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Abstract

The research examines liveness and progress properties of concurrent systems and
their on-the-fly verification. An alternative formalism to Büchi automata, called
testing automata, is developed. The basic idea of testing automata is to observe
changes in the values of state propositions instead of the values. Therefore, the
testing automata are able to accept only stuttering-insensitive languages. Testing
automata can accept the same stuttering-insensitive languages as (state-labelled)
Büchi automata, and they have at most the same number of states. They are also
more often deterministic. Moreover, on-the-fly verification using testing automata
can often (but not always) use an algorithm performing only one search in the state
space, whereas on-the-fly verification with Büchi automata requires two searches.
Experimental results illustrating the benefits of testing automata are presented.

1 Introduction

In this research we examine liveness and progress properties (see e.g. [11,
Chapter 4.2]) of concurrent systems and their on-the-fly verification. On-the-
fly verification has the significant benefit that the analysis of an erroneous
behaviour is possible when only a fragment of the state space has been gen-
erated. This is widely known, and is supported by the measurements in Sec-
tion 5. The most well-known general-purpose algorithm suitable for on-the-fly
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verification is presented in [3]. It is based on a double search of the state space.
The property under inspection is often expressed as a Büchi automaton. From
the point of view of the algorithm, the local state of the Büchi automaton is
a part of the global state, and as such has an impact on the total number of
reachable states.

The basis of this research is the observation that a significant proper subset
of liveness properties can be verified by an alternative on-the-fly algorithm.
The algorithm does only one search in the state space. It is described as
Algorithm 3.4 in [17] but we also present it in Section 3.3. It searches for cycles
that represent non-progress. (Another algorithm is the one in [8, pp. 235–237],
but unlike the algorithm in [17], it requires a double state space search.) When
the verified property can be expressed in a form suitable for the single-search
algorithm, the algorithm has a tendency to find an error sooner than the
algorithm of [3], as the measurements in Section 5 show.

In this research we develop an alternative formalism to Büchi automata,
called testing automata, which makes it possible to use the algorithm of [17]
in many verification tasks. The basic idea of testing automata is to observe
changes in the values of state propositions instead of the values. Because of
this, the testing automata are able to accept only stuttering-insensitive lan-
guages. They can accept the same stuttering-insensitive languages as Büchi
automata. They never need more states than state-labelled Büchi automata.
Deterministic testing automata accept strictly more stuttering-insensitive lan-
guages than Büchi automata.

Many verification researchers find limiting oneself to stuttering-insensitive
languages not a serious disadvantage. It may even be seen as a benefit [5,10].
For example, the results in [13] would have been easier to derive, if the authors
did not have to bother with the fact that even when the language accepted
by a Büchi automaton is stuttering-insensitive, individual local states may
be sensitive to stuttering. Confining to stuttering-insensitive languages also
expands the possibilities to reduce the automaton before use.

In Section 2 Büchi automata and how they are used in verification are
presented. In Section 3 the same is done for testing automata. In Section 4,
the relationship between Büchi automata and testing automata is explored.
Among other things, a construction is given to transform a Büchi automaton
that accepts a stuttering-insensitive language into a testing automaton. In
Section 5 some experimental results are given illustrating the benefits of the
algorithm in [17].

2 Büchi automata

We will use Büchi automata whose states are labelled rather than the transi-
tions. The intended interpretation is that the automaton has a set of proposi-
tions whose truth values depend on the state, and the label of a state indicates
the propositions that evaluate to True in that state. Translations between
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state-labelled and transition-labelled Büchi automata are straightforward, see
[12].

2.1 Definitions

A Büchi automaton is a 6-tuple

(S,Π, val,∆, Ŝ, Finf)

where

• S is a finite set. Its elements are called states.

• Π is a finite set. Its elements are called propositions.

• val is a function from S to 2Π. Its elements are called valuations.

• ∆ ⊆ S × S. Its elements are called transitions.

• Ŝ ⊆ S. Its elements are called initial states.

• Finf ⊆ S. Its elements are traditionally called acceptance states but to avoid
confusion later, we call them infinite acceptance states.

