
Дополнительные главы дискретной математики
и кибернетики

Презентации к лекциям по частям I, II: конечные автоматы,
машины Тьюринга, рекурсивные функции и сложностные классы

Савицкий Игорь Владимирович

факультет ВМК МГУ

осень 2023

1/227

Лекция 1
Конечные автоматы-распознаватели.

Правоинвариантные отношения эквивалентности.
Теоретико-множественные операции над автоматными

множествами.

2/227

Операции над словами

Определение
Алфавит A — это непустое множество символов.
A∗ — это множество слов (конечной длины) в алфавите A,
включая пустое слово Λ.
Длина |w| слова w ∈ A∗ — это количество символов в слове w.
Длина пустого слова Λ есть нуль.

Определение
Конкатенация слов u = ai1 . . . aik ∈ A∗ и v = bj1 . . . bjl ∈ A∗ — это
слово

u ∗ v = uv = ai1 . . . aikbj1 . . . bjl ∈ A
∗.

При этом для любого w ∈ A∗ определяем Λw = wΛ = w.
Возведение в степень: an = a ∗ . . . ∗ a︸ ︷︷ ︸

n раз

при n ∈ N; a0 = Λ.

3/227

Конечные автоматы

Конечный автомат-распознаватель — это абстрактное
вычислительное устройство, предназначенное для распознавания
множества слов.

Определение
Конечный автомат (распознаватель) — это A = (A,Q, f, q1, F), где

A 6= ∅ — входной алфавит (часто задан заранее и не является
частью автомата),
Q 6= ∅ — множество состояний,
f : A×Q→ Q — функция переходов,
q1 ∈ Q — начальное состояние,
F ⊆ Q — множество заключительных состояний.

4/227

Конечные автоматы

Работа автомата
На вход автомату подаётся слово x ∈ A∗. Через x(t) обозначаем
t-й символ входного слова.
Автомат работает в дискретном времени: t = 1, 2, . . . На каждом
такте t автомату подаётся очередной символ x(t).
На каждом такте t автомат меняет своё состояние q(t) согласно
каноническим уравнениям:{

q(t) = f(x(t), q(t− 1)),

q(0) = q1.

После обработки всего слова x автомат останавливается в
состоянии q(|x|). Если это состояние принадлежит F , то автомат
допускает слово x. Иначе он отвергает это слово.

5/227

Конечные автоматы
Диаграмма Мура

Пусть A — входной алфавит автомата, k = |A|.
Каждому состоянию автомата соответствует вершина графа.
Из каждой вершины исходит k дуг, помеченных символами
алфавита A. Они показывают, куда переходит автомат из каждого
состояния под действием каждого символа.
Начальное состояние помечено ∗. Заключительные состояния
помечены f .

Пример
A = {0, 1}, Q = {q1, q2, q3}, F = {q2}, диаграмма Мура
автомата:

∗ f0
1 0, 1

0, 1
q1 q2 q3

Автомат допускает слова вида 1n0, n ⩾ 0.

6/227

Конечные автоматы

Конечно-автоматные множества
Пусть A — автомат с входным алфавитом A. Тогда D(A) — это
множество всех слов из A∗, которые допускает автомат A.
Множества вида D(A) (где A — конечный автомат), называются
конечно-автоматными.

7/227

Правоинвариантные отношения эквивалентности

Определение
Отношение ∼ ⊆ A∗ ×A∗ — отношение эквивалентности, если

∀ a ∈ A∗ a ∼ a,
∀ a, b ∈ A∗ a ∼ b ≡ b ∼ a,
∀ a, b, c ∈ A∗ (a ∼ b) & (b ∼ c)→ a ∼ c.

Определение
Множество A∗ разбивается отношением ∼ на классы
эквивалентности: максимальные множества попарно
эквивалентных элементов.
Индекс отношения эквивалентности — это число классов
эквивалентности.

8/227

Правоинвариантные отношения эквивалентности

Отношение эквивалентности, связанное с автоматом
Пусть A = (A,Q, f, q1, F) — автомат, Q = {q1, . . . , qr}.
Тогда A∗ = X1 ∪ . . . ∪Xr, где Xi — это множество слов, которые
переводят автомат A из состояния q1 в состояние qi. Ясно, что
множества Xi попарно не пересекаются. В частности, Λ ∈ X1.
Пустые множества Xi исключаем из набора.
По разбиению A∗ на Xi обычным образом введём на A∗

отношение эквивалентности ∼ : a ∼ b ⇐⇒ (∃i)(a, b ∈ Xi).
Это отношение называем отношением эквивалентности
автомата A и обозначаем ∼A. Оно обладает следующими
свойствами:

1. Отношение ∼A имеет конечный индекс (конечное число классов
эквивалентности).

2. Отношение ∼A правоинвариантно: если a ∼A b и c ∈ A∗,
то ac ∼A bc.

9/227

Правоинвариантные отношения эквивалентности

Определение
Отношение эквивалентности ∼ имеет конечный индекс, если
число его классов эквивалентности конечно.
Отношение эквивалентности ∼ ⊆ A∗ ×A∗ является
правоинвариантным, если

∀ a, b, c ∈ A∗ (a ∼ b)→ (ac ∼ bc).

10/227

Правоинвариантные отношения эквивалентности

Построение автомата по правоинвариантной эквивалентности
Пусть на A∗ задано правоинвариантное отношение
эквивалентности ∼, которое разбивает A∗ на конечное число
классов эквивалентности K1, . . . ,Kr, причём Λ ∈ K1.
Определим автомат A = (A, {K1, . . . ,Kr}, h, K1, F). Множество
F определяется произвольно.
Определим функцию переходов h:
Для каждых класса Ki и aj ∈ A выбираем любое a ∈ Ki. Тогда
aaj ∈ Kl для некоторого l. Задаём h(aj ,Ki) = Kl.
За счёт правоинвариантности отношения класс Kl не зависит от
выбора a: если a, b ∈ Ki, то aaj и baj принадлежат одному и тому
же классу Kl. Поэтому функция переходов задана корректно.
Каждый класс Ki совпадает со множеством слов, которые
переводят автомат A из состояния K1 в состояние Ki.

