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исходная формула
ϕ

отрицание
ψ = ¬ϕ

ПНФ
ψpnf

ССФ
ψssf

система дизъюнктов
Sψssf

резолютивный вывод
пустого дизъюнкта �

из Sψssf

|= ϕ ⇔ 6||= ψ ⇔ 6||= ψpnf ⇔ 6||= ψssf
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Системы дизъюнктов

Дизъюнктом называется ССФ с одним множителем в матрице:
∀x̃n (L1 ∨ · · · ∨ Lk),

где Li — литера (атом или его отрицание)

Для краткости иногда будем опускать
кванторную приставку дизъюнктов:

∀x̃n (L1 ∨ · · · ∨ Lk) = L1 ∨ · · · ∨ Lk

Для упрощения технических выкладок будем отождествлять между
собой дизъюнкты, получающиеся друг из друга перестановкой
слагаемых

В связи с таким упрощением будем
отождествлять дизъюнкт с мультимножеством его литер:

L1 ∨ · · · ∨ Lk = {L1, . . . ,Lk}
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Системы дизъюнктов
Например: (но это только при обсуждении дизъюнктов)

∀x (P(x) ∨ P(x) ∨Q(f(c)))
=

P(x) ∨ P(x) ∨Q(f(c))
=

{P(x),P(x),Q(f(c))}
=

P(x) ∨Q(f(c)) ∨ P(x)
=

∀x (P(x) ∨Q(f(c)) ∨ P(x))

Пустой дизъюнкт � — это особый дизъюнкт, представляющий собой
пустое множество литер
Пустой дизъюнкт будем считать невыполнимым:

L1 ∨ · · · ∨ Lk «∼» L1 ∨ · · · ∨ Lk ∨ f, а значит, � «∼» f

Системой дизъюнктов будем называть (любое) множество дизъюнктов
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Системы дизъюнктов
Утверждение. ∀x (ϕ&ψ) ∼ ∀x ϕ& ∀x ψ

Доказательство. Очевидно?
(Обосновать эту равносильность настолько же просто,

как и все основные равносильности)

Теорема (о переходе к дизъюнктам)
Для ССФ с любым набором множителей D1, . . . ,Dk верно:

||= ∀x̃n (D1 & . . .&Dk) ⇔ ||= {∀x̃n D1, . . . ,∀x̃n Dk}

Доказательство

По утверждению выше, ∀x̃n (D1 & . . .&Dk) ∼ ∀x̃n D1 & . . .& ∀x̃n Dk

Следовательно, с учётом семантики &,
||= ∀x̃n (D1 & . . .&Dk)
⇔ ||= ∀x̃n D1 & . . .& ∀x̃n Dk
⇔ ||= {∀x̃n D1, . . . , ∀x̃n Dk} H
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Системы дизъюнктов

Пример:

6||= ∀x ∀u (P(x)&(¬P(f(x)) ∨ R(x,g(x)))&¬R(x, u))

⇔

6||= {P(x), ¬P(f(x)) ∨ R(x,g(x)), ¬R(x, u)}
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