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Abstract
Satisfiability of Boolean circuits is among the most known and
important problems in theoretical computer science. This problem
is NP-complete in general but becomes polynomial time when
restricted either to monotone gates or linear gates. We go outside
Boolean realm and consider circuits built of any fixed set of gates on
an arbitrary large finite domain. From the complexity point of view
this is strictly connected with the problems of solving equations
(or systems of equations) over finite algebras.

The research reported in this work was motivated by a desire
to know for which finite algebras A there is a polynomial time
algorithm that decides if an equation over A has a solution. We
are also looking for polynomial time algorithms that decide if two
circuits over a finite algebra compute the same function. Although
we have not managed to solve these problems in the most general
setting we have obtained such a characterization for a very broad
class of algebras from congruence modular varieties. This class
includes most known and well-studied algebras such as groups,
rings, modules (and their generalizations like quasigroups, loops,
near-rings, nonassociative rings, Lie algebras), lattices (and their
extensions like Boolean algebras, Heyting algebras or other algebras
connected with multi-valued logics including MV-algebras).

This paper seems to be the first systematic study of the com-
putational complexity of satisfiability of non-Boolean circuits and
solving equations over finite algebras. Our characterization is given
in terms of nice structural properties of algebras for which the
problems are solvable in polynomial time. Such algebras have to
decompose into two factors: a nilpotent one and a factor that es-
sentially behaves as a finite distributive lattice.

CCS Concepts • Theory of computation→ Complexity the-
ory and logic; Problems, reductions and completeness; Cir-
cuit complexity; Constraint and logic programming; •Mathematics
of computing → Combinatorial algorithms;
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1 Introduction
One of the most celebrated NP-complete problem is SAT – the
problem that takes on a Boolean expression and decides whether
there is a {0, 1}-valuation of variables that satisfies this expression.

The most popular variant of this problem is CNF-SAT (often
called SAT as well) in which the input is in Conjunctive Normal
Form. A formula in CNF is a conjunction of clauses each of which
is a disjunction of (e.g. at most 3) literals. These clauses (if ternary)
can be treated as (ternary) relations on the set {0, 1} and the SAT
problem simply asks whether a conjunction of atomic formulas
(in this new relational language) is satisfiable. This generalizes to
any (finite) relational structure, say D, where the problem lies in
answering whether a conjunction of atomic formulas (in the lan-
guage of D) is satisfiable in D. This is now known under the name
of Constraint Satisfaction Problem, or CSP for short. A characteri-
zation of relational structures over {0, 1} for which CSP is solvable
in a polynomial time has been done in [33]. The structures for
which a polynomial time algorithm is not provided in [33] have
been shown there to be NP-complete with respect to CSP. The
similar dichotomy conjecture for CSP over arbitrary finite domains
has been stated by Feder and Vardi in [9]. With the help of deep
algebraic tools two algorithmic paradigms have been shown to
be fruitful in establishing polynomial time complexity of a wide
range of relational structures. One of these paradigms generalizes
Gaussian elimination method to the realm of algebras with few
subpowers [24]. The other generalizes DATALOG programming
to local consistency checking method [2]. Both of those methods
were explored to their limits, so that a lot of effort has been put
to find a new or hybrid approach. Very recently two independent
proofs (one by D. Zhuk [37] and another one by A. Bulatov [5])
confirming the CSP dichotomy conjecture have been announced.

In contrast to CNF-SAT the problem o satisfiability of general
Boolean expression is often called CIRCUITS SAT or Csat for short.
After restricting this NP-complete problem for example to the cir-
cuits that are either monotone (only AND and OR gates) or linear
(only XOR gates) the problem becomes solvable in a polynomial
time. Thus it is natural to isolate those collections of 2-valued gates
that lead to circuits with polynomially solvable satisfiability prob-
lem. Actually such characterization of tractable families of 2-valued
gates can be inferred from the results of [13].

In general, different collections of admissible gates (on a given
set) give rise to algebras (in the universal algebraic sense). Thus
we will talk about circuits over a fixed finite algebra A, i.e. an
algebra with finitely many elements and finitely many fundamental
operations. In this language the output gates of such circuits can
be represented by terms of an algebra A (or polynomials of A, if
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values on some input gates are fixed). We also relax the notion of
satisfiability of such circuits to be read:

Csat(A)
given a circuit over A with two output gates g1, g2 is there a
valuation of input gates x = (x1, . . . ,xn ) that gives the same
output on g1, g2, i.e. g1(x) = g2(x).

Note here, that in some cases (including 2-element Boolean algebra)
the satisfiability of g1(x) = g2(x) can be replaced by satisfiability
of g(x) = c , where c is a constant and g is a new output gate that
combines g1 and g2.

In a circuit that has more than two output gates it is also natural
to state the following question. We will see that this very similar
question has different taste.

MCsat(A)
given a circuit over A with output gates g1, g2, . . . , gk is
there a valuation of input gates x that gives the same output
on all the gi ’s, i.e. g1(x) = g2(x) = . . . = gk (x).