11/227

Правоинвариантные отношения эквивалентности

Отношение эквивалентности ∼A автомата A, построенного по
правоинвариантному отношению эквивалентности ∼ конечного
индекса, совпадает с отношением ∼.
Результаты построений сформулируем в виде теоремы.

Теорема 1
Отношение эквивалентности ∼A любого автомата A является
правоинвариантным и имеет конечный индекс.
Для каждого правоинвариантного отношения эквивалентности ∼
конечного индекса можно построить конечный автомат A,
отношение эквивалентности ∼A которого совпадает с ∼.

12/227

Правоинвариантные отношения эквивалентности

Теорема 2
Всякое непустое конечно-автоматное множество есть объединение
некоторого числа классов подходящего правоинвариантного
отношения эквивалентности конечного индекса.
Обратно, объединение любого числа классов произвольного
правоинвариантного отношения эквивалентности конечного
индекса является конечно-автоматным множеством.

13/227

Правоинвариантные отношения эквивалентности

Доказательство (автоматность ⇒ классы эквивалентности)
Пусть имеется непустое конечно-автоматное множество D(A).
Автомат A всегда можно выбрать так, чтобы в нём не было
недостижимых из q1 состояний.
Пусть A = (A,Q, f, q1, F) — автомат, Q = {q1, . . . , qr}, а
F = {qi1 , . . . , qis}.
A∗ = X1 ∪ . . . ∪Xr, где Xi — это множество слов, которые
переводят автомат A из состояния q1 в состояние qi.
X1, . . . , Xr — классы эквивалентности отношения эквивалентности
∼A автомата A. По теореме 1 отношение ∼A правоинвариантно.
Ясно, что D(A) = Xi1 ∪ . . . ∪Xis . То есть конечно-автоматное
множество является объединением некоторых классов
эквивалентности некоторого правоинвариантного отношения
эквивалентности конечного индекса.

14/227

Правоинвариантные отношения эквивалентности

Доказательство (классы эквивалентности ⇒ автоматность)
Пусть имеется правоинварантное отношение эквивалентности ∼
конечного индекса на A∗ с классами эквивалентности K1, . . . ,Kr

и X = Ki1 ∪ . . . ∪Kis — объединение некоторых классов
эквивалентности.
Тогда по теореме 1 мы можем построить конечный автомат A,
отношение эквивалентности ∼A которого совпадает с ∼.
Автомат будет иметь состояния K1, . . . ,Kr, причём Ki совпадает
со множеством слов, которые переводят автомат A из состояния
K1 в состояние Ki.
Тогда выберем множество заключительных состояний
F = {Ki1 , . . . ,Kis}. Получится, что D(A) = Ki1 ∪ . . . ∪Kis , то
есть множество X конечно-автоматно.

15/227

Правоинвариантные отношения эквивалентности

Правоинвариантные отношения эквивалентности можно
использовать для доказательства того, что множество не является
конечно-автоматным.

Пример
Докажем, что X = {an1an2 | n ∈ N}, где a1, a2 ∈ A, не является
конечно-автоматным. От противного.
Пусть X — конечно-автоматное множество. Тогда оно является
объединением некоторых классов эквивалентности
правоинвариантного отношения ∼ конечного индекса.
Выберем такие i 6= j, что ai1 ∼ a

j
1. Это возможно, так как классов

эквивалентности конечное число.
Тогда ai1a

i
2 ∼ a

j
1a

i
2. Но это невозможно, т. к. ai1a

i
2 ∈ X, a

j
1a

i
2 /∈ X.

Значит X не конечно-автоматно.

16/227

Операции над автоматными множествами

Операция дополнения X

Дополнение: X = A∗ \X.
Пусть X — конечно-автоматное множество.
X = D(A), A = (A,Q, f, q1, F).
Тогда X = D(A′), где A′ = (A, Q, f, q1, Q \ F).
Поэтому X — конечно-автоматное множество.
Операция дополнения сохраняет конечную автоматность
множеств.

17/227

Операции над автоматными множествами

Операция пересечения X ∩ Y

Пусть X,Y ⊆ A∗ — конечно-автоматны. Тогда существуют два
правоинвариантных отношения эквивалентности конечного
индекса ∼1,∼2 такие, что
K1, . . . ,Ku — классы эквивалентности ∼1 и X = Ki1 ∪ . . . ∪Kis ,
а L1, . . . , Lv — классы эквивалентности ∼2 и Y = Li1 ∪ . . . ∪ Lit .
Введём отношение эквивалентности ∼3 с классами
эквивалентности M1, . . . ,Mp — всеми непустыми пересечениями
вида Ki ∩ Lj . Оно правоинвариантно.
Тогда X ∩ Y — объединение всех непустых пересечений вида
Kim ∩ Lin , то есть некоторых классов ∼3.
Поэтому X ∩ Y конечно-автоматно. Операция пересечения
сохраняет конечную автоматность множеств.

18/227

Операции над автоматными множествами

Иллюстрация пересечений классов

K1 K2 K3

L1 K1 ∩ L1 K2 ∩ L1 K3 ∩ L1

L2 K1 ∩ L2 K2 ∩ L2 K3 ∩ L1

L3 K1 ∩ L3 K2 ∩ L3 K3 ∩ L1

X ∪ Y = X ∩ Y . Поэтому операция объединения тоже сохраняет
конечную автоматность множеств.

19/227

Операции над автоматными множествами

Сформулируем полученные результаты в виде теоремы.

Теорема 3
Класс всех конечно-автоматных множеств замкнут относительно
теоретико-множественных операций дополнения, объединения и
пересечения.

Другие теоретико-множественные операции выражаются с
помощью операций объединения, пересечения и дополнения и
тоже сохраняют конечную автоматность множеств.
Например, X \ Y = X ∩ Y .

20/227

Лекция 2
Недетерминированные конечные автоматы. Операции

произведения и итерации автоматных множеств.
Регулярные выражения и регулярные множества.

