
Formal techniques
for software and hardware

verification

Lecturers:

Vladimir Zakharov
Vladislav Podymov

e-mail:
valdus@yandex.ru

2020, fall semester

Lecture 10

A model-checking algorithm for TCTL

Clock and state regions

Region transition systems

Networks of timed automata

Introduction/Reminder

Model checking problem for TCTL (MC-TCTL)
Given a sound timed automaton (TA) A and a tctl-formula ϕ,
check the relation A |= ϕ

Model checking problem for CTL (MC-CTL)
Given a Kripke structure (KS) M and a ctl-formula ϕ,
check the relation M |= ϕ

For clarity,
|=t denotes the satisfiability relation for TCTL in this lecture

AP is, as usual, a finite set of atomic propositions —
which is used by default for all TA, KSs and formulas

Solution scheme for MC-TCTL
Given: a TA A, a tctl-formula ϕ
Check: A |=t ϕ

Solution scheme:

A ϕ

KS RS(A, ϕ) ϕ interpreted as a ctl-formula

RS(A, ϕ) |= ϕ?

A |=t ϕ

yes

A 6|=t ϕ

no

RS(A, ϕ) is what will be called
a region transition system (RTS)

Preliminary discussion of an RTS
ACCϕ is the set of atomic clock constraints contained in ϕ

RS(A, ϕ) is a KS over the set AP ∪ ACCϕ
(so that ϕ fits into CTL syntax)

Each configuration of A is mapped to a state of RS(A, ϕ):
I The set of all clock valuations is partitioned

into a finite number of equivalence classes (regions)
I Each clock valuation ν is mapped to its region [ν]

I A configuration (`, ν) is mapped to a state (`, [ν])

I [(0, 0, . . . , 0)] = {(0, 0, . . . , 0)}

An execution step (`, ν)→ (`, ν ′) of A is mapped to a sequence of
transitions (`, [ν])→ · · · → (`, [ν ′])
(so that explicit and implicit parts of all execution steps
are “simulated” in a discrete way)

A state (`, [ν]) is labeled by propositions from AP w.r.t. `,
and by atomic clock constraints w.r.t. ν

Preliminary discussion of an RTS
Example: let us try to construct a KS similar to an RTS for simple
TA A and formula ϕ not knowing any definitions:

a b x < 3x < 2

x ≥ 1

x AGAF(x = 1)

, {0}

, (0, 2), (0, 1) , [1, 2)

, [1, 2) , [2, 3)

, {1} , (1, 2)

, {1} , (1, 2) , [2, 3)

a, {0} a, (0, 1) a, {1} a, (1, 2)

b, {1} b, (1, 2) b, [2, 3)

The only initial state is + x set to 0

Preliminary discussion of an RTS
Example: let us try to construct a KS similar to an RTS for simple
TA A and formula ϕ not knowing any definitions:

a b x < 3x < 2

x ≥ 1

x AGAF(x = 1)

, {0} , (0, 2)

, (0, 1) , [1, 2)

, [1, 2) , [2, 3)

, {1} , (1, 2)

, {1} , (1, 2) , [2, 3)

a, {0} a, (0, 1) a, {1} a, (1, 2)

b, {1} b, (1, 2) b, [2, 3)

Starting an execution in (, 0), A inevitably waits (delays)
up until any clock value from (0, 2)

Let us “simulate” all such execution steps as a single KS transition

Preliminary discussion of an RTS
Example: let us try to construct a KS similar to an RTS for simple
TA A and formula ϕ not knowing any definitions:

a b x < 3x < 2

x ≥ 1

x AGAF(x = 1)

, {0}

, (0, 2)

, (0, 1) , [1, 2)

, [1, 2) , [2, 3)

, {1} , (1, 2)

, {1} , (1, 2) , [2, 3)

a, {0} a, (0, 1) a, {1} a, (1, 2)

b, {1} b, (1, 2) b, [2, 3)

For clock values from [1, 2) the top transition of A is enabled,
and for values from (0, 1) the transition is disabled