From now on, let B = (S,Π, val,∆, Ŝ, Finf) be a Büchi automaton.

A run of B is an infinite sequence s0s1s2 · · · ∈ Sω such that

• s0 ∈ Ŝ,

• ∀i : (si, si+1) ∈ ∆.

A run is accepting if and only if si ∈ Finf holds for infinitely many values of i.

The language L(B) accepted by the Büchi automaton is the set of infinite
sequences P0P1P2 · · · s.t. there is an accepting run s0s1s2 · · ·, where Pi =
val(si) for i ≥ 0.

We say that a language L is stuttering-insensitive iff P0P1P2 · · · ∈ L ⇔
P i0

0 P i1
1 P i2

2 · · · ∈ L for every i0 > 0, i1 > 0, . . .. Here X i denotes a string that
consists of i copies of X. A Büchi automaton is stuttering-insensitive iff the
language it accepts is so.

As we have seen already, for a Büchi automaton B, the language L(B) ⊆
(2Π)ω. For certain purposes it is useful to extend the Büchi automata formal-
ism so that they can accept languages L ⊆ (2Π)ω ∪ (2Π)∗. Therefore, we will
discuss two additional kinds of acceptance states, Ffin ⊆ S and Fdl ⊆ S called
finite and deadlock acceptance states, respectively. Let

(S,Π, val,∆, Ŝ, Finf , Ffin, Fdl)

be a Büchi automaton extended in this way. A run is defined like above,
except that now it may also be finite.

An infinite sequence P0P1P2 · · · is accepted if at least one of the two con-
ditions below holds:

(i) B has an infinite run s0s1s2 · · · such that ∀i : val(si) = Pi, and s0s1s2 · · ·
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is accepting in the above-defined sense (i.e. si ∈ Finf for infinitely many
i).

(ii) B has a finite run s0s1s2 · · · sk for some k ≥ 0 such that ∀i ≤ k : val(si) =
Pi, and sk ∈ Ffin.

A finite sequence P0P1P2 · · ·Pn is accepted if at least one of the two con-
ditions below hold:

(iii) B has a finite run s0s1s2 · · · sk, for some k ≤ n such that ∀i ≤ k : val(si) =
Pi, and sk ∈ Ffin.

(iv) B has a finite run s0s1s2 · · · sn such that ∀i ≤ n : val(si) = Pi and
sn ∈ Fdl.

It turns out that the set Ffin does not increase the accepting power of Büchi
automata, but it has other benefits in verification. The Ffin-acceptance can
find counterexamples at least as fast as other methods and detection of such
counterexamples can be trivially integrated to other methods. It is also some-
times easier or more natural to express properties directly using Ffin states
than first encoding them as LTL formulas.

Theorem 2.1 For every Büchi automaton with Ffin 
= ∅ there is a Büchi
automaton with Ffin = ∅ that accepts the same language.

Proof. Let B = (S,Π, val,∆, Ŝ, Finf , Ffin, Fdl) be a Büchi automaton, with
Ffin 
= ∅. We construct another automaton B′ = (S ′,Π, val′,∆′, Ŝ ′, F ′

inf , ∅, F ′
dl)

that accepts the same language.

In the construction, we create a clique of states that are all both deadlock
and infinite acceptance states, redirect all transitions leading to a finite ac-
ceptance state into a state of the clique with the same valuation as the finite
acceptance state, and remove all finite acceptance states. This does not affect
runs that do not visit such states, and any run that does is accepting in both
the automata by definition.

• S1 = S − Ffin, S2 = 2Π, and S ′ = S1 ∪ S2.

• ∆1 = ∆ ∩ (S1 × S1), ∆2 = { (s, val(s′)) | (s, s′) ∈ ∆ ∧ s ∈ S1 ∧ s′ ∈ Ffin }
and ∆3 = S2 × S2, and ∆′ = ∆1 ∪∆2 ∪∆3.

• val′(s) = val(s) whenever s ∈ S1, and val′(P ) = P when P ∈ S2.