21/227

Недетерминированные конечные автоматы

В отличие от обычного конечного автомата,
недетерминированный конечный автомат из одного и того же
состояния под действием одной и той же буквы может переходить
в разные состояния.

Определение
Недетерминированный конечный автомат — это (A,Q, f, q1, F), где

A 6= ∅ — входной алфавит,
Q 6= ∅ — множество состояний,
f : A×Q→ 2Q \ {∅} — функция переходов (по символу и
состоянию выбирается подмножество состояний),
q1 ∈ Q — начальное состояние,
F ⊆ Q — множество заключительных состояний.

22/227

Недетерминированные конечные автоматы

Работа недетерминированного автомата
На вход автомату подаётся слово x ∈ A∗. На каждом такте t
автомату подаётся очередной символ x(t).
На каждом такте t автомат меняет своё состояние q(t) согласно
следующим условиям:{

q(t) ∈ f(x(t), q(t− 1)),

q(0) = q1.

После обработки слова x автомат останавливается в состоянии
q(|x|). Автомат может обработать одно и то же слово разными
способами в зависимости от выбора q(t) на каждом шаге.
Если хотя бы один способ обработки слова x приводит к
состоянию из F , то автомат допускает слово x. Иначе он
отвергает это слово.

23/227

Недетерминированные конечные автоматы

Пример недетерминированного автомата

∗
0, 1

1

f
0, 1

0, 1

0, 1

f
0

0

0
1

1

0

1

0

1

На диаграмме Мура из одного
состояния может исходить
несколько стрелок с одним и тем
же символом.

Обычный автомат является частным случаем
недетерминированного.

24/227

Недетерминированные конечные автоматы

Теорема 4
Класс множеств, допускаемых недетерминированными конечными
автоматами, совпадает с классом конечно-автоматных множеств.

Доказательство
Если множество конечно-автоматно, то оно допускается
недетерминированным конечным автоматом, так как обычный
автомат является частным случаем недетерминированного.
Пусть A = (A,Q, f, q1, F) — недетерминированный автомат,
X = D(A). Обозначим r = |Q|.
Построим конечный автомат A′, который допускает множество X.
Выберем A′ = (A, 2Q \ {∅}, h, {q1}, F ′).
F ′ — это множество всех подмножеств Q, которые пересекаются
с F .

25/227

Недетерминированные конечные автоматы

Доказательство (продолжение)
Задаём h : h(ai, {qj1 , . . . , qjs}) = f(ai, qj1) ∪ . . . ∪ f(ai, qjs).
Моделирование автоматом A′ работы A:

1. В начальный момент A′ находится в состоянии {q1}.
2. Во второй момент времени A′ находится в состоянии f(x(1), q1).
3. В каждый момент времени A′ находится в состоянии U , которое

состоит из всех состояний qi, в которые A мог бы прийти к этому
моменту времени.

4. В конце работы автомат A′ попадает в некоторое состояние V .
Если V пересекается с F , то хотя бы в одном способе обработке
слова A попадает в состояние из F , и входное слово входит
в X = D(A). В противном случае входное слово не входит в X.

Таким образом, построен конечный автомат A′ такой,
что X = D(A′). Значит, X конечно-автоматно.

26/227

Операция произведения множеств

Определение
Пусть X,Y ⊆ A∗. Произведение X и Y есть

X · Y = {xy | x ∈ X, y ∈ Y }, X ·∅ = ∅ ·X = ∅.

Теорема 5
Класс конечно-автоматных множеств замкнут относительно операции
произведения.

Доказательство
Пусть A = (A,Q, f, q1, F),B = (A,Q′, f ′, q′1, F

′) — конечные
автоматы, X = D(A), Y = D(B), Q ∩Q′ = ∅.
Строим недетерминированный конечный автомат
C = (A, Q ∪Q′, h, q1, F̃), допускающий множество X · Y .

27/227

Операция произведения множеств
Доказательство (продолжение)

a
b

a a

b

b

q′1q1 F F ′

BA

∗

h(ai, q) =


{f(ai, q)}, q ∈ Q \ F,
{f(ai, q), f ′(ai, q′1)}, q ∈ F,
{f ′(ai, q)}, q ∈ Q′.

Если q′1 /∈ F ′, то F̃ = F ′. Если q′1 ∈ F ′, то F̃ = F ∪ F ′.
Автомат на состояниях Q распознаёт слово из X, а на состояниях
Q′ — слово из Y . Поскольку переход из Q в Q′ обязателен и
однократен, итоговый автомат распознаёт слова из XY . Если
Λ ∈ Y , то X ⊆ X · Y , поэтому F ⊆ F̃ .

28/227

Операция итерации множества

Определение
Пусть X ⊆ A∗. Xn = X ·X · . . . ·X︸ ︷︷ ︸

n

, X0 = {Λ}.

Пусть X ⊆ A∗. Итерация X есть

X∗ = X0 ∪X1 ∪X2 ∪ . . . , ∅∗ = ∅.

Особенности итерации
∅∗ = ∅, {Λ}∗ = {Λ}.
Если a 6= Λ, a ∈ X, то Λ, a, a2, . . . ∈ X∗ и X∗ — бесконечное
множество.

29/227

Операция итерации множества

Теорема 6
Класс конечно-автоматных множеств замкнут относительно операции
итерации.

Доказательство
Если X = ∅, то утверждение теоремы очевидно. Далее считаем
X 6= ∅.
Пусть A = (A,Q, f, q1, F) — конечный автомат, X = D(A).
Строим недетерминированный конечный автомат
C = (A, Q, h, q1, F), допускающий множество X1 ∪X2 ∪ . . .

h(ai, q) =

{
{f(ai, q)}, q ∈ Q \ F,
{f(ai, q), f(ai, q1)}, q ∈ F.