To “simulate” executions
of the top transition of A deterministically,
we should split the state (, (0, 2)) into (, (0, 1)) and (, [1, 2))

Preliminary discussion of an RTS
Example: let us try to construct a KS similar to an RTS for simple
TA A and formula ϕ not knowing any definitions:

a b x < 3x < 2

x ≥ 1

x AGAF(x = 1)

, {0}

, (0, 2)

, (0, 1) , [1, 2)

, [1, 2) , [2, 3)

, {1} , (1, 2)

, {1} , (1, 2) , [2, 3)

a, {0} a, (0, 1) a, {1} a, (1, 2)

b, {1} b, (1, 2) b, [2, 3)

When A continuously waits starting in (, 0), the value of x
crosses the intervals {0}, (0, 1), and [1, 2) consecutively

To “simulate” the wait,
let us connect the corresponding states in order

Preliminary discussion of an RTS
Example: let us try to construct a KS similar to an RTS for simple
TA A and formula ϕ not knowing any definitions:

a b x < 3x < 2

x ≥ 1

x AGAF(x = 1)

, {0}

, (0, 2)

, (0, 1) , [1, 2)

, [1, 2)

, [2, 3)

, {1} , (1, 2)

, {1} , (1, 2) , [2, 3)

a, {0} a, (0, 1) a, {1} a, (1, 2)

b, {1} b, (1, 2) b, [2, 3)

For any configuration of the form (, d), where 1 ≤ d < 2,

the relation (, d)
x≥1−−→

↪−−−−−→ (, d) holds

Let us add a state and a transition
to “simulate” all such execution steps

Preliminary discussion of an RTS
Example: let us try to construct a KS similar to an RTS for simple
TA A and formula ϕ not knowing any definitions:

a b x < 3x < 2

x ≥ 1

x AGAF(x = 1)

, {0}

, (0, 2)

, (0, 1) , [1, 2)

, [1, 2) , [2, 3)

, {1} , (1, 2)

, {1} , (1, 2) , [2, 3)

a, {0} a, (0, 1) a, {1} a, (1, 2)

b, {1} b, (1, 2) b, [2, 3)

When A waits starting in (, d), where 1 ≤ d < 2,
the clock value might cross the rest of the interval [1, 2),
and then the interval [2, 3)

Let us add a state and a transition to “simulate” the wait

Preliminary discussion of an RTS
Example: let us try to construct a KS similar to an RTS for simple
TA A and formula ϕ not knowing any definitions:

a b x < 3x < 2

x ≥ 1

x AGAF(x = 1)

, {0}

, (0, 2)

, (0, 1) , [1, 2)

, [1, 2) , [2, 3)

, {1} , (1, 2)

, {1} , (1, 2) , [2, 3)

a, {0} a, (0, 1) a, {1} a, (1, 2)

b, {1} b, (1, 2) b, [2, 3)

For each configuration (, d), where 1 ≤ d < 3,

the relation (, d)
x−→

↪−−−→ (, 0) holds

Let us add all transitions corresponding to these execution steps

Preliminary discussion of an RTS
Example: let us try to construct a KS similar to an RTS for simple
TA A and formula ϕ not knowing any definitions:

a b x < 3x < 2

x ≥ 1

x AGAF(x = 1)

, {0}

, (0, 2)

, (0, 1)

, [1, 2)

, [1, 2) , [2, 3)

, {1} , (1, 2)

, {1} , (1, 2) , [2, 3)

a, {0} a, (0, 1) a, {1} a, (1, 2)

b, {1} b, (1, 2) b, [2, 3)

(x = 1) ≡ (x ≤ 1&¬(x < 1)):
The formula ϕ contains constraints x ≤ 1 and x < 1

To label KS states with these constraints deterministically,
we should split the interval [1, 2) into {1} and (1, 2)

Preliminary discussion of an RTS
Example: let us try to construct a KS similar to an RTS for simple
TA A and formula ϕ not knowing any definitions:

a b x < 3x < 2

x ≥ 1

x AGAF(x = 1)