From algebraic point of view problem Csat(A) asks for the so-
lutions of an equation over A. The problem MCsat(A) asks for
solutions of a special system of equations over A. But we can also
ask for solutions of arbitrary systems of equations. This however
has a more natural wording in purely algebraic terms.

SCsat(A)
Given polynomials

g1(x), h1(x), . . . , gk (x), hk (x)

of an algebra A, is there a valuation of the variables x1, . . . ,
xn in A such that

g1(x1, . . . ,xn ) = h1(x1, . . . ,xn )
...

gk (x1, . . . ,xn ) = hk (x1, . . . ,xn ),

With this natural approach via multi valued circuits also the
problem TAUTOLOGY has its natural generalization:

Ceqv(A)
given a circuit over A is it true that for all inputs x we
have the same values on given two output gates g1, g2, i.e.
g1(x) = g2(x).

In the algebraic setting this is simply the question of equivalence of
two terms or polynomials. Here equivalence ofk pairs of terms/poly-
nomials reduces to k independent Ceqv queries.

In Boolean realm the problem Ceqv can be treated as the com-
plement of Csat and therefore is co-NP-complete. In general the
closely related problem Ceqv(A) is somehow independent from
Csat(A). This independence means that all four possibilities of
tractability/intractability can be witnessed by some finite algebras.
For example for the 2-element lattice L the problem Csat(L) is in
P while Ceqv(L) is co-NP-complete. An example of a finite semi-
group S with Ceqv(S) ∈ P and Csat(S) being NP-complete can be
inferred from [27].

It is worth to note that solving equations (or systems of equa-
tions) is one of the oldest and well known mathematical problems
which for centuries was the driving force of research in algebra.
Let us only mention Galois theory, Gaussian elimination or Dio-
phantine Equations.

In the decision version of these problems one asks if an equation
(or system of such equations) expressed in the language of a fixed
algebra A, has a solution in A. In fact, for A being the ring of
integers this is the famous 10th Hilbert Problem on Diophantine
Equations, which has been shown to be undecidable [31]. In finite
realms such problems are obviously decidable in nondeterministic
polynomial time. There are numerous results related to problems
connected with solving equations and systems of equations over
fixed finite algebras. Most of them concerns well known algebraic
structures as groups [7], [11], [19], [21] rings [17], [6] or lattices
[34] but there are also some more general results [1], [30].

The main goal of this paper is to attack the classification prob-
lems of the form: for which finite algebras A there is an algorithm
that answers one of the problemsCsat(A),MCsat(A), SCsat(A) or
Ceqv(A) in polynomial time with respect to the size of the circuit,
i.e. the size of the underlying graph of the circuit. It seems that the
most natural way to look at these problems is to treat circuits over
A (or in fact output gates of such circuits) as terms/polynomials of
the algebra A. This obvious translation makes our attack fruitful, as
we can apply deep results and techniques developed by universal
algebra such as modular commutator theory and tame congruence
theory. These tools are especially useful in case of algebras gener-
ating congruence modular variety. This assumption covers many
well known structures as groups, rings, modules or lattices. Our
attempt to attack the classification problems has resulted in partial
characterization of computational complexity of Csat, MCsat and
Ceqv for algebras generating congruence modular varieties. This
partial characterization leaves some room to be filled before es-
tablishing a dichotomy. We will also briefly discuss the difficulties
arising in filling the gap in our characterization.

2 The results
In this section we present the state of the art in more details and
discuss our results and tools.

The first thing in which our research differs from what has been
already considered is that we concentrate on circuits rather than on
syntactic form of terms or polynomials. This difference is visible in
how the size of the input is measured. We have seen how an output
gate can be treated as a term or a polynomial. On the other hand,
in an obvious way, every term over A can be treated as a circuit in
which each gate is used as an input to at most one other gate. This
leads to a circuit whose underlying graph is a tree. However circuits
can have more compact representation than terms. For example,
in groups the terms tn (x1,x2, . . . ,xn ) = [. . . [[x1,x2],x3] . . . xn ],
(where [x ,y] = x−1y−1xy is the group commutator) expressed in
the pure group language of (·, −1) have an exponential size in n, as
the number of occurrences of variables doubles whenever we pass
from n to n + 1. On the other hand the size of a circuit realizing tn
has 6n − 5 vertices as can be seen from Figure 1.

The consequences of this (exponential) disproportion in mea-
suring the input size for terms and circuits are illustrated by the
following example.

Example 2.1. There are finite groups A such that Csat(A) is NP-
complete, while there are polynomial time algorithms for solving
equations over A.
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Figure 1

There are also finite groupsB such thatCeqv(A) is co-NP-complete,
while there are polynomial time algorithms for checking the identities
in B.

Proof. The first such example for the equation versus circuit satisfi-
ability problem was the symmetric group S3 for which polynomial
time algorithm was shown in [20], while the first author’s observa-
tion on the NP-completeness is included in [12].