• Ŝ ′ = (Ŝ ∩ S1) ∪ {P | ∃s ∈ Ffin ∩ Ŝ : val(s) = P }.
• F ′

inf = (Finf ∩ S1) ∪ S2.

• F ′
dl = (Fdl ∩ S1) ∪ S2.

✷

The Fdl, on the other hand, is meaningful only when dealing with finite
sequences. In such cases it is necessary.

We say that a Büchi automaton is deterministic iff the following holds:
∀s, s1, s2 ∈ S : ((s, s1) ∈ ∆ ∧ (s, s2) ∈ ∆) ⇒ (val(s1) 
= val(s2) ∨ s1 = s2).
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2.2 Verification with Büchi automata

We define a system as a tuple (SS,Π, valS,∆S, ŜS), where SS is a set of states,
Π is a set of propositions, valS : SS −→ 2Π is a function that assigns to each
state of the system a set of propositions, ∆S ⊆ SS×SS is a transition relation,
and ŜS ⊆ SS is a set of initial states.

A Büchi automaton B = (SB,Π, valB,∆B, ŜB, Finf , Ffin, Fdl), representing
the negation of a tested property, is used in combination with the system.
We consider the product System ‖ B = (S,“→”, Ŝ), where S = {(s, t) |
s ∈ SS ∧ t ∈ SB ∧ valS(s) = valB(t)}, “→” ⊆ S × S with (s, t) → (s′, t′) iff
(s, s′) ∈ ∆S ∧ (t, t′) ∈ ∆B, and Ŝ = S ∩ (ŜS × ŜB).

A state (s, t) ∈ S is called reachable iff there are states (s0, t0), . . . , (sn, tn)
in S such that (s0, t0) → (s1, t1) → · · · → (sn, tn) ∧ (s0, t0) ∈ Ŝ ∧ (s, t) =
(sn, tn).

In on-the-fly verification, we construct only the reachable part of the prod-
uct starting from the initial states. We call this part the state space. Further-
more, we can stop immediately after a counterexample has been established.
This counterexample can be of the following three types:

(i) An infinite sequence of states (s0, t0)(s1, t1) · · · such that (s0, t0) ∈ Ŝ and
∀i ≥ 0 : (si, ti) → (si+1, ti+1) and for infinitely many i ≥ 0: ti ∈ Finf . If
S is finite, this means in practice that a cycle reachable from an initial
state is found where at least one state of Finf occurs.

(ii) A state (s, t) such that it is reachable, t ∈ Fdl, and there is no s′ such
that (s, s′) ∈ ∆S. That is, a deadlock of the system is reachable where
the testing automaton is in a state of Fdl.

(iii) A reachable state (s, t) such that t ∈ Ffin.

Büchi automata that represent the negations of properties can be either
directly built by a system designer or obtained automatically from formulas
of Linear Time Temporal Logic (LTL) [1, Section 9.4]. There is a challenge to
define an algorithm building automata (for LTL formulas) that are as small
as possible, see [7,14,4,6].

The methods aimed at finding counterexamples consist of checking the
non-emptiness of the product System ‖ B. Counterexamples of types (ii) or
(iii) can be found by checking each state that is encountered during a state
space search. There are essentially two methods for finding a counterexample
of type (i). One way to accomplish this is to construct the strongly connected
components of the state space [2] and then to check whether one of the compo-
nents contains an infinite acceptance state. This method is not well-suited for
on-the-fly verification, because strongly connected components often contain
much more states than are needed by the counterexample - it is not unusual
that a strongly connected component contains all reachable states. The other
method consists of two depth-first-searches [3]; the first one determines and
orders the reachable infinite acceptance states, while the second one finds out
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whether any of the reachable infinite acceptance states is an element of a cycle.

2.3 Heuristics for Büchi automata reduction

Reduction of a Büchi automaton means the construction of a smaller Büchi
automaton that accepts the same language as the original one. Reduction can
save effort by making the state space smaller. Unfortunately, also the opposite
may happen. Consider, for instance, a system and a Büchi automaton, each
of which consists of just a cycle of three states with val(s) = ∅, one of which
is an initial state. The state space has three states. However, if the Büchi
automaton is reduced to a cycle of two states, the state space grows to six
states.