, {0} , (0, 2), (0, 1) , [1, 2)

, [1, 2) , [2, 3)

, {1} , (1, 2)

, {1} , (1, 2) , [2, 3)

a, {0} a, (0, 1) a, {1} a, (1, 2)

b, {1} b, (1, 2) b, [2, 3)

We constructed a KS which contains (discretely and explicitly)
all execution steps of all runs of A

It is not hard to check that A |=t ϕ and M |= ϕ

Preliminary discussion of an RTS
Example: let us try to construct a KS similar to an RTS for simple
TA A and formula ϕ not knowing any definitions:

a b x < 3x < 2

x ≥ 1

x AGAF(x = 1)

, {0} , (0, 2), (0, 1) , [1, 2)

, [1, 2) , [2, 3)

, {1} , (1, 2)

, {1} , (1, 2) , [2, 3)

a, {0} a, (0, 1) a, {1} a, (1, 2)

b, {1} b, (1, 2) b, [2, 3)

Proceeding to the hard part: in general, ...
I ... how regions should be structured

to provide required accuracy, determinism, and finiteness?
I ... how to combine the states of a TA and the regions

to magically transform “|=t” into “|=”?

Clock regions

Partitioning of clock valuations is based on
a regional equivalence relation (∼) of the valuations,
which will be defined in details a bit later

A clock region is an equivalence class of ∼

Clock regions are used as second components
(sets of clock valuations) of RTS states

R denotes the set of all clock regions

For technical simplicity,
hereafter in definitions and statements related to ∼ we assume
that atomic clock constraints of the form x − y < k and x − y ≤ k
are completely forbidden in A and ϕ

Clock regions
ACCA is the set of atomic clock constraints contained in A

Due to mentioned accuracy, finiteness, and determinism features
required in construction of an RTS,
∼ should have (at least) the following properties:

I Finiteness: the number of equivalence classes of ∼ is finite
I ⇒ the set of RTS states is finite

I Indistinguishability by clock constraints:
if ν1 ∼ ν2 and acc ∈ ACCA ∪ ACCϕ, then ν1 |= acc ⇔
ν2 |= acc

I ⇒ determinism w.r.t. guards and state labels

I Sound reset: if r is a region, and X is a set of clocks,
then r [X] = {ν[X] | ν ∈ r} is a region

I ⇒ each transition execution step corresponds to a single RTS transition

I Sound delay: for each region r there is exactly one region r+

which succeeds r when the TA continuously waits
I ⇒ each delay execution step corresponds to a single RTS transition

Clock regions
Definition of ∼, first try (unsuccessful)

btc is an integer part of a real number t

frac(t) is a fractional part of a real number t

ν1 ∼1 ν2 ⇔ for any clock x the following holds:
1. bν1(x)c = bν2(x)c
2. frac(ν1(x)) = 0 ⇔ frac(ν2(x)) = 0

Example: ∼1-regions for two clocks (x , y) are illustrated as
connected areas of a single color

ν(x)

ν(y)

0 1 2

1

2

Clock regions
Definition of ∼, first try (unsuccessful)

ν(x)

ν(y)

0 1 2

1

2

Good properties of ∼1:
I Indistinguishability by clock constraints
I Sound reset

Remaining problems:
I |R| =∞
I r+ is not uniquely defined by r

I some pairs (r , r+) are illustrated with arrows above

Clock regions
Definition of ∼, second try (unsuccessful)

ν1 ∼2 ν2 ⇔ for any clocks x , y the following holds:
1. bν1(x)c = bν2(x)c
2. frac(ν1(x)) = 0 ⇔ frac(ν2(x)) = 0

3. frac(ν1(x)) ≤ frac(ν1(y)) ⇔ frac(ν2(x)) ≤ frac(ν2(y))

Example: ∼1-regions for two clocks (x , y) are illustrated as
connected areas of a single color

d(x)

d(y)

0 1 2

1

2

Clock regions
Definition of ∼, second try (unsuccessful)

d(x)

d(y)