The papers [18, 21, 22] contain many other examples of solv-
able non-nilpotent groups which witness both statements in our
example. □

Note that in case of SCsat there is no such disproportion in the
size as every polynomial equation s(x) = t(x) can be replaced by a
system of equations of the form y = f(x1, . . . ,xk ) or y = c , where f
is one of the basic operations and c is a constant. This replacement
has linear size with respect to the circuit representing t(x). For
example for the above term

tn (x1,x2, . . . ,xn ) = [. . . [[x1,x2],x3] . . . xn ],

slightly abusing our conditions, we can use the following represen-
tation

t2 = x−11 x−12 x1x2

t3 = t−12 x−13 t2x3

...

tn = t−1n−1x
−1
n tn−1xn ,

in which t2, . . . , tn are treated as variables.
However, even in the setting of a single equation, representing

a polynomial t(x) by its corresponding circuit and looking at the
size of this circuit (instead of the syntactic length of t) allows us
to harmlessly expand the original language of the algebra A by
finitely many polynomials. In fact in our intractability proofs we
will often expand the language of the original algebra A by finitely
many polynomials of A. This will allow us to code NP-complete
problems in much more smooth way. Note that the possibility of

such expansions shows that the characterizations we are looking
for can be done up to polynomial equivalence of algebras; two
algebras A1 and A2 are said to be polynomially equivalent if they
have the same universes and each polynomial of one of them can
be defined by composing the polynomials of the other one, i.e.
Pol A1 = Pol A2, where Pol A is the set of all polynomials of the
algebra A.

Fact 2.2. Let A1, A2 be finite algebras such that Pol A1 = Pol A2.
Then Csat(A1) and Csat(A2) are polynomial-time equivalent.

Proof. We will show polynomial time reduction from Csat(A1) to
Csat(A2). Since Pol A1 ⊆ Pol A2 we can express every fundamen-
tal operation (gate) of A1 using circuit over A2. Let T be a function
which for every fundamental operation f of A1 returns a circuit
T (f ) over A2 such that T (f ) computes function f . Now it easy to
see that transformation which for a given circuitC over A2 returns
circuit C ′ obtained by replacing every occurrence of the gate f
in C by T (f ), is a polynomial time reduction from Csat(A1) to
Csat(A2). □

In our proofs of NP-completeness we will often use the following
corollary of Fact 2.2.

Corollary 2.3. Let A = (A, F ) be a finite algebra and letG ⊆ Pol A
be a finite set of its polynomials.
If Csat(A, F ∪G) is NP-complete, then Csat(A, F ) is NP-complete.

It turns out that quite a few results on the complexity of the
problems Csat, MCsat, SCsat and Ceqv are already known for
particular kinds of (finite) algebras.

Example 2.4. Finite Groups:
• If A is abelian then SCsat(A) ∈ P (by Gaussian elimination),
and for all other groups SCsat(A) is NP-complete [11].

• Csat(A) is in P, whenever A is nilpotent [11] and NP-complete
otherwise [11, 21].

• Ceqv(A) is in P, if A is nilpotent [7] and co-NP-complete
otherwise [19, 21].

Example 2.5. Finite Rings:
• If A is essentially an abelian group (i.e. multiplication satis-
fies the identity xy = 0) then SCsat(A) ∈ P (by Gaussian
elimination), and for all other rings SCsat(A) is NP-complete
[30].

• Csat(A) is in P, whenever A is nilpotent [17] and NP-complete
otherwise [6].

• Ceqv(A) is in P, whenever A is nilpotent and NP-complete
otherwise (see [23] for commutative rings and [6] for general
case).

Example 2.6. Finite Lattices:
• Csat(A) ∈ P if A is distributive and NP-complete otherwise
[34].

• For all nontrivial lattices A, SCsat(A) is NP-complete while
Ceqv(A) is co-NP-complete (easy to see).

The examples given above suggest that the existence of poly-
nomial time algorithms for the considered circuits problems go
hand in hand with nice structure theory of the underlying algebras.
However there are only two results that can be considered general
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enough to be expressed in structural terms. These results are stated
in the following two theorems.

First note that E. Aichinger and N. Mudrinski [1] have shown
the following theorem, a partial converse of which is our Theorem
2.15.

Theorem 2.7. If A is a finite supernilpotent algebra from a congru-
ence variety then Ceqv(A) is in P.

The second general result is that of B. Larose and L. Zádori [30].
After observing that SCsat has exactly the same expressive power
as CSP they used mutual translation between SCsat and CSP to
prove the first part of the next characterization, while the second
one is a form of Gaussian elimination.

Theorem 2.8. For a finite algebra A from a congruence modular
variety:

• if SCsat(A) is not NP-complete then A is affine (i.e. A is poly-
nomially equivalent to a module over a finite ring),

• if A is affine then SCsat(A) ∈ P.

Not as much is known when one leaves the congruence modular-
ity realm. It is worth to note however that an important extension
of Theorem 2.8 to finite algebras from varieties omitting type 1 (in
the sense of Tame Congruence Theory, see [16]) can be found in
[36].