Many reductions for Büchi automata can be obtained from reductions in
finite automata and process algebras. Such reductions are heuristics, and
therefore they usually do not guarantee minimal results. Some of the heuris-
tics work for all Büchi automata (such as the strong bisimulation minimisa-
tion), but for stuttering-insensitive Büchi automata there exist more efficient
heuristics. A detailed discussion of the reductions would be beyond the page
limit of this research, but we introduce some superficially. They are used in
the examples of this research, although details of the computations are not
necessarily shown.

Let (S,Π, val,∆, Ŝ, Finf , Ffin, Fdl) be a Büchi automaton. The following
heuristics can be used to reduce its size:

• All states and transitions that are not reachable can be discarded. They
can be found in linear time with any elementary graph search algorithm
such as depth first search [2].

• All states and transitions from which no acceptance state is reachable can
be removed. This can be done in linear time by conducting a backwards
search starting from acceptance states.

• All transitions starting from a finite acceptance state can be removed.

• If an infinite acceptance state is not in any cycle, it can be removed from
Finf .

The following heuristics can be used only if the automaton is stuttering-
insensitive:

• Ffin can be replaced by { s ∈ S | ∃s0, . . . , sn ∈ S : s0 = s∧∀i < n : val(si) =
val(si+1)∧ (si, si+1) ∈ ∆∧ sn ∈ Ffin }, that is, stuttering immediately before
entering a finite acceptance state can be ignored. The same applies to Fdl.

3 Testing automata

A testing automaton is a variant of an extended Büchi automaton that “reads”
a sequence in a different way. The important feature of a testing automaton
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is that it does not detect valuations, but changes of them. Consequently, a
testing automaton can accept only stuttering-insensitive languages.

3.1 Definitions

A testing automaton is a 9-tuple

(S,Π, val,∆, Ŝ, Finf , Ffin, Fdl, Fll)

where

• S is a finite set. Its elements are called states.

• Π is a finite set. Its elements are called propositions.

• val : Ŝ → 2Π. That is, only initial states are given valuations.

• ∆ ⊆ S × (2Π − {∅})× S. Its elements are called transitions.

• Ŝ ⊆ S. Its elements are called initial states.

• Finf ⊆ S. Its elements are called infinite acceptance states.

• Ffin ⊆ S. Its elements are called finite acceptance states.

• Fdl ⊆ S. Its elements are called deadlock acceptance states.

• Fll ⊆ S. Its elements are called livelock acceptance states.

A variant of testing automata was defined in [17]. There synchronous commu-
nication via transition labels was used instead of Π an val. Another notion
related to stutter-invariant automata was defined in [5]. The main difference
between these two definitions is in the acceptance criteria; stutter-invariant
automata use infinite acceptance states only.

From now on, let T = (S,Π, val,∆, Ŝ, Finf , Ffin, Fdl, Fll) be a testing au-
tomaton. Define A⊕B as follows: A⊕B = (A−B) ∪ (B − A).

The testing automaton does not make a move for every symbol that it
reads. Instead, it moves only when the valuation changes. To discuss this,
we define ∼s0P0s1P1 · · · snPn❀ iff s0 ∈ Ŝ ∧ val(s0) = P0 ∧ ∀i < n : ((si, Pi ⊕
Pi+1, si+1) ∈ ∆ ∧ Pi 
= Pi+1) ∨ (si = si+1 ∧ Pi = Pi+1). For infinite sequences,
∼s0P0s1P1s2P2 · · ·❀ is defined analogously.

An infinite sequence P0P1P2 · · · is accepted if at least one of the three
conditions below holds:

(i) There are s0, s1, s2, . . . ∈ S such that
• si ∈ Finf for infinitely many i,
• ∀i : ∃k > i : Pi 
= Pk, and
• ∼s0P0s1P1s2P2 · · ·❀.