30/227

Операция итерации множества

Доказательство (продолжение)

a
bq1 F

A

∗
a

a

b
b

Автомат на состояниях Q распознаёт слово из X. Когда слово
распознано, он может продолжить распознавать слово из X или
начать новую итерацию и распознавать слово из X сначала.
Если автомат C не использует новые «обратные» переходы, то он
допускает слова из X. Если он использует их один раз, то
допускает слова из X2 и т. д. Поэтому C допускает X1 ∪X2 ∪ . . .
Очевидно, {Λ} конечно-автоматно. Тогда X∗ конечно-автоматно
как объединение X1 ∪X2 ∪ . . . и {Λ}.

31/227

Промежуточные итоги

Класс конечно-автоматных множеств можно охарактеризовать в
терминах правоинвариантных отношений эквивалентности.
Класс конечно-автоматных множеств замкнут относительно
операций , ∪, ∩, ·, ∗.

32/227

Регулярные выражения и множества
Определение
Пусть A = {a1, . . . , am} — конечный алфавит.

∅, {Λ}, {ai}, i = 1,m — регулярные множества, обозначаемые
регулярными выражениями ∅, Λ, ai, i = 1,m соответственно.
Если X,Y — регулярные множества, обозначаемые регулярными
выражениями α, β, то X ∪ Y, X · Y, X∗ — регулярные множества,
обозначаемые регулярными выражениями (α ∪ β), (α · β), (α)∗.

Схема задания регулярных выражений и множеств

Регулярное выражение Регулярное множество
∅ пустое множество
Λ {Λ}

ai, i = 1,m {ai}, i = 1,m
α, β — регулярные выражения X,Y — регулярные множества

α∗, α · β, α ∪ β X∗, X · Y, X ∪ Y

33/227

Регулярные выражения и множества

Запись регулярных выражений
Скобки можно опускать с учётом приоритета операций: ∗, ·, ∪
(перечислены в порядке убывания приоритета).
Знак · можно опускать.

Регулярное выражение является формулой, то есть строкой из
символов, записанных по определённым правилам. Регулярное
множество является подмножеством A∗.
Регулярное выражение можно рассматривать как «шаблон»,
показывающий устройство слов в регулярном множестве.
Например, выражение 1∗(010 ∪ 0110)1∗ задаёт слова, в которых
сначала присутствует некоторое (возможно, нулевое) количество
единиц, далее следует подслово 010 или 0110, после чего снова
следует некоторое количество единиц.

34/227

Лекция 3
Теорема Клини. Детерминированные функции.

Конечные автоматы-преобразователи.

35/227

Теорема Клини
Теорема 7 (Клини)
Класс конечно-автоматных множеств совпадает с классом регулярных
множеств.

Доказательство
⊇. Множества ∅, {Λ}, {ai}, i = 1,m конечно-автоматны. Ранее
было доказано, что операции ∪, ·, ∗ сохраняют конечную
автоматность множеств. Поэтому все регулярные множества
конечно-автоматны.
⊆. Пусть A = (A,Q, f, q1, F) — произвольный конечный автомат.
Будем доказывать, что множество D(A) регулярно.
Пусть Q = {q1, . . . , qr}, F = {qj1 , . . . , qjs}.
Тогда D(A) = X1 ∪ . . . ∪Xs, где Xl = D((A, Q, f, q1, {qjl})).
Достаточно доказать регулярность каждого множества Xl: тогда
D(A) будет регулярным как объединение регулярных множеств.

36/227

Теорема Клини

Доказательство (продолжение)

qi qj

q1, . . . , qk

Zk
ij

Пусть i, j = 1, r, k = 0, r. Обозначим Zk
ij множество слов, по

которым автомат A переходит из qi в qj используя качестве
промежуточных состояний только элементы {q1, . . . , qk}.
Если k = 0, то допускается только переход из qi в qj напрямую,
без использования промежуточных состояний.
Заметим, что Xl = Zr

1jl
. Докажем, что все множества Zk

ij

регулярны, с помощью индукции по k.

37/227

Теорема Клини

Доказательство (продолжение)

qi

ai1 , . . . , aip

Z0
ii

qi
Z0
ij

qj

ai1 , . . . , aip

Базис индукции: k = 0

1. i = j. Если нет переходов из qi в qi, то Z0
ii = {Λ}.

Если есть переходы из qi в qi по символам ai1 , . . . , aip , то
Z0
ii = {Λ, ai1 , . . . , aip}. В обоих случаях множество регулярно.

2. i 6= j. Если нет переходов из qi в qj , то Z0
ij = ∅.

Если есть переходы из qi в qj по символам ai1 , . . . , aip , то
Z0
ij = {ai1 , . . . , aip}. В обоих случаях множество регулярно.

Предположим, что все множества Zk−1
ij регулярны.

Шаг индукции: докажем регулярность Zk
ij .

38/227

Теорема Клини

Доказательство (продолжение)

qi
Zk
ij

u

qk qk qk qj

v1 wv2 . . . vq

Пусть a ∈ Zk
ij \ Z

k−1
ij . Тогда a = uv1 . . . vqw, где q ⩾ 0 и

u ∈ Zk−1
ik , v1, . . . , vq ∈ Zk−1

kk , w ∈ Zk−1
kj .

Тогда Zk
ij = Zk−1

ij ∪ Zk−1
ik (Zk−1

kk)∗Zk−1
kj .

Поскольку множества Zk−1
ij , Zk−1

ik , Zk−1
kk , Zk−1

kj регулярны,
множество Zk

ij тоже регулярно.
Получаем, что Xl = Zr

1jl
тоже регулярно, а значит и D(A)

регулярно. Таким образом, любое конечно-автоматное множество
является регулярным.

39/227

Регулярные выражения

Практическое использование
Во многих текстовых редакторах и файловых менеджерах есть
опция поиска/фильтра по регулярным выражениям.
Эти регулярные выражения основаны на регулярных выражениях
Клини, но в них добавлены дополнительные операции для
сокращения записи.
Например, <[<̂>]*> ищет пару угловых скобок с произвольным
текстом (не содержащим других угловых скобок) внутри.
Существует стандартный язык регулярных выражений, который
несложно изучить. Он описан, например, на Википедии [5].
Обработчики регулярных выражений иногда поддерживают
возможности, выходящие за рамки возможностей регулярных
выражений Клини. Но наиболее эффективно реализуемые
возможности используют регулярные выражения Клини.