Also a number of results on semigroups do not fall in congruence
modular setting but these results are still about particular type
of algebras. The paper [28] gives a nice, but somewhat technical,
characterization of finite monoidsA for which SCsat(A) ∈ P. There
are also several results on the complexity of SCsat(A) for particular
semigroups or classes of semigroups, but we are far from having a
full characterization similar to that for monoids. In fact the paper
[28] contains a proof that the expressive power of SCsat over
semigroups is equivalent to the expressive power of CSP. However
full understanding of semigroups with polynomially solvable SCsat
requires a translation of the dichotomy borderline into structural
condition for semigroups. Surprisingly another class of algebras for
which SCsat coincides with expressive power of CSP is the class
of algebras with unary operations only [3, 8].

When coming to a single equation we are still able to prove that
the expressive power of Csat is no weaker that this of CSP, as
expressed below.

Proposition 2.9. For every finite relational structureD (with finitely
many relations) there is a finite algebra A[D] such that the problem
CSP(D) is polynomially equivalent to Csat(A[D]).

Unlike in the SCsat setting we do not know whether the expres-
sive power of Csat is not bigger than the one of CSP.

Problem1. Is it true that for every finite algebraA there exists a rela-
tional structureD[A] such that the problemsCsat(A) andCSP(D[A])
are polynomially equivalent?

The above difference between a single equation and a system of
equations is probably a consequence of the presence of an external
conjunction in systems of equations. Intuitively, to replace a system
of equations by a single equation, one needs to squeeze many terms
(or polynomials) into a single one. This requires an analogue of
an internal conjunction (that can be expressed by a polynomial)
present in Boolean algebras. Since such a squeeze is not always

possible, more algebras may have polynomial time algorithms for
Csat than for SCsat. Actually our work confirms this claim.

One of the main difficulties in characterizing finite algebras with
SCsat(A) ∈ P is that this property does not carry over quotient
algebras (unless P = NP). The paper [28] contains an example of
a finite semigroup A and its congruence θ with SCsat(A/θ ) being
NP-complete while SCsat(A) ∈ P. The example below shows that
this unwanted phenomena occurs for the Csat problem, as well.

Example 2.10. There is a finite algebra A and its congruence θ such
that Csat(A) ∈ P while Csat(A/θ ) is NP-complete.

Since passing to quotient algebras may not preserve polynomial
time complexity for Csat, it is natural to work under the stronger
assumption that not only Csat(A) ∈ P, but Csat(A/θ ) ∈ P for all
congruences θ of A. Such assumption has also a natural interpre-
tation. Given A we want a fast method to solve equations over A,
or at least decide if such equations have solutions. However such
solutions may not exist in the original algebra A. They obviously
do exist inA/1A, where 1A is the congruence collapsing everything.
Thus the best we can do, is to determine (existence of) the solutions
with best possible precision, i.e. modulo the smallest congruences
possible. This however requires A to be regular enough so that
Csat(A′) is in P for all quotients A′ of A.

After fixing the setting we are working in, we can state our main
result in the next theorem. This result shows that the structure of
algebra A with tractable Csat(A) has to be nice. Such an algebra
has to decompose nicely into two factors: a nilpotent one and a
factor that resembles a finite distributive lattice (DL-like for short).
To express this we need a notion of a subdirect product. We say
that an algebra A is a subdirect product of the family of algebras
(Ai )i ∈I if A is a subalgebra of the direct product

∏
i ∈I Ai and A

projects surjectively onto each of the stalks Ai . The concept of
subdirect product allows to define subdirectly irreducible algebra
as an algebra that in every representation by a subdirect product
has be isomorphic to one of the stalks. One can easily show that an
algebra A is subdirectly irreducible if A has the smallest non-zero
congruence, called the monolith of A.

Now we are ready to state our characterization theorem.

Theorem 2.11. LetA be a finite algebra from a congruence modular
variety.

(1) If A has no quotient A′ with Csat(A′) being NP-complete then
A is isomorphic to a direct product N × D, where N is a nilpotent
algebra and D is a subdirect product of 2-element algebras each
of which is polynomially equivalent to the 2-element lattice.

(2) If A decomposes into a direct product N × D, where N is a su-
pernilpotent algebra and D is a subdirect product of 2-element
algebras each of which is polynomially equivalent to the 2-element
lattice, then for every quotient A′ of A the problem Csat(A′) is
solvable in polynomial time.

To understand the above result first note that the congruence
modularity assumption covers most algebraic structures considered
in classical mathematics. In particular it includes groups (and their
extensions like rings, fields), and lattices (and their extensions like
Boolean algebras or other algebras connected with multi-valued
logics). This assumption does not cover however semigroups (or
even semilattices) or multiunary algebras.
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The conditions (1) and (2) show that the nilpotent groups and
rings as well as distributive lattices mentioned in Examples 2.4, 2.5
and 2.6 are in fact paradigms for Csat tractability in congruence
modular realm. In fact the structural conditions described in The-
orem 2.11, when specialized to groups, rings or lattices, gives the
already known characterizations presented in Examples 2.4, 2.5 and
2.6.

