
Математическая логика
и логическое программирование

mk.cs.msu.ru → Лекционные курсы
→ Математическая логика и логическое программирование (3-й поток)

Блок 47

Логические программы:
оператор отрицания,
SLDNF-резолюция

Лектор:
Подымов Владислав Васильевич

E-mail:
valdus@yandex.ru

ВМК МГУ, 2024/2025, осенний семестр
Математическая логика и логическое программирование, Блок 47 1/12

https://mk.cs.msu.ru


Оператор отрицания (not)

Оператор отрицания not — это особый встроенный оператор,
устроенный так:
I not — это не предикатный символ, не функциональный символ и не

константа
I На месте атома в запросе или в теле правила может быть записано

выражение not(A),1 где A — это атом
I В декларативной семантике not(A) отвечает формуле ¬A в

допущении замкнутости мира

А с операционной семантикой оператора not попробуем разобраться
отдельно

Чтобы не перегружать материал тем, что относится к общему случаю и
представляет в основном теоретический интерес, ограничимся
семантикой not для стандартной стратегии вычисления

1 В Prolog это записывается так: «\+ A»
Математическая логика и логическое программирование, Блок 47 2/12



Оператор отрицания (not)

Хотелось бы устроить вычисление логической программы P так, чтобы
для подцели not(A) интерпретатор программ хотя бы для основных
атомов A продолжал вычисление, если ΦP |=cwa ¬A, а иначе
констатировал тупик

Проверка этого соотношения для ХЛП P равносильна проверке того,
что не существует ни одного успешного вычисления P

При обсуждении теоремы Чёрча был показано, что задача такой
проверки алгоритмически неразрешима (и тем более неразрешима для
ХЛП с оператором not)

Значит, в полной мере и эффективно воплотить допущение замкнутости
мира в операционной семантике логических программ не получится

Придётся пойти на компромисс и учесть оператор not «достаточно
разумно», сохранив эффективность вычислений

Математическая логика и логическое программирование, Блок 47 3/12



SLDNF-резолюция
Правило SLDNF-резолюции (SLD with Negation as Failure) — это аналог
правила SLD-резолюции, использующийся для логических программ с
отрицанием

Есть несколько строгих формулировок этого правила, и для примера
обсудим формулировку, наиболее приближенную к «реальному»
вычислению логических программ согласно стандартной стратегии

Как и для встроенных предикатов, семантику not можно задать как
сочетание критерия выполнимости и унификатора:
I Критерий выполнимости not(A): строится (обходится) дерево

вычислений для запроса ?A (вспомогательное дерево), и обход
этого дерева вполне неуспешен согласно изложенному далее

I Унификатор: ε

Остальные понятия для вычислений программ (успешное вычисление,
результат вычисления, вычислимый ответ, дерево вычислений)
вводятся так же, как для «SLD», с заменой «SLD» на «SLDNF»
Математическая логика и логическое программирование, Блок 47 4/12



SLDNF-резолюция
При построении вспомогательного дерева возможны три исхода:

1. В процессе обхода дерева получен �
I Обнаружены успешное вычисление и вычисленный им ответ
I В этом случае обход дерева успешен

2. Дерево построено, оно конечно, и в нём нет ни одного �
I По итогам обхода не обнаружено ни одно успешное вычисление
I В этом случае обход дерева вполне неуспешен

3. Дерево и возникающие вспомогательные деревья обходятся
бесконечно, и в строящемся фрагменте дерева нет ни одного �
I Значит, программа «зациклилась» при проверке

вполне-неуспешности дерева
I В этом случае обход дерева неуспешен, но не вполне
I Соответствующее вычисление программы (для исходного запроса)

признаётся бесконечным («сингулярная бесконечность»), и обход
исходного дерева и всех остальных вспомогательных поддеревьев
немедленно завершается

Математическая логика и логическое программирование, Блок 47 5/12



SLDNF-резолюция

Теорема (о корректности SLDNF-резолюции). Для любой ХЛП с
операторами отрицания P и любого запроса с операторами
отрицания Q верно следующее: результат любого успешного
SLDNF-резолютивного вычисления P на Q является правильным
ответом в допущении замкнутости мира

Доказательство опустим: времени потратим много, а пользы будет
мало

А аналогичная теорема о полноте оказывается неверной из-за
I использования стандартной стратегии вычисления