40/227

Регулярные выражения

Реализация в программах
По любому регулярному выражению можно построить конечный
автомат, который распознаёт слова, соответствующие данному
регулярному выражению.
Конечный автомат работает очень быстро: он проходит по
символам текста только один раз, и для каждого символа
совершает простую операцию изменения состояния.
Память автомата конечна: она зависит только от регулярного
выражения, но не от текста, по которому идёт поиск. Поэтому
автомат может работать с очень большими текстами.
Теорема Клини гарантирует, что всё, что может быть найдено
быстрым поиском с помощью автомата, можно задать
регулярными выражениями.

41/227

Детерминированные функции

Бесконечные последовательности
Пусть A — непустое множество.

A∞ — это множество счётно-бесконечных последовательностей
вида ai1ai2 . . ., где ain ∈ A при n ∈ N.
Пусть a = ai1ai2 . . . ∈ A∞. Обозначим a(t) = ait при t ∈ N.
Для введения индексации с нуля пишем a = a(0)a(1) . . . ∈ A∞.
Конкатенация слова u = u1 . . . uk ∈ A∗ и последовательности
a = a(1)a(2) . . . ∈ A∞ — это последовательность

u ∗ a = ua = u1 . . . uka(1)a(2) . . . ∈ A∞.

При этом для любого a ∈ A∞ определяем Λa = a.
Бесконечное повторение слова u = u1 . . . uk ∈ A∗, u 6= Λ есть

uω = u1 . . . uku1 . . . uk . . . ∈ A∞.

42/227

Детерминированные функции

Основные обозначения
E2 = {0, 1, }, En

2 = E2 × . . .× E2︸ ︷︷ ︸
n

Мы будем рассматривать алфавит A = E2 и бесконечные слова
a(1)a(2) . . . ∈ E∞

2 , где a(t) ∈ E2.
Если x = (x1, . . . , xn) ∈ (E∞

2)n, то x(t) = (x1(t), . . . , xn(t)) ∈ En
2 .

Будем рассматривать функции y = f(x1, . . . , xn) : (E
∞
2)n → E∞

2 .
P∞
2 — множество всех функций f : (E∞

2)n → E∞
2 при n ⩾ 1.

43/227

Детерминированные функции

Содержательное понимание детерминированности

x(t) y(t)

t = 1, 2, . . . — время

f

Можно считать, что функция y = f(x) над бесконечными словами
действует не сразу, а растянуто во времени: в каждый момент
t ⩾ 1 функция получает на вход символ x(t) и выдаёт символ y(t).
Детерминированная функция «не может заглядывать в будущее»:
её выход в момент t зависит только от входов x(1), . . . , x(t),
которые были получены ранее, и не зависит от будущих входов
x(t+ 1), x(t+ 2), . . .

44/227

Детерминированные функции

Определение
Функция y = f(x1, . . . , xn) : (E

∞
2)n → E∞

2 является
детерминированной, если для каждого t ⩾ 1 существует такая
булева функция ϕt(x

1
1, . . . , x

1
n, . . . , x

t
1, . . . , x

t
n), что

y(t) = ϕt(x1(1), . . . , xn(1), . . . , x1(t), . . . , xn(t)).

Pд,2 — множество всех детерминированных функций на E∞
2

(т. е. из P∞
2).

45/227

Детерминированные функции

Примеры
Рассматриваем функции f : E∞

2 → E∞
2 , f(x) = y.

f детерминированная:

y(t) =

{
0, t = 1,

x(t− 1)⊕ x(t). t = 2,∞.
f детерминированная:

y(t) =

{
1, слово x(1) . . . x(t) симметрично,
0 в ином случае,

t = 1,∞.

f не детерминированная:
y(t) = x(t+ 1).
f не детерминированная:

f(x) =

{
0∞, x = 0∞,

1∞ в ином случае.

46/227

Конечные автоматы-преобразователи

Определение
Конечный автомат (преобразователь) — это A = (A,B,Q, F,G, q1),
где

A 6= ∅ — входной алфавит,
B 6= ∅ — выходной алфавит,
Q 6= ∅ — множество состояний,
F : A×Q→ B — функция выходов,
G : A×Q→ Q — функция переходов,
q1 ∈ Q — начальное состояние.

В качестве алфавитов A,B мы будем рассматривать множества
E2 или En

2 .

47/227

Конечные автоматы-преобразователи

Работа автомата
На вход автомату подаётся бесконечное слово x ∈ A∞. На выходе
получается бесконечное слово y ∈ B∞.
Автомат работает в дискретном времени: t = 1, 2, . . . На каждом
такте t автомату подаётся очередной символ x(t).
На каждом такте t автомат меняет своё состояние q(t) и выдаёт
символ выхода y(t) согласно каноническим уравнениям:

y(t) = F (x(t), q(t− 1)),

q(t) = G(x(t), q(t− 1)),

q(0) = q1.

Автомат A реализует функцию ϕ : A∞ → B∞: ϕ(x) = y.

48/227

Конечные автоматы-преобразователи

Схема работы автомата

x(t)

y(t)

q(t)

q(t− 1)

q(t− 1)

t = 1, 2, . . . — время
В начальный момент q = q1


y(t) = F (x(t), q(t− 1)),

q(t) = G(x(t), q(t− 1)),

q(0) = q1.

49/227

Конечные автоматы-преобразователи
Если A = En

2 , то у автомата несколько входов x1, . . . , xn ∈ E∞
2 .

Если B = Em
2 , то у автомата несколько входов y1, . . . , ym ∈ E∞

2 .

Автомат с несколькими входами и выходами

xn(t)

y1(t)

q(t)

q(t− 1)

q(t− 1)

t = 1, 2, . . . — время
В начальный момент q = q1

ym(t)

x1(t)

x(t) = (x1(t), . . . , xn(t))

y(t) = (y1(t), . . . , ym(t))
y(t) = F (x(t), q(t− 1)),

q(t) = G(x(t), q(t− 1)),

q(0) = q1.