(ii) There are s0, . . . , sk ∈ S such that
• sk ∈ Fll,
• ∀i ≥ k : Pi = Pk, and
• ∼s0P0s1P1 · · · skPk❀.

(iii) There are s0, . . . , sk ∈ S such that
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• sk ∈ Ffin, and
• ∼s0P0s1P1 · · · skPk❀.

A finite sequence P0P1 · · ·Pn is accepted if at least one of the two conditions
below holds:

(iv) There are s0, s1, s2, . . . , sn ∈ S such that
• sn ∈ Fdl, and
• ∼s0P0s1P1 · · · snPn❀.

(v) There are s0, s1, s2, . . . , sk ∈ S, for some k ≤ n such that
• sk ∈ Ffin, and
• ∼s0P0s1P1 · · · skPk❀.

We say that a testing automaton is deterministic iff the following holds:
∀s, s1, s2 ∈ S : ∀P ⊆ Π : ((s, P, s1) ∈ ∆ ∧ (s, P, s2) ∈ ∆ ⇒ s1 = s2).

3.2 Verification with testing automata

We define a system as in Section 2.2. A testing automaton T = (ST,Π, valT,∆T,
ŜT, Finf , Ffin, Fdl, Fll) is used in combination with a system, and we consider
the product System ‖ T = (S,“→”, Ŝ), where S = SS × ST, Ŝ = { (s, t) ∈
ŜS× ŜT | valS(s) = valT(t) }, and (s, t) → (s′, t′) iff one of the following holds:

(i) (s, s′) ∈ ∆S ∧ (t, valS(s)⊕ valS(s
′), t′) ∈ ∆T, or

(ii) (s, s′) ∈ ∆S ∧ t = t′ ∧ valS(s) = valS(s
′).

In verification with testing automata, a counterexample can be one of the
following:

(i) An infinite sequence of states (s0, t0)(s1, t1) · · · such that (s0, t0) ∈ Ŝ and
∀i : (si, ti) → (si+1, ti+1) and for infinitely many i: ti ∈ Finf ∧ val(si) 
=
val(si+1). If S is finite, this means in practice that a cycle is found such
that it is reachable from an initial state and there is at least one change
in proposition values and at least one state (s′, t′) in the cycle where
t′ ∈ Finf .

(ii) An infinite sequence of states (s0, t)(s1, t) · · · such that ∀i : (si, t) →
(si+1, t) and (s0, t) is reachable, and t ∈ Fll. That is, a cycle consisting
of transitions with no propositions change is found where the testing
automaton remains in a state t ∈ Fll.

(iii) A reachable state (s, t) such that t ∈ Fdl and there is no s′ such that
(s, s′) ∈ ∆S. That is, a deadlock of the system is reachable where the
testing automaton is in a state of Fdl.

(iv) A reachable state (s, t) such that t ∈ Ffin.

3.3 An algorithm for livelock detection

The counterexamples of type (ii) in the previous subsection can be detected
with the algorithm originally published in [17]. We present it here only slightly
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modified for our purpose and call it one-pass algorithm. Notation is the same
as in the previous section.

procedure one-pass((S,“→”, Ŝ))
Work := Ŝ; Found := Ŝ; ∀(sS, sT) ∈ Ŝ : colour((sS, sT)) := white
while Work 
= ∅

choose (sS, sT) ∈ Work; Work := Work − {(sS, sT)}
if sT ∈ Fll then lldet((sS, sT))
else

for each (s′S, s
′
T) such that (sS, sT) → (s′S, s

′
T) do

if (s′S, s
′
T) /∈ Found then

Work := Work ∪ {(s′S, s′T)}
Found := Found ∪ {(s′S, s′T)}
colour((s′S, s

′
T)) := white

end procedure

procedure lldet((sS, sT))
if colour((sS, sT)) = black then return
colour((sS, sT)) := gray
for each (s′S, s

′
T) such that (sS, sT) → (s′S, s

′
T) do

if val(sS) = val(s′S) then
if (s′S, s

′
T) /∈ Found then

Found := Found ∪ {(s′S, s′T)}; colour((s′S, s′T)) := white
lldet((s′S, s

′
T))

else if colour((s′S, s
′
T)) = gray then ERROR FOUND!

