе с каждой функ-

цией содержит также двойственную ей функцию.

Доказательство. Пусть система функций {fi1 , . . . , fim} является
решением системы уравнений Ξ над Q. Если t1, t2 — термы над множе-
ством функций Q ∪ {fi1 , . . . , fim} и равенство t1 = t2 выполняется при
всех значениях индивидных переменных, входящих в термы t1, t2, то в
силу самодвойственности функций из Q и принципа двойственности для
булевых функций при всех значениях индивидных переменных будет вы-
полняться равенство t∗1 = t∗2, где термы t∗1, t

∗

2 получаются из термов t1, t2
заменой функций fi1 , . . . , fim соответствующими двойственными функ-
циями f∗

i1
, . . . , f∗

im
. Отсюда сразу следует, что системе уравнений Ξ будет

удовлетворять система функций {f∗

i1
, . . . , f∗

im
}. Утверждение 2 доказано.

Теорема 3. Пусть n > 1 и F — непустое подмножество множе-

ства P
(n)
2 , которое наряду с любой функцией содержит двойственную

ей функцию. Тогда существует система функциональных булевых урав-

нений с двумя функциональными переменными и без функциональных

констант, которая определяет множество F .

Доказательство. В отличие от теоремы 2 (2n + 4)-местная функ-
ция h(x1, x2, y1, y2, z1, . . . , z2n) определяется в классе S01. Определяющие
соотношения (5), (6) остаются в силе. При этом следует отметить, что
для двойственных функций g, g∗ из множества F соотношение (5) задаёт
значения функции h на парах противоположных наборов. В самом деле,
если для значений a1, a2, b1, b2 из E2 в силу (5) имеем

h(a1, a2, b1, b2, g1(a1, a2), . . . , g2n(a1, a2)) = b1,

то для двойственной функции g∗ будем иметь

b̄1 = h(ā1, ā2, b̄1, b̄2, g
∗

1(ā1, ā2), . . . , g
∗

2n(ā1, ā2))

= h(ā1, ā2, b̄1, b̄2, ḡ1(a1, a2), . . . , ḡ2n(a1, a2)).
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Таким образом, на противоположных наборах

(a1, a2, b1, b2, g1(a1, a2), . . . , g2n(a1, a2)), (ā1, ā2, b̄1, b̄2, ḡ1(a1, a2), . . . ,

ḡ2n(a1, a2))

функция h принимает противоположные значения b1, b̄1.
Оставшаяся часть доказательства теоремы 3 полностью повторяет

соответствующую часть доказательства теоремы 2. Теорема 3 доказана.

В заключение сделаем несколько замечаний по поводу возможного
обобщения понятия функционального булева уравнения. Приведённое
в начале статьи понятие терма над Q может показаться недостаточно
широким. Например, согласно нашему определению любая индивидная
переменная считается термом над Q. Тем самым в множество Q факти-
чески вносится тождественная функция x. Поэтому можно, например,
изменить понятие терма над Q, начав индуктивное определение с тер-
мов (1), где t1, . . . , tn — любые индивидные переменные. При таком под-
ходе список основных результатов изменится незначительно. Дело в том,
что за исключением трёх замкнутых классов C0, C1, C булевых функ-
ций (обозначения замкнутых классов см. в [3]) все остальные замкнутые
классы содержат тождественную функцию x. Поэтому изменения могут
произойти только в случае, когда множество функций Q состоит из одной
или двух констант. Однако, в случае двух констант система уравнений

ϕ(0) = 0, ϕ(1) = 1

определяет функцию x. Остаётся случай, когда множество Q состоит
из одной константы. Этот случай достаточно прост, и мы его здесь не
рассматриваем.
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