50/227

Конечные автоматы-преобразователи

Конечно-автоматные функции
Функция f : (E∞

2)n → E∞
2 называется конечно-автоматной

(ограниченно-детерминированной), если она реализуется
некоторым автоматом с входным алфавитом En

2 и выходным
алфавитом E2.
Pка,2 — множество всех конечно-автоматных функций
f : (E∞

2)n → E∞
2 , n ∈ N.

Автомат с несколькими выходами реализует одновременно
несколько функций из Pка,2, используя одни и те же состояния.
Любая конечно-автоматная функция является
детерминированной.

51/227

Конечные автоматы-преобразователи
Моделирование реальных систем

Машина Тьюринга — это модель алгоритма: процесса, который
по входным данным за конечное число шагов выдаёт результат.
Автомат-преобразователь — это модель системы, которая
работает неопределённо долгое время, в каждый момент получает
определённый входные сигналы и выдаёт некоторые результаты.
Процессор компьютера является автоматом-преобразователем:

▶ Состояния (конечная память) — регистры.
▶ Входные сигналы — данные из оперативной памяти и с внешних

устройств (клавиатуры, мыши).
▶ Выходные сигналы — данные для записи в оперативную память,

позиция чтения/записи в оперативной памяти, вывод на внешние
устройства (дисплей).

Автомат — вычислительно слабое устройство, так как имеет лишь
конечную память. Компьютер является универсальным за счёт
наличия (условно) бесконечной оперативной памяти.

52/227

Конечно-автоматные функции

Диаграмма Мура
Диаграмма Мура автомата-преобразователя строится аналогично
диаграмме Мура автомата-распознавателя.
На каждой дуге, помимо входа, подписывается (в скобках)
выход y(t). Заключительных состояний нет.

Пример
A = B = E2, Q = {q1, q2}, диаграмма Мура автомата:

1(0)
0(0) 1(1)

0(1)

∗
0 1

Реализуемая автоматом функция называется единичной
задержкой. z : E∞

2 → E∞
2 , z(x) = 0x.

53/227

Конечно-автоматные функции

Истинностные функции
Пусть ϕ : En

2 → E2 — булева функция. Ей соответствует
истинностная функция fφ : (E∞

2)n → E∞
2 такая, что

fφ(x1, . . . , xn) = ϕ(x1(1), . . . , xn(1))ϕ(x1(2), . . . , xn(2)) . . .

Иными словами, если y = fφ(x1, . . . , xn), то
y(t) = ϕ(x1(t), . . . , xn(t)) при всех t ⩾ 1.
Истинностная функция является конечно-автоматной и задаётся
каноническими уравнениями:

y(t) = ϕ(x1(t), . . . , xn(t)),

q(t) = q1,

q(0) = q1.

54/227

Конечно-автоматные функции

Канонические уравнения в скалярной форме

Пусть |Q| = r. Выбираем наименьшее l такое, что 2l ⩾ r.
Кодируем состояния из Q векторами из El

2. Код состояния q(t)
обозначим (q1(t), . . . , ql(t)) ∈ El

2. Код q1 есть (0, . . . , 0).
Тогда канонические уравнения можно переписать в скалярной
форме:

y1(t) = f1(x1(t), . . . , xn(t), q1(t− 1), . . . , ql(t− 1)),

. . .

ym(t) = fm(x1(t), . . . , xn(t), q1(t− 1), . . . , ql(t− 1)),

q1(t) = g1(x1(t), . . . , xn(t), q1(t− 1), . . . , ql(t− 1)),

. . .

ql(t) = gl(x1(t), . . . , xn(t), q1(t− 1), . . . , ql(t− 1)),

q1(0) = . . . = ql(0) = 0.

55/227

Конечно-автоматные функции

Канонические уравнения в скалярной форме (продолжение)
В полученных канонических уравнениях функции
f1, . . . , fm, g1, . . . , gl являются булевыми функциями.
Эти функции определяются по исходным функциям F,G и по
кодированию состояний.
Если r < 2l, то на части наборов функции fi, gi окажутся не
определены. Мы доопределяем их произвольным образом.

56/227

Конечно-автоматные функции

Канонические уравнения в скалярной форме (пример 1)
y = f&(x1, x2) — истинностная функция на E∞

2 , y(t) = x1(t)x2(t).
Её можно задать следующими каноническими уравнениями в
скалярной форме: 

y(t) = x1(t)x2(t),

q(t) = 0,

q(0) = 0.

57/227

Конечно-автоматные функции

Канонические уравнения в скалярной форме (пример 2)
y = z(x) — единичная задержка.
Диаграмма Мура:

1(0)
0(0) 1(1)

0(1)

∗
0 1

Канонические уравнения в скалярной форме:
y(t) = q(t− 1),

q(t) = x(t),

q(0) = 0.

58/227

Лекция 4
Операции суперпозиции и введения обратной связи.

Полные системы конечно-автоматных функций.
Машина Тьюринга.

59/227

Суперпозиция конечно-автоматных функций

Операция суперпозиции
Операция суперпозиции включает в себя

1. Подстановку функции вместо переменной:
f(g(x1, . . . , xn), y2, . . . , ym).

2. Перестановку и отождествление переменных.
3. Добавление и удаление фиктивных переменных.

Операцию суперпозиции можно определить с помощью формул,
как для булевых функций.
Обычно рассматривается регулярная суперпозиция:

h(x̄) = f(g1(x̄), . . . , gm(x̄)),

где x̄ = (x1, . . . , xn).
Если некоторое утверждение доказано для регулярной
суперпозиции, обычно оно легко переносится и на общий случай.

60/227

Суперпозиция конечно-автоматных функций
Теорема 8
Класс Pка,2 замкнут относительно операции суперпозиции.