0 1 2

1

2

Good properties of ∼2:
I Indistinguishability by clock constraints
I Sound reset
I Sound delay

Remaining problems:
I |R| =∞

Clock regions
Definition of ∼ (third try, successful)
kx is a maximal integer constant used in
atomic clock constraints (x < k , x ≤ k) from ACCA ∪ ACCϕ
ν1 ∼ ν2 ⇔ for any clocks x , y the following holds:
1. ν1(x) > kx ⇔ ν2(x) > kx
2. if ν1(x) ≤ kx и ν1(y) ≤ ky , then

I bν1(x)c = bν2(x)c
I frac(ν1(x)) = 0 ⇔ frac(ν2(x)) = 0
I frac(ν1(x)) ≤ frac(ν1(y)) ⇔ frac(ν2(x)) ≤ frac(ν2(y))

Example: regions for two clocks (x , y) and constants
kx = 2, ky = 1 are illustrated as connected areas of a single color

d(x)

d(y)

0 1 2

1

2

Number of regions
Proposition
Let R by the set of all regions constructed for a finite set C
of clocks and given constants kx , x ∈ C. Then

|C|! ·
∏
x∈C

kx ≤ |R| ≤ |C|! · 2|C|−1 ·
∏
x∈C

(2kx + 2)

Proof.
Explanations for the expression ...

I
∏
x∈C

kx is the number of unit |C|-dimensional cubes

covering the product of intervals [0, kx]
I |C |! is the number of orders of fractional parts of clock values

I Lower bound: at least this much regions
are contained in a unit-cube interior

Number of regions
Proposition
Let R by the set of all regions constructed for a finite set C
of clocks and given constants kx , x ∈ C. Then

|C|! ·
∏
x∈C

kx ≤ |R| ≤ |C|! · 2|C|−1 ·
∏
x∈C

(2kx + 2)

Proof.
Explanations for the expression ...

I 2kx + 2 is the number of possible value intervals for a clock x
in a region ({0}; (0, 1); {1}; . . .)

I 2|C |−1 is the number of options
to declare fractional parts for different clocks
to be equal in a region for a given order of these parts H

Corollary (Finiteness)
The total number of regions is (quite high, but) finite

Other properties of regions

Proposition (Indistinguishability by atomic clock constraints)
If ν1 ∼ ν2, x is a clock, and k ∈ {0, 1, . . . , kx}, then

ν1 |= x < k ⇔ ν2 |= x < k and
ν1 |= x ≤ k ⇔ ν2 |= x ≤ k

A clock constraint g over atomic constraints ACCA ∪ ACCϕ
is satisfied by a region r (r |= g)
iff any clock valuation ν from r satisfies g

Proposition (Sound reset)
For any region r and any subset X of clocks
the set r [X] is a region

Other properties of regions
A region is open for a clock x iff
it contains a clock valuation ν such that ν(x) > kx

A region is open iff it is open for all clocks,
and all other regions are called closed

A region r+ is a successor of a region r iff the following holds:
I if r is open, then r+ equals to r
I if r is closed, then r+ is the region newline for which the

following holds:
I r+ 6= r
I if ν ∈ r and (ν + d) ∈ r+, where d > 0,

then for any real number d ′ such that 0 ≤ d ′ ≤ d
the relation (ν + d ′) ∈ r ∪ r+ holds

Proposition (Sound delay)
For any region r there exists exactly one successor r+

[Bonus task]: prove the last 3 propositions

State regions, and region transition systems
Given a TA A = (L, `0, C, ξ, I ,T) and a tctl-formula ϕ, ...