(этого можно было бы избежать) и
I возможного появления бесконечных вспомогательных деревьев

(а этого избежать в общем случае не выйдет)

Математическая логика и логическое программирование, Блок 47 6/12



SLDNF-резолюция
Примеры

1 : p(X)← q(X),not(r(X));
2 : q(a); 3 : q(b);
4 : r(b); 5 : r(X)← p(c);

Дерево SLDNF-резолютивных вычислений этой программы для запроса
?p(X) и стандартной стратегии вычисления:

?p(X)

?q(X),not(r(X))

1, {X′/X}

?not(r(a))

2, {X/a}

?r(a)

?p(c)

5, {X′/a}

?q(c),not(r(c))

1, {X′/c}

тупик

�

ε

ответ: {X/a}

?not(r(b))

3, {X/b}

?r(b)

�

4, ε

тупик

Математическая логика и логическое программирование, Блок 47 7/12



SLDNF-резолюция
Примеры

1 : p(X)← not(r(X)), q(X);
2 : q(a); 3 : q(b);
4 : r(b); 5 : r(X)← p(c);

Дерево SLDNF-резолютивных вычислений этой программы для запроса
?p(X) и стандартной стратегии вычисления:

?p(X)

?not(r(X)), q(X)

1, {X′/X}

?r(X)

�

4, {X/b}

тупик

Математическая логика и логическое программирование, Блок 47 8/12



SLDNF-резолюция
Примеры

1 : p(X)← q(X),not(r(X));
2 : q(a); 3 : q(b);
4 : r(X)← r(X);

Дерево SLDNF-резолютивных вычислений этой программы для запроса
?p(X) и стандартной стратегии вычисления:

?p(X)

?q(X),not(r(X))

1, {X′/X}

?not(r(a))

2, {X/a}

?r(a)

?r(a)

4, {X′/a}

?r(a)

4, {X′/a}

. . .

4, {X′/a} ∞

Математическая логика и логическое программирование, Блок 47 9/12



SLDNF-резолюция
Примеры

1 : p(X)← not(r(X)), q(X);
2 : q(a); 3 : q(b);
4 : r(X)← p(X);

Дерево SLDNF-резолютивных вычислений этой программы для запроса
?p(X) и стандартной стратегии вычисления:

?p(X)

?not(r(X)), q(X)

1, {X′/X}

?r(X)

?p(X)

4, {X′/X}

?not(r(X)), q(X)

1, {X′/X}

?r(X)

?p(X)

4, {X′/X}

?not(r(X)), q(X)

1, {X′/X}

. . .

∞

Математическая логика и логическое программирование, Блок 47 10/12



SLDNF-резолюция
Более «осмысленный» пример

Логическая программа, такая что p(X, L, M) вычисляет в X произвольный
элемент списка L, не содержащийся в списке M:

1 : p(X, L, M)← e(X, L),not(e(X, M));
2 : e(X, X.L);
3 : e(X, Y.L)← e(X, L);

Единственный правильный ответ на запрос ?p(X, a.b.nil,b.c.nil) в
допущении замкнутости мира: {X/a}

Математическая логика и логическое программирование, Блок 47 11/12



SLDNF-резолюция
Более «осмысленный» пример

1 : p(X, L, M)← e(X, L),not(e(X, M));
2 : e(X, X.L); 3 : e(X, Y.L)← e(X, L);

Дерево SLDNF-резолютивных вычислений этой программы для
?p(X, a.b.nil,b.c.nil) и стандартной стратегии вычисления:

?p(X, a.b.nil,b.c.nil)

?e(X, a.b.nil),not(e(X,b.c.nil))

1, . . .

?not(e(a,b.c.nil))
2, {X/a, . . . }

?e(a,b.c.nil)

?e(a, c.nil)
3, . . .

?e(a,nil)
3, . . .

тупик
�

ε

ответ: {X/a}
?e(X,b.nil),not(e(X,b.c.nil))

3, . . .

?not(e(b,b.c.nil))

2, {X/b, . . . }
?e(b,b.c.nil)

�

2, . . .

тупик
?e(X,nil),not(e(X,b.c.nil))

3, . . .

тупик

Математическая логика и логическое программирование, Блок 47 12/12