The decomposition enforced in (1) is a result of almost a dozen
of constructions interpreting NP-complete problems (mostly SAT
and k-Colorability) into Csat(A), whenever A, or some of its
quotients, fails to satisfy one of the structural conditions that finally
lead to this nice decomposition.

The second factor, D, of this decomposition is easier to under-
stand than the first one. It essentially behaves like a finite dis-
tributive lattice, but the algebra D does not need to actually have
(explicit) lattice operations. Instead D is composed of 2-element
algebras each of which does have lattice operations expressible
by polynomials, while all of their operations are monotone with
respect to this lattice order.

The next example shows that a subdirect product of 2-element
algebras each of which is polynomially equivalent to the 2-element
lattice need not be polynomially equivalent to a distributive lattice.

Example 2.12. Let A = (A,m) be a subreduct of ({0, 1},∧,∨)3,
with

• A = {(1, 1, 1), (0, 1, 1), (1, 0, 1), (1, 1, 0)}
• and m being the majority operation
m(x ,y, z) = (x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x).

Then

• A belongs to congruence distributive (and therefore to congru-
ence modular) variety

• A is a subdirect product of algebras polynomially equivalent
to two element lattices,

• A is not polynomially equivalent to a distributive lattice.

Proof. The first two items are obvious. To see the third one note
that, up to isomorphism, there are only two four element lattices:

• the four element chain,
• the four element Boolean lattice.

On the other hand, for three pairwise different elements a,b, c ∈ A
we have m(a,b, c) = 1, where 1 = (1, 1, 1). Sending isomorphically,
say by h, all possible 3-element tuples from A into one of the above
4-element lattices we simply cannot find a room for h(1) under the
assumption that m preserves lattice order. □

The first factor, N, of the decomposition described in Theorem
2.11 requires the general algebraic notion of nilpotency in congru-
ence modular setting that goes back to the late 1970’s when Smith
[35], Hagemann and Herrmann [15], Gumm [14] and finally Freese
and McKenzie [10] developed necessary deep tools ofmodular com-
mutator theory. In fact a notion of the commutator multiplication
[α , β] of congruences α , β of arbitrary algebras was defined in a
way that extends multiplication of ideals in ring theory and com-
mutator multiplication of normal subgroups in group theory. With
the help of such commutator one can define abelian, solvable and
nilpotent congruences and algebras.

If α , β , γ are congruences of an algebra then we say that α
centralizes β modulo γ , denoted C(α , β ;γ ), if for every n ⩾ 1, every

(n+1)-ary term t, every (a,b) ∈ α , and every (c1,d1), . . . , (cn ,dn ) ∈
β we have

t(a, c)
γ
≡ t(a,d) iff t(b, c)

γ
≡ t(b,d).

Obviously among all congruences γ such thatC(α , β ;γ ) there is the
smallest one and it is denoted by [α , β] and called the commutator
of α and β .

By means of the commutator it is possible to define notions of
abelian, solvable and nilpotence for arbitrary algebras. First, for a
congruence θ and i = 1, 2, . . . we put

θ (1) = θ θ [1] = θ

θ (i+1) = [θ ,θ (i)] θ [i+1] = [θ [i],θ [i]].

Now, a congruence θ of A is called k-step nilpotent [or k-step
solvable] if θ (k+1) = 0A [θ [k+1] = 0A] and the algebra A is nilpotent
[solvable] if 1A is k-step nilpotent [k-step solvable] for some finite
k . In particular θ [or A] is abelian if θ (2) = θ [2] = 0A [or 1(2)A = 0A].

Fuller discussions of the generalized commutator may be found
in [10], [32, Section 4.13] and [16, Chapter 3].

Finite nilpotent groups (and rings) behave very nicely. In par-
ticular they decompose into direct products of groups (or rings)
of prime power order. Unfortunately such nice decomposition of
nilpotent algebras in congruence modular varieties does not hold
in general. However, in this general setting, nilpotent algebras that
have this nice decomposition (and have only finitely many basic
operations) are exactly those that are supernilpotent. In fact su-
pernilpotency has been introduced by another universal algebraic
generalization of commutator multiplication of congruences.

For a bunch of congruences α1, . . . ,αk , β,γ ∈ Con Awe say that
α1, . . . ,αk centralize β modulo γ , and write C(α1, . . . ,αk , β ;γ ), if
for all polynomials f ∈ Pol A and all tuples a1

α1
≡ b1, . . . ,ak

αk
≡ bk

and u
β
≡ v such that

f(x1, . . . ,xk ,u)
γ
≡ f(x1, . . . ,xk ,v)

for all possible choices of (x1, . . . ,xk ) in
{
a1,b1

}
× . . . ×

{
ak ,bk

}
but (b1, . . . .bk ), we also have

f(b1, . . . ,bk ,u)
γ
≡ f(b1, . . . ,bk ,v).