... a state region (`, r) consists of a state ` of A and a clock region r

... a region transition system (RTS) RS(A, ϕ) is a Kripke structure
defined as a subgraph of the following graph G
induced by the set of all vertices reachable from the initial one:

I Vertices of G are state regions

I (`0, {(0, . . . , 0)}) is the initial vertex of G

I Each vertex (`, r) of G is labeled by the set
ξ(`) ∪ {acc |acc ∈ ACCϕ, r |= acc}

I An edge (`, r)→ (`′, r ′) belongs to G iff
at least one of the following holds:

I r ′ = r+, `′ = ` и r+ |= I (`)

I There exists a transition `
g ,X−−→ `′ of A such that

r |= g , r ′ = r [X], and r ′ |= I (`′)

State regions, and region transition systems

Example:

a b x < 3x < 2

x ≥ 1

x AGAF(x = 1)

A region transition system for these TA and formula:

a, {0} a, (0, 1) a, {1} a, (1, 2)

b, {1} b, (1, 2) b, {2} b, (2, 3)

State regions, and region transition systems
Theorem
For any sound timed automaton A and any tctl-formula ϕ:

A |=t ϕ ⇔ RS(A, ϕ) |= ϕ

Proof.

For a clock valuation ν and a state ` of A,
I [ν] is a region of ν
I [(`, ν)] = (`, [ν])

It is sufficient to show (by induction) that
for any subformula ψ of ϕ and any configuration σ
generated by any divergent run of A the following holds:

A, σ |=t ψ ⇔ RS(A, ϕ), [σ] |= ψ

For clarity, in the proof we assume that
A = (L, `0, C, ξ, I ,T) and RS(A, ϕ) = (S , s0,⇒,L)

State regions, and region transition systems
Proof. (A, σ |=t ψ ⇔ RS(A, ϕ), [σ] |= ψ)

Base case (1): ψ = p ∈ AP
A, (`, ν) |=t p ⇔ p ∈ ξ(`)

⇔ p ∈ L(`, [ν]) ⇔ RS(A, ϕ), (`, [ν]) |= p

Base case (2): ψ = acc ∈ ACCϕ
A, (`, ν) |=t acc ⇔ ν |=t acc ⇔ [ν] |=t acc

⇔ acc ∈ L(`, [ν]) ⇔ RS(A, ϕ), (`, [ν]) |= acc

Induction step (1): ψ = ¬χ
A, σ |=t ¬χ ⇔ A, σ 6|=t χ

⇔ RS(A, ϕ), [σ] 6|= χ ⇔ RS(A, ϕ), [σ] |= ¬χ

Induction step (2): ψ = χ1&χ2

A, σ |=t χ1&χ2 ⇔ A, σ |=t χ1 and A, σ |=t χ2

⇔ RS(A, ϕ), [σ] |= χ1 and RS(A, ϕ), [σ] |= χ2

⇔ RS(A, ϕ), [σ] |= χ1&χ2

State regions, and region transition systems
Proof. (A, σ |=t ψ ⇔ RS(A, ϕ), [σ] |= ψ)
Induction step (3): ψ = E(χ1Uχ2)
(⇐):

Assume that RS(A, ϕ), [σ] |= E(χ1Uχ2)

Then there exist a path (γ1 ⇒ γ2 ⇒ . . .) from [σ] in RS(A, ϕ)
and an index k such that:

I RS(A, ϕ), γk |= χ2

I for any state γi , i < k , the relation RS(A, ϕ), γi |= χ1 holds

By definition of RS(A, ϕ), there exists a divergent σ-trace
(σ1 → σ2 → . . .) of A such that [σi] = γi , i ≥ 2

By induction hypothesis and by definition of RS(A, ϕ):
I A, σk |=t χ2

I for any configuration δ generated by σ1 → · · · → σk
the inclusion [δ] ∈ {γ1, . . . , γk} holds, and therefore
A, δ |=t χ1 or A, δ |=t χ2, which means A, δ |=t χ1 ∨ χ2

State regions, and region transition systems
Proof. (A, σ |=t ψ ⇔ RS(A, ϕ), [σ] |= ψ)
Induction step (3): ψ = E(χ1Uχ2)
(⇒):

Assume that A, σ |=t E(χ1Uχ2)

Then there exists a σ-trace
(`1, ν1)→ (`2, ν2)→ . . .