else lldet((s′S, s
′
T))

else if(s′S, s
′
T) /∈ Found then

Work := Work ∪ {(s′S, s′T)}; Found := Found ∪ {(s′S, s′T)}
colour((s′S, s

′
T)) := white

colour((sS, sT)) := black
return
end procedure

If Work is a stack, the outer search (one-pass) is effectively a DFS and
if Work is a queue, it is a BFS. We do not commit to any particular way of
“choosing” the transitions and the states to be explored. It does tend to have
a significant effect on the way the algorithm behaves and this effect is explored
in Section 5.

3.4 Heuristics for testing automata reduction

All the algorithms in Section 2.3 that do not assume stuttering-insensitivity
apply. The remaining are superfluous. In addition:

• When we are only interested in infinite sequences, if there is a state that is
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both an infinite and livelock acceptance state and has a local loop for each
P ∈ (2Π − ∅), such a state can be converted into a finite acceptance state.
If we are interested also in finite sequences, then the state must also be a
deadlock acceptance state to begin with.

4 Transformation between Büchi automata and testing
automata

4.1 Construction of a testing automaton from a Büchi automaton

Theorem 4.1 If a Büchi automaton is stuttering-insensitive, then there is a
testing automaton that accepts precisely the same sequences, and has the same
number of states. If the Büchi automaton is deterministic, then the testing
automaton is also deterministic.

Proof. Let B = (S,Π, val,∆, Ŝ, Finf , Ffin, Fdl) be a stuttering-insensitive Büchi
automaton. We construct a testing automaton T = (S,Π, valT ,∆T , Ŝ, Finf ,
Ffin, Fdl, Fll), where

• valT (s) = val(s), whenever s ∈ Ŝ.

• ∆T = { (s, P, s′) | (s, s′) ∈ ∆ ∧ (P = val(s)⊕ val(s′)) ∧ P 
= ∅ }.
• Fll = { s ∈ S | ∃s0, s1, . . . ∈ S : s0 = s∧∀i : val(si) = val(si+1)∧ (si, si+1) ∈
∆ ∧ |{ i | si ∈ Finf }| = ∞}. These states can be detected by only taking
into account transitions (s, s′) ∈ ∆ such that val(s) = val(s′) while looking
for cycles that contain an Finf-state, and then taking all states from which
such an Finf-state is reachable via such transitions.

Note first that nondeterminism is not introduced in the construction. To
prove that L(T ) = L(B), we take any infinite sequence P0P1P2 · · · ∈ L(B).
Because the language is stuttering-insensitive, we can assume either that ∀i :
Pi 
= Pi+1 or that ∃k : ∀i < k : Pi 
= Pi+1 ∧ ∀i ≥ k : Pi = Pi+1. We see
that by construction, the testing automaton accepts this sequence. In the
case of infinite stuttering, the Fll accepts all the appropriate sequences. Finite
sequences P0P1 · · ·Pn ∈ L(B) are handled in a similar way. Since the testing
automaton ignores stuttering, the inclusion in the other direction should be
obvious. ✷

A similar result, formulated for stutter-invariant automata, can be found
in [5].

4.2 Construction of a Büchi automaton from a testing automaton

Theorem 4.2 Any testing automaton has a corresponding Büchi automaton
that accepts precisely the same language.

Proof. Let T = (S,Π, val,∆, Ŝ, Finf , Ffin, Fdl, Fll) be a testing automaton. We
will construct a stuttering-insensitive Büchi automaton (SB,Π, valB,∆B, ŜB,
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Fig. 1. The construction of a Büchi automaton from a testing automaton

FB
inf , F

B
fin, F

B
dl ). For clarity, we first construct an intermediate testing automa-

ton (S ′, Π, val′,∆′, Ŝ ′, F ′
inf , F

′
fin, F

′
dl, F

′
ll) such that the values of the propositions

in the states are unique.

• Let S ′ = S × 2Π.