This notion was introduced by A. Bulatov [4] and further developed
by E. Aichinger and N. Mudrinski [1]. In particular they have shown
that for all α1, . . . ,αk ∈ Con A there is the smallest congruence γ
with C(α1, . . . ,αk ;γ ) called the k-ary commutator and denoted by
[α1, . . . ,αk ]. Such generalized commutator behaves especially well
in algebras from congruence modular varieties. In particular this
commutator is monotone, join-distributive and we have

[α1, [α2, . . . ,αk ]] ⩽ [α1, . . . ,αk ]

Thus every k-supernilpotent algebra, i.e. algebra satisfying

[

k+1 times︷  ︸︸  ︷
1, . . . , 1] = 0,

is k-nilpotent.
To illustrate the precise difference between nilpotency and su-

perniloptency for an algebra A with finitely many elements, from
congruence modular variety, note that due to [10] and [26] the
following two conditions are equivalent

• A is k-supernilpotent,
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• A isk-nilpotent, decomposes into a direct product of algebras
of prime power order and the clone Clo A is generated by
finitely many operations.

The following example shows two ways in which nilpotent algebras
with finitely many elements may fail to be supernilpotent.

Example 2.13. For positive integersm, n and prime numbers p, q
put

• fm to be unary operation modulom,
• +m to be addition modulom,
• pn (x1, . . . ,xn ) = p · x1 · x2 · . . . · xn modulo p2.

Then, the algebras
• Zm = (Zm ,+m ) are abelian,
• A(k)

p2 = (Zp2 ,+p2 ,p
2, . . . ,pk ), for finite k , are supernilpotent,

• A(∞)

p2 = (Zp2 ,+p2 ,
{
pi
}∞
i=2) are nilpotent but not supernilpo-

tent,
• Bpq = (Zpq ,+pq , fp ) are nilpotent but not supernilpotent.

The nilpotent/supernilpotent gap that occurs in Theorem 2.11
resists to be easily filled. This is because in supernilpotent case there
is a bound on the arity of the so called commutator polynomials.
These commutator polynomials can imitate the behavior of the long
conjunction. In nilpotent (but not supernilpotent) case arbitrary
long conjunctions are expressible. But this can be probably done at
the expense of exponentially large (with respect to the arity) circuits
needed to represent those conjunctions. This expected exponential
size probably prevents polynomial time reduction of NP-complete
problems to Csat in nilpotent but not supernilpotent case.

Using Theorems 2.11 and 2.8 we are able to infer the following
corollary.

Corollary 2.14. LetA be a finite algebra from a congruencemodular
variety.

1. If A has no quotient A′ withMCsat(A′) being NP-complete
then A is isomorphic to a direct product M × D, where M is
an affine algebra and D is a subdirect product of 2-element
algebras each of which is polynomially equivalent to the 2-
element lattice.

2. If A decomposes into a direct product M × D, where M is
an affine algebra and D is a subdirect product of 2-element
algebras each of which is polynomially equivalent to the 2-
element lattice, then for every quotient A′ of A the problem
MCsat(A′) is solvable in polynomial time.

Our constructions used to show that lack of nice structure of the
algebra A leads to intractability of Csat(A) can be also modified to
work for intractability of Ceqv(A) so that we are able to prove a
partial converse to Theorem 2.7.

Theorem 2.15. LetA be a finite algebra from a congruence modular
variety. If A has no quotient A′ with Ceqv(A′) being co-NP-complete
then A is nilpotent.

3 The methods
The reductions we have produced to show intractability of the
considered problems are based on the local behavior described
by another deep tool of universal algebra known as tame congru-
ence theory. This theory, created and described by D. Hobby and
R. McKenzie in [16], is a perfect tool for studying the local structure

of finite algebras. Instead of considering the whole algebra and
all of its operations at once, tame congruence theory allows us to
localize to small subsets on which the structure is much simpler to
understand and to handle. According to this theory there are only
five possible ways a finite algebra can behave locally. The local
behavior must be one of the following:

1. a finite set with a group action on it,
2. a finite vector space over a finite field,
3. a two element Boolean algebra,
4. a two element lattice,
5. a two element semilattice.

For an algebra A the set typ{A} ⊆ {1, 2, 3, 4, 5} consists of types
describing local behavior in A.

Now, if from our point of view a local behavior of an algebra is
‘bad’ then we can often show that the algebra itself behaves ‘badly’.
For example, sinceCsat orCeqv is intractable in 2-element Boolean
algebra one can argue that in any finite algebra with tractable Csat
or Ceqv type 3 cannot occur.

Theorem 3.1. If A is finite algebra from a congruence modular
variety such that 3 ∈ typ{A}, then Csat(A) is NP-complete and
Ceqv(A) is co-NP-complete.

For a finite algebra A from a congruence modular variety we
have typ{A} ⊆ {2, 3, 4}. Thus in view of theorem 3.1 we are left
with an analysis of different kinds of interactions between local
behaviors of types 2 and 4. First we can separate these two types:
the abelian type 2 and the lattice (non-abelian) type 4.

Theorem 3.2. Let A be a finite subdirectly irreducible algebra from
a congruence modular variety with an abelian monolith. Then A is
solvable i.e. typ{A} ⊆ {2} or Csat(A) is NP-complete.