of A and an index k such that:
I A, (`k , νk) |=t χ2

I for any configuration δgenerated by
(`1, ν1)→ · · · → (`k , νk),

at least one of the following holds: A, δ |=t χ1, or A, δ |=t χ2

State regions, and region transition systems
Proof. (A, σ |=t ψ ⇔ RS(A, ϕ), [σ] |= ψ)
Induction step (3): ψ = E(χ1Uχ2)
(⇒):

Consider the following path
γ1 ⇒ γ2 ⇒ . . .

in RS(A, ϕ):
I γ1 = [(`1, ν1)] = (`1, [ν1])

I a step (`i , νi) 7→ (`i+1, νi+1) for a closed region [νi]
corresponds to a subpath

(`i , [νi])⇒ (`i , [νi]
+)⇒ (`i , [νi]

++)⇒ . . .⇒ (`i , [νi+1])

I a step (`i , νi) 7→ (`i+1, νi+1) for an open region [νi]
and a step (`i , νi) ↪→ (`i+1, νi+1)
correspond to a subpath (`i , [νi])⇒ (`i+1, [νi+1])

State regions, and region transition systems
Proof. (A, σ |=t ψ ⇔ RS(A, ϕ), [σ] |= ψ)
Induction step (3): ψ = E(χ1Uχ2)
(⇒):

By definition of RS(A, ϕ) and induction hypothesis,
there exists an index m such that:

I RS(A, ϕ), γm |= χ2

I for each state γi , i < m, there exists a configuration δ
generated by (`1, ν1)→ · · · → (`k , νk) such that [δ] = γi ,
and therefore RS(A, ϕ), γi |= χ1 or RS(A, ϕ), γi |= χ2,
which means RS(A, ϕ), γi |= χ2 ∨ χ2

Thus, RS(A, ϕ), γ1 |= E(χ1Uχ2)

Induction step (4): ψ = A(χ1Uχ2) — is analogous to (3) H

State regions, and region transition systems
Theorem
For any sound timed automaton A and any tctl-formula ϕ:

A |=t ϕ ⇔ RS(A, ϕ) |= ϕ

[Bonus task]:
Define the regional equivalence and prove the same theorem
for the general case, in which
constraints x − y < k and x − y ≤ k are allowed in A and ϕ

Networks of timed automata

A real-time system usually contains several components
running in parallel and communicating with each other

A timed automaton is a sequential model

Attemps to describe a parallel (distributed) RTS
in sequential terms “by hand” usually lead to subtle errors
which negate all formal verification guarantees

To avoid such errors, it is sufficient to have means to design and
analyze parallel collections of communicating timed automata

Networks of timed automata

A synchronized timed automaton is defined over finite sets of
atomic propositions (AP) and communication channels (CH)

The only syntactic difference between a syncronized TA and a
“usual” one is: each transition of a synchronized TA is additionally
marked with one of the expressions c!, c?, or λ, where c ∈ CH,
which means that when the transition is executed, a signal is sent
via c , or a signal is received via c , or no communication happens

Sync(CH) = {c! | c ∈ CH} ∪ {c? | c ∈ CH} ∪ {λ}

Thus, the set of all possible transitions of a synchronized TA
A = (L, `0, C, ξ, I ,T) over AP and CH has the following form:

L× Guard(C)× Sync(CH)× 2C × L

`
g ,s,X−−−→ `′ is an illustration of a transition (`, g , s,X , `′)

Networks of timed automata

A network of timed automata (NTA) over AP is a tuple
(C,CH, (A1, . . . ,Ak)), where

I C and CH are finite sets of clocks and channels, respectively
I Ai = (Li , `i0, C, ξi , I i ,T i), 1 ≤ i ≤ k , is a synchronized TA

over APi and CH

I Li ∩ Lj = ∅ for 1 ≤ i < j ≤ k

I APi ∩ APj = ∅ for 1 ≤ i < j ≤ k

I AP1 ∪ · · · ∪ APk = AP

Networks of timed automata

A configuration of an NTA (C,CH, (A1, . . . ,Ak))
for Ai = (Li , `i0, C, ξi , I i ,T i) is a pair (~̀, ν), where