Доказательство

f(x̄) = f0(f1(x̄), . . . , fm(x̄))

Пусть все функции f0, f1, . . . , fm конечно-автоматны:

f0 :


y(t) = F0(y1(t), . . . , ym(t), q0(t− 1)),

q0(t) = G0(y1(t), . . . , ym(t), q0(t− 1)),

q0(0) = q′0;

fi :


y(t) = Fi(x̄(t), qi(t− 1)),

qi(t) = Gi(x̄(t), qi(t− 1)),

qi(0) = q′i,

i = 1,m.

61/227

Суперпозиция конечно-автоматных функций

Доказательство (продолжение)
Составим канонические уравнения для суперпозиции:

y(t) = F0(F1(x̄(t), q1(t− 1)), . . . , Fm(x̄(t), qm(t− 1)), q0(t− 1)),

q0(t) = G0(F1(x̄(t), q1(t− 1)), . . . , Fm(x̄(t), qm(t− 1)), q0(t− 1)),

q1(t) = G1(x̄(t), q1(t− 1)),

. . .

qm(t) = Gm(x̄(t), qm(t− 1)),

qi(0) = q′i, i = 1,m.

Приводим их в стандартный вид, задав q(t) = (q0(t), . . . , qm(t)).
Получаем, что функция f конечно-автоматна.
Преобразования уравнений при переименовании переменных и
добавлении/удалении фиктивных переменных очевидны.

62/227

Суперпозиция конечно-автоматных функций

Иллюстрация

y(t)

t = 1, 2, . . . — время

f0

f1

fm

x̄(t)

Если автомат, реализующий fi, имел ri состояний (i = 0,m), то
автомат для суперпозиции будет иметь r0 · r1 · . . . · rm состояний.
Некоторые из этих состояний могут оказаться недостижимыми
или эквивалентными, но бывают примеры функций, для
суперпозиции которых число состояний нельзя уменьшить.

63/227

Операция введения обратной связи
Определение
Детерминированная функция y = f(x1, . . . , xn) зависит с
запаздыванием от xi, если y(t) не зависит от xi(t) при любом t ⩾ 1.

При зависимости с запаздыванием y(t) может зависеть
от xi(1), . . . , xi(t− 1), а также от xj(1), . . . , xj(t) при j 6= i.

Пример
Единичная задержка z : E∞

2 → E∞
2 , z(x) = 0x.

y(t) = q(t− 1),

q(t) = x(t),

q(0) = 0.

При любом t ⩾ 2 верно (z(x))(t) = x(t− 1). Она зависит с
запаздыванием от x.

64/227

Операция введения обратной связи

Иллюстрация

f1
...

fm

x1(t)

xi(t)

xn(t)

y1(t)

yj(t)

ym(t)

y1, . . . , ym — выходы, на которых реализуются
детерминированные функции f1, . . . , fm.
yj (т. е. fj) зависит с запаздыванием от xi.
На рисунке изображено введение обратной связи по переменным
xi, yj .
У получившейся конструкции вход xi и выход yj пропадают.
Теперь она реализует m− 1 функцию от n− 1 переменных.

65/227

Операция введения обратной связи

Работа набора функций, полученного в результате обратной связи
yj(t) не зависит от xi(t). Мы хотим выразить все yk(t), k 6= j
через xk(1), . . . xk(t), k 6= i при всех t.
В начале yj(1) = ϕj

1(x1(1), . . . , xi−1(1), xi+1(1), . . . , xn(1)).
Для получения yk(1), k 6= j подставляем в их выражение через
xk(1), k = 1, n вместо xi(1) выражение для yj(1).
Пусть для момента времени t− 1 получены yk(1), . . . , yk(t− 1)
при всех k = 1,m (зависят от xk(1), . . . , xk(t− 1), k 6= i).
Тогда yj(t) определяется через xk(1), . . . , xk(t) при k 6= i и через
xi(1) = yj(1), . . . , xi(t− 1) = yj(t− 1).
Остальные yk(t) определяются через xk(1), . . . , xk(t), k = 1, n, где
вместо xi(1), . . . , xi(t) подставлены выражения yj(1), . . . , yj(t).
Таким образом, в полученном наборе все функции
детерминированные.

66/227

Операция введения обратной связи

Теорема 9
Класс Pка,2 замкнут относительно операции введения обратной связи.

Доказательство
Имеем набор функций из Pка,2 с каноническими уравнениями:

y1(t) = F1(x1(t), . . . , xn(t), q(t− 1)),

. . .

ym(t) = Fm(x1(t), . . . , xn(t), q(t− 1)),

q(t) = G(x1(t), . . . , xn(t), q(t− 1)),

q(0) = q0.

Пусть выход yj зависит от входа xi с запаздыванием:
yj(t) = Fj(x1(t), . . . , xi−1(t), xi+1(t) . . . , xn(t), q(t− 1)).

67/227

Операция введения обратной связи

Доказательство (продолжение)
Применим операцию обратной связи по переменным xi, yj :
подставим выражение для yj(t) вместо xi(t)
Функции из полученного набора конечно-автоматны, их
канонические уравнения:

yk(t) = Fk(x1(t), . . . , xi−1(t),

Fj(x1(t), . . . , xi−1(t), xi+1(t) . . . , xn(t), q(t− 1)),

xi+1(t) . . . , xn(t), q(t− 1)), k 6= i, k = 1,m,

q(t) = G(x1(t), . . . , xi−1(t),

Fj(x1(t), . . . , xi−1(t), xi+1(t) . . . , xn(t), q(t− 1)),

xi+1(t) . . . , xn(t), q(t− 1)),

q(0) = q0.

68/227

Полная система конечно-автоматных функций

Истинностные функции
Пусть ϕ : En

2 → E2 — булева функция. Ей соответствует
истинностная функция fφ : (E∞

2)n → E∞
2 такая, что если

y = fφ(x1, . . . , xn), то y(t) = ϕ(x1(t), . . . , xn(t)) при всех t ⩾ 1.

Задержка
Единичная задержка z : E∞

2 → E∞
2 , z(x) = 0x реализуется

автоматом с 2 состояниями (Q = E2):
y(t) = q(t− 1),

q(t) = x(t),

q(0) = 0.

69/227

Полная система конечно-автоматных функций

Исходные функции
Полная в P2:

{&,∨,¬}.