• For each s ∈ Ŝ, put (s, val(s)) in Ŝ ′.
• val′((s, P )) = P for s ∈ Ŝ ′.
• ∆′ is constructed so that whenever (s, P, s′) ∈ ∆, we add ((s,Q), P, (s′, Q⊕
P )) into ∆′ for each Q ∈ 2Π.

• For each set of acceptance states Fx, F
′
x = Fx × 2Π.

Only the reachable part of this intermediate testing automaton needs to be
considered.

The second stage of the construction consists of transforming each state
depending on whether it is a member of Finf and/or Fll. These transformations
are shown in Figure 1. The value of function val of a state (s, P ) is just P .
States retain their status as an initial, finite or deadlock acceptance state. The
“secondary” states introduced in Figure 1 inherit their val values and finite
or deadlock acceptance status from their primary states, and are not initial
states. ✷

When an automaton is obtained according to the construction in this proof
or the one in Section 4.1, it can often be reduced using the heuristics of
Section 2.3 or 3.4.

Theorem 4.3 There is a deterministic testing automaton such that no deter-
ministic Büchi automaton accepts precisely the same language.

Proof. Consider the language L = ({P}|∅)∗{P}ω. It is known that it is not
accepted by a deterministic Büchi automaton [15]. A deterministic testing
automaton accepting this language is shown in Figure 2. ✷

However, this result turns out coincidental rather than fundamental: there
is also a nondeterministic testing automaton such that no deterministic testing
automaton accepts precisely the same sequences.
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Fig. 2. A transition-labelled and state-labelled Büchi automaton and a testing
automaton for the property ¬✸✷p.

5 On-the-fly verification experiments

We compared the algorithm in [3] (from now on just the CVWY-algorithm)
to the algorithm in [17], which we call just one-pass algorithm. For our exper-
iments, we have verified the property ¬✸✷p. This property yields a testing
automaton that has an ll-state but no inf-states, so the one-pass algorithm ap-
plies. Two corresponding Büchi automata and a testing automaton are given
in Figure 2. The testing automaton is obtained from the state-labelled Büchi
automaton by first using the construction in the proof of Theorem 4.1, and
then dropping the unreachable inf-state.

It is easy to compare the performance of the two algorithms when the
system works according to the specification, i.e., no counterexample is found.
In that case both the algorithms construct the whole state space. In addition,
the CVWY-algorithm duplicates some of the states.

A theoretical comparison in the case when an error is actually found is
much harder, because the effects of the synchronisation of the system and the
automaton are complicated, as it was discussed in Section 2.3. The goal is in
any case to produce as few states as possible before finding the error.

Various aspects must be considered when implementing these algorithms.
If the incorrect part of the state space is investigated after all other parts, then,
of course, the error is found late. Thus the order in which the transitions of
the system are investigated may have a significant effect on the behaviour of
the algorithms. This order may be affected by the way in which the system is
modelled and represented. The implementation details of the algorithm may
also turn out to have a formidable impact on the behavior. For example, the
depth-first search has a non-recursive implementation where pointers to all
the successor states of a state are put on the stack in one batch, but these
states are not marked as found at this stage. The stack may contain several
pointers to the same state, and the state is marked as found when a pointer
to it is popped. This implementation scans the transitions in the opposite
direction from the usual recursive implementation of the depth-first search.

In these experiments a total of eight implementations were studied, labelled
here with letters from C to J. The meaning of the letters is shown in Table 1.
“Error First” means that in the search, the acceptance state is searched first.
“Forward” and “Backward” refer to the order in which the transitions of the
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one-pass CVWY

BFS DFS Error first Error last

Forward C E G H

Reverse D F I J

Table 1
Implementations of algorithms

Alg. ≥ 10000 ≥ 1000 ≥ 100 total

J 0 5 22 30

I 1 11 28 30

H 0 8 15 30

G 1 13 23 30

F 2 11 16 30

E 0 4 10 30

D 0 5 19 30

C 0 5 20 30

Table 2
Measurement results for the token ring (53856 states)

system are explored.