I ~̀ ∈ L1 × L2 × · · · × Lk

I ν is a clock valuation over C

An initial configuration of the NTA is (`10, . . . , `
k
0 , 0, . . . , 0)

All basic denotations for configurations (σ + d , σ[X], σ[`/`′])
are directly and naturally extended from TA to NTA

An execution step (→) of an NTA
is a union of three kinds of steps:

I A delay step: σ 7→ σ′

I A transition step: σ ↪→ σ′

I A (peer-to-peer) synchronization step: σ ⇒ σ′

Networks of timed automata
Let N = (C,CH, (A1, . . . ,Ak)) be an NTA, where
Ai = (Li , `i0, C, ξi , I i ,T i), and σ = (`1, . . . , `k , ν) — a configuration

Delay step

σ
d7−→ σ′, where d ∈ R>0,

if σ′ = σ + d and ν + d |= I 1(`1)& . . .& I k(`k)

σ 7→ σ′ iff there exists d , d ∈ R>0, such that σ d7−→ σ′

Transition step

σ
`i

g,λ,X−−−→`′i
↪−−−−−−→ σ′, where `i

g ,λ,X−−−→ `′i ∈ T i , if:
I σ′ = σ[X][`i/`

′
i]

I ν |= g

I ν[X] |= I i (`′i)

σ ↪→ σ′ iff there exists a TA Ai in N

and a transition t of Ai such that σ
t
↪−→ σ′

Networks of timed automata
Let N = (C,CH, (A1, . . . ,Ak)) be an NTA, where
Ai = (Li , `i0, C, ξi , I i ,T i), and σ = (`1, . . . , `k , ν) — a configuration

Synchronization step

σ
t1,t2
==⇒ σ′, where t1 = (`i

g1,c!,X1−−−−−→ `′i) ∈ T i ,

t2 = (`j
g2,c?,X2−−−−−→ `′j) ∈ T j , and i 6= j , if:

I σ′ = σ[X1][X2][`i/`
′
i][`j/`

′
j]

I ν |= g1& g2
I ν[X1][X2] |= I i (`′i)& I j(`′j)

σ ⇒ σ′ iff there exist TA Ai and Aj in N, i 6= j ,

and transitions t1, t2 of these automata such that σ
t1,t2
==⇒ σ′

Sequentialization of NTA
An NTA N and a TA A are equivalent iff
the execution step relations for N and A are equal

Theorem
For any NTA N there exists an equivalent TA A

Proof.
Let N = (C,CH, (A1, . . . ,Ak)), where Ai = (Li , `i0, C, ξi , I i ,T i)

A required TA A = (L, `0, C, ξ, I ,T) may be constructed as follows:

I L = L1 × · · · × Lk

I `0 = (`10, . . . , `
k
0)

I ξ(`1, . . . , `k) = ξ1(`1) ∪ · · · ∪ ξk(`k)
I I (`1, . . . , `k) = I 1(`1)& . . .& I k(`k)

Sequentialization of NTA
An NTA N and a TA A are equivalent iff
the execution step relations for N and A are equal

Theorem
For any NTA N there exists an equivalent TA A

Proof.
Let N = (C,CH, (A1, . . . ,Ak)), where Ai = (Li , `i0, C, ξi , I i ,T i)

A required TA A = (L, `0, C, ξ, I ,T) may be constructed as follows:

I T consists of the following transitions:
I (`1, . . . , `m)

g ,X−−→ (`1, . . . , `i−1, `
′
i , `i+1, . . . , `m),

if `i
g ,λ,X−−−→ `′i

I (`1, . . . , `m)
g1 & g2,X1∪X2−−−−−−−−→

(`1, . . . , `i−1, `
′
i , `i+1, . . . , `j−1, `

′
j , `j+1, . . . , `m), if

I `i
g1,c!,X1−−−−→ `′i and `j

g2,c?,X2−−−−−→ `′j , or
I `i

g1,c?,X1−−−−−→ `′i and `j
g2,c!,X2−−−−→ `′j H