Theorem 3.3. Let A be a finite subdirectly irreducible algebra from
a congruence modular variety with a non-abelian monolith. Then
typ{A} ⊆ {4} or Csat(A) is NP-complete.

Slightly more technical (but equivalent) conditions than those
described in Theorems 3.2 and 3.3 form an important step towards
the description described in Theorem 2.11.

Theorem 3.4. If A is finite algebra from a congruence modular
variety then either A is isomorphic to a direct product S × D, where
typ{S} ⊆ {2} and typ{D} ⊆ {4} or Csat(A) is NP-complete.

Now in view of Theorem 3.4 it suffices to understand solvable
algebras (i.e. those with typset {2}) and algebras with typset {4}.
With the help of another interpretation we can show that solvable
algebra have in fact to be nilpotent.

Theorem 3.5. If a finite algebra A from a congruence modular va-
riety is solvable but not nilpotent then A has a homomorphic image
A′ with Csat(A′) being NP-complete.

The control of type 4 behavior with tractable Csat is much more
involved. We show that every subdirectly irreducible algebra of
type 4 is simple and in fact has only 2 elements. Thus we have:

Theorem 3.6. Let A be a finite algebra from a congruence modular
variety and typ{A} = {4}. Then either A is a subdirect product of
2-element algebras each of which is polynomially equivalent to the
2-element lattice, or A has a subdirectly irreducible homomorphic
image A′ such that Csat(A′) is NP-complete.
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Now combining Theorem 3.4 with Theorem 3.5 and Theorem
3.6 we get the first part of Theorem 2.11.

The proof of the second part of Theorem 2.11 splits into two cases.
We show that for both factors of A, namely N and D, the problem
has polynomial time solution. Actually we will show that in both
cases if the polynomial equation t(x) = s(x) has a solution x =
(x1, . . . ,xn ) ∈ An then it has a solution in a relatively small subset
S of An , namely in a subset with size bounded by a polynomial
in n. The reader should be however warned here that we are not
claiming that all solutions are contained in this small set S .

The size of set S ⊆ An to which we reduce our search for a so-
lution to t(x1, . . . ,xn ) = s(x1, . . . ,xn ) is bounded by a polynomial
depending on n, i.e. on the number of variables in t and s, and in
other words on the number of inputs gates in corresponding circuit.
In fact the size of term/polynomials t and s or the corresponding
circuit can be arbitrary larger then the number n (of variables or
input gates). Thus our arguments do not depend whether the size of
the input is the size of circuit (graph) or the size of corresponding
polynomial (length of the syntactic expression).

First we show how to find this small sets in the factor D, i.e. we
prove the following.

Theorem 3.7. Let D be a subdirect product of finitely many 2-
element algebras each of which is polynomially equivalent to the
2-element lattice. Then Csat(D) is solvable in polynomial time.

Proof. The basic observation is that for the 2-element lattice L,
and therefore for every algebra polynomially equivalent to the 2-
element lattice, the problem Csat(L) is solvable in polynomial time
by a very special algorithm.

Indeed, if t, s ∈ Pol L the equation t(x) = s(x) has a solution,
say (a1, . . . ,an ), then both t(a1, . . . ,an ) and s(a1, . . . ,an ) have the
same value a. But for a polynomial t over the 2-element lattice
one can easily show, that if t(a1, . . . ,an ) = a then t(a, . . . ,a) = a.
Indeed, by the monotonicity of the polynomials of L we have

t(0, . . . , 0) ⩽ t(a1, . . . ,an ) ⩽ t(1, . . . , 1)

and if t(a1, . . . ,an ) = 0 then t(0, . . . , 0) has to be 0 as well. Similarly
t(a1, . . . ,an ) = 1 implies t(1, . . . , 1) = 1.

Therefore, to determine if t(x) = s(x) has a solution over L it
suffices to show whether t(a, . . . ,a) = s(a, . . . ,a) for some a ∈ L.

We say that an algebra A has Uniform Solution Property, or USP
for short, if for every polynomial t(x) ∈ Pol A and a ∈ A(∃x t(x1, . . . ,xn ) = a

)
⇒ t(a, . . . ,a) = a

What we have just shown is that the 2-element lattice has USP, and
that Csat(A) is polynomially time solvable for every finite algebra
A with USP.

Now we can conclude the proof by noting that a subdirect prod-
uct of algebras with USP, has USP itself. Actually USP is preserved
under forming homomorphic images, subalgebras, products or
reducts. □

The reduction of searching a solution of an equation in su-
pernilpotent realm to a relatively small set is much more involved
than in lattice case. Our proof is modeled after the Ramsey type
argument introduced by Mikael Goldmann and Alexander Russell
in [11] for nilpotent groups, and later cleaned up by Gábor Horváth
[17] in the realm of nilpotent groups and nilpotent rings.

Theorem 3.8. Let A be a finite supernilpotent algebra from a con-
gruence modular variety. Then Csat(A) is solvable in polynomial
time.