Ten experiments were made with the famous ten dining philosophers’ sys-
tem. The property was “philosopher i cannot starve in the state where she
has one chop stick and is waiting for the other”, where i ranged from 1 to 10.

Thirty experiments were made with an artificially ’broken’ token-ring sys-
tem of six servers. A comprehensive description of the token-ring system can
be found in [16]. It consists of servers and clients, where the servers are or-
ganised in a ring. There is exactly one token, and a server serves a client only
when it has the token. A request for the token is passed to the left in the
ring and the token is passed to the right. The original token ring guarantees
eventual access. The system we study here has such a flaw that the token
may sometimes be passed in the wrong direction, introducing the possibility
of starvation due to a livelock. Only the servers were included in the model
and they had been minimised first. Five possible starvation states were tried
for each of the six stations.

Twelve experiments were made with Fischer’s mutual exclusion system [9,
p. 2] with 12 servers. Each server was monitored for starvation while waiting
for access to the critical section.
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Alg. ≥ 10000 ≥ 1000 ≥ 100 total

J 0 4 7 10

I 1 4 10 10

H 0 4 7 10

G 1 4 10 10

F 2 4 8 10

E 2 4 7 10

D 0 0 1 10

C 0 0 1 10

Table 3
Measurement results for dining philosophers (59048 states)

Alg. ≥ 10000 ≥ 1000 ≥ 100 total

J 2 12 12 12

I 2 12 12 12

H 2 12 12 12

G 2 12 12 12

F 3 6 9 12

E 3 6 9 12

D 0 0 4 12

C 0 0 4 12

Table 4
Measurement results for Fischer’s mutex (49153 states)

The number of states generated before detecting the illegal property was
recorded. Tables 2, 3 and 4 show how many of these test runs resulted in at
least 10 000 states, at least 1000 states, and at least 100 states to be generated.
It is easy to notice that for all the three systems, the implementations C, D,
E, and F are the most effective with C & D outperforming the others. The
main advantage in the experimental results is shown for Fischer’s mutual
exclusion, where the test runs of C & D never generated more than 1000
states, whereas the test runs for G, H, I, and K resulted always in more than
1000 and two times in more than 10 000 states. For dining philosophers C &
D generate more than 100 states (but less than 1000) only once, whereas the
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other implementations generate four times more than 1000 states and at least
seven times more than 100 states.

6 Conclusions

In this research we demonstrated with measurements that on-the-fly livelock
detection with the algorithm of [17] often outperforms the algorithm of [3],
and, to benefit from this observation, we developed the notion of a testing
automaton. Due to the way a testing automaton observes the system, it is
insensitive to stuttering. We gave constructions for transforming a stuttering-
insensitive Büchi automaton to a testing automaton that accepts the same
language and vice versa, and showed that a testing automaton can be deter-
ministic more often than the Büchi automaton.

Of course, a testing automaton can benefit from the one-pass algorithm
only if it contains livelock acceptance states. Even when it does not, Theo-
rem 4.1 guarantees that a minimal testing automaton for a property can have
fewer but cannot have more states than a minimal state-labelled Büchi au-
tomaton for the same property. However, one must take into account that
reducing the number of states of a Büchi or testing automaton does not nec-
essarily reduce the size of the state space – actually the opposite may happen.
Because the size of the state space is more important, one should concen-
trate on it, and not worry too much about the size of the Büchi or testing
automaton.

The algorithms in [17] and [3] disagree on the order in which the state
space should be investigated, and thus cannot be immediately integrated.
This causes a problem for the on-the-fly verification with testing automata
that contain both livelock and infinite acceptance states. One, albeit not
ideal, possibility is to use a triple state space search, where the main and
secondary searches would be as in the CVWY-algorithm, and the main search
would invoke the third level similarly to the “magic bits” in [8, pp. 235–237].

Testing automata are at their best when Π, the set of propositions, is small.
In some cases a testing automaton must remember truth values of propositions
in its states, making the number of states grow exponentially in the size of
Π. This does not, however, directly make the size of the state space grow,
because each state of the system specifies unique values for the propositions,
and thus picks only one of the alternative testing automaton states as its pair.
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