Proof. The idea of our construction of the set S relies on the follow-
ing property of supernilpotent algebras

(∗) For every finite supernilpotent algebra A and a ∈ A there
is a positive integer d such that every equation of the form
w(x) = a has a solution iff it has a solution such that |{i : xi , a}| ⩽
d .

Given (∗) we simply check if w(x1, . . . ,xn ) = a has a solution
among

(n
d
)
· |A|d possible evaluations of the xi ’s with |{i : xi , a}| ⩽

d . Unfortunately the degree d of the polynomial bounding the run
time of the algorithm can be really huge, as it is obtained by a
Ramsey type argument applied to the numbers:

• k – the degree of supernilpotency of the algebra A,
• C = |A|k · |A | ,
• m = (k − 1)! · |A|

to get that:
(∗∗) There is a positive integer d such that for every set S with

|S | ⩾ d and every coloring of all at most (k − 1)-element
subsets of S with C colors there existsm-element subset T
of S such that all at most (k − 1)-element subsets of T with
the same number of elements have the same color.

□

Very recently the authors have been informed byM. Kompatscher
about his independent proof of Theorem 3.8 (see [29])

4 Conclusions and open problems
A short informal summary of these results is completed in the
following table, where ‘DL-like’ stays for being a subdirect product
of algebras polynomially equivalent to 2-element lattices.

tractable open intractable

Ceqv supernilpotent nil but not non nilpotent
Aichinger & supernil

Mudrinski [1] Thm 2.15

Csat supernil×DL-like nil but not non (nil×DL-like)
Thm 2.11 (2) supernil Thm 2.11 (1)

MCsat affine×DL-like — otherwise
Cor 2.14 (2) Cor 2.14 (1)

SCsat affine otherwise
Gaussian elimination — Larose, Zádori [30]

An obvious open question is the following:

Problem 2. Determine the computational complexity of Ceqv and
Csat for nilpotent, but not supernilpotent finite algebras from con-
gruence modular varieties.

Two polynomial time algorithms presented in this paper i.e. in
the proofs of Theorem 3.7 and Theorem 3.8 are based on a similar
idea. We prove that if an equation has a solution then it must have
one among relatively small set S of tuples (although there may
exist some other solutions outside the set S). Moreover our proofs
show that set S depends only on the number of variables occurring
in the equation but not on the structure/syntax of the equation.
Now, to decide the existence of solution the algorithms evaluate
the polynomials (i.e compute the values on output gates) on tuples
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from this small set S . It seems however that in the nilpotent but
not supernilpotent setting there is no chance for a polynomial time
algorithm for Csat or Ceqv based on this kind of ideas. In fact
our results contained in [25] confirm this claim. We proved that if
P , NP then for some nilpotent but not supernilpotent algebras
A there is no polynomial time algorithm which solves Csat(A) by
reducing to the search space S depending only on the number of
variables.

On the other handwe provide in [25] polynomial time algorithms
for Ceqv

(
Bpq

)
and Csat

(
Bp2

)
, where Bpq are algebras defined in

Example 2.13, and we believe that Csat and Ceqv for all finite
nilpotent algebras (of finite type) can be shown to be in P.

Another question that arises naturally is the role of quotient
algebras in the proofs of NP-completeness of considered problems.
Note that the result of B. Larose and L. Zádori [30] for SCsatmakes
no use of quotient algebras. This is because a quotient of an affine
algebra is affine itself.

Example 2.10 shows that in general it is not enough to establish
NP-completeness for a quotient algebra to conclude the hardness
for the original one. However it may suffice in some more restricted
settings like for example congruence modularity. In concrete alge-
braic structures where basic operations are described explicitly it
might be much easier. In fact in structures described in Examples
2.4, 2.5 and 2.6, passing to quotients is hidden in the hardness proofs
and (implicitly) replaced by an involved control over congruences
in groups, rings or lattices, respectively.

Problem3. Is it true thatNP-completeness ofCsat for some quotient
of a finite algebra A from a congruence modular variety implies NP-
completeness of Csat for A itself.

Even if the answer to Problem 3 would be negative the next one
remains open.

Problem 4. Do the characterizations of Theorems 2.11 (1), 2.15 and
Corollary 2.14 (1) remain true without passing to quotient algebras.

Note here that when restricting to equations of the form

t(x1, . . . ,xn ) = c

where t is a polynomial but c is a constant, the satisfiability in
the quotient A/θ reduces to the satisfiability of at least one of the
equations in the following disjunction

t(x1, . . . ,xn ) = c1 ∨ . . . ∨ t(x1, . . . ,xn ) = cs ,

where {c1, . . . , cs } is the equivalence class of c modulo θ . This Cook
style reduction gives the hope to attack the following problem.

Problem 5. Characterize finite algebras A for which determining
the existence of a solution to the equations of the form t(x) = c can
be done in polynomial time.

In view of Problem 1, the natural conjecture about dichotomy
for Csat is not so evident. However there is a slightly bigger hope
for such dichotomy after:

• restricting Csat to the equations of the form t(x) = c , and
• relaxing many-to-one reductions to Cook reductions.

Problem 6. Prove the dichotomy in the above settings.
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