Рассмотрим систему конечно-автоматных функций, состоящую из
истинностных функций и единичной задержки:

{f&, f∨, f¬, z}.

70/227

Полная система конечно-автоматных функций

Теорема 10
Система {f&, f∨, f¬, z} полна в классе Pка,2 относительно операций
суперпозиции и введения обратной связи.

Доказательство
Пусть функция входит в класс Pка,2. Тогда она реализуется
системой канонических уравнений:

y(t) = f(x1(t), . . . , xn(t), q1(t− 1), . . . , ql(t− 1)),

q1(t) = g1(x1(t), . . . , xn(t), q1(t− 1), . . . , ql(t− 1)),

. . .

ql(t) = gl(x1(t), . . . , xn(t), q1(t− 1), . . . , ql(t− 1)),

q1(0) = . . . = ql(0) = 0.

Здесь f, g1, . . . , gl ∈ P2.

71/227

Полная система конечно-автоматных функций

Доказательство (продолжение)
Моделируем работу функций f, g1, . . . , gl с помощью
суперпозиции истинностных функций:

xn(t)

t = 1, 2, . . . — время

x1(t) ql(t− 1)q1(t− 1)

ql(t)q1(t)y(t)

f, g1, . . . , gl

72/227

Полная система конечно-автоматных функций

Доказательство (продолжение)
Соединяем выходы qi(t) со входами qi(t− 1) через задержки.
Используем для этого операцию обратной связи. Зависимость с
запаздыванием обеспечивается задержками.

xn(t)

t = 1, 2, . . . — время

x1(t)
ql(t− 1)

q1(t− 1)

ql(t)q1(t)

y(t)

f, g1, . . . , gl

Таким образом, построена нужная функция.

73/227

Базис из одной конечно-автоматной функции

Шефферовы функции
Штрих Шеффера: x | y = xy = x ∨ y.
[x | y] = P2, так как ¬x = x | x, xy = x | y, x ∨ y = x | y.

Теорема 11
В классе Pка,2 существует полная система, состоящая из одной
функции.

Доказательство
Рассмотрим функцию F (x1, x2, x3, x4) = ((x1 ⊕ x3)x4 ⊕ x3) | x2.
F (x1, x2, x1, x4) = x1 | x2.
F (1, 1, 0, x4) = x4.

74/227

Базис из одной конечно-автоматной функции

Доказательство (продолжение)
Теперь рассмотрим функцию
f(x1, x2, x3, x4) = fF (x1, x2, x3, z(x4)) и докажем, что [f] = Pка,2.
f|(x1, x2) = f(x1, x2, x1, x4). С помощью f| получаем
f¬(x), f0(x), f1(x).
z(x) = f¬(f(f1(x), f1(x), f0(x), x)).
Получили систему из истинностных функций, соответствующих
полной в P2 системе, и функцию задержки. Значит, система {f}
полна в Pка,2.

75/227

Машина Тьюринга

В середине 1930-х годов математикам удалось формализовать
понятие алгоритма.
Разными математиками практически в одно время было
предложено несколько формализаций, основанных на разных
идеях.
Одна из них (предложенная независимо Тьюрингом и Постом)
основана на представлении алгоритма как программы для
абстрактного вычислительного устройства определённого вида.
Эта формализация и по сей день является одной из самых
используемых и пригодных для анализа алгоритмов.

76/227

Машина Тьюринга
лента

головка

управляющее
устройство

Машина Тьюринга состоит из бесконечной в обе стороны ленты,
разделённой на ячейки, считывающе-записывающей головки и
управляющего устройства.
Ячейки ленты содержат символы — это бесконечная память
машины.
Головка в каждый момент обозревает какую-то ячейку и может
двигаться по ленте влево и вправо.
Управляющее устройство содержит программу, которая управляет
поведением головки.

77/227

Машина Тьюринга

Определение
Машина ТьюрингаM — это набор (A,Q, f, q1, q0), где

A = {a0, . . . , ak}, k ⩾ 1 — рабочий алфавит. a0 — пустой символ.
Q 6= ∅ — множество состояний.
q1 ∈ Q — начальное состояние.
q0 ∈ Q, q0 6= q1 — заключительное состояние.
f : A×Q→ A× {L,R, S} ×Q — программа машины.

Программу машины можно считать набором команд вида
aiqj → arDqs, j 6= 0. В программе имеется ровно одна команда с
каждой допустимой левой частью.

78/227

Машина Тьюринга
Работа машины

В каждой ячейке ленты записан символ алфавита A. Ячейки с
символом a0 считаем пустыми.
В каждый момент времени головка машины обозревает некоторую
ячейку ленты и машина находится в одном из состояний Q.
В начальный момент времени машина находится в состоянии q1.
В каждый момент времени машина считывает символ a из
обозреваемой головкой ячейки. По этому символу и текущему
состоянию qi машина с помощью своей программы получает
набор f(a, qi) = (b,D, qj) ∈ A× {R,S, L} ×Q.
После этого машина записывает в текущую ячейку символ b,
передвигает головку на другую ячейку ленты (L — на 1 влево,
R — на 1 вправо, S — не передвигает) и переходит в состояние qj .
Машина останавливается при переходе в состояние q0. Если этого
не происходит, машина работает бесконечно.

79/227

Машина Тьюринга

Запись программ машин Тьюринга
Записываем программы машин Тьюринга в виде таблиц:

1∗ 2 3 4

0 0R1 0L3 0Rq0
1 1R2 1R2 0L4 1L1

Состояния (кроме q0) обозначаем цифрами или другим удобным
образом. Начальное состояние (если оно не обозначено q1)
отмечаем звёздочкой.
Ячейки таблицы, которые не могут выполниться, оставляем
пустыми. Для определённости считаем, что указанная там
команда не меняет символ в ячейке, не двигает головку и
переходит в q0.

80/227

Машина Тьюринга

Выполнение преобразований в общем случае

a0 a0 a0 a0

w

Считаем, что в начальный момент на ленте находится слово w в
алфавите A \ {a0}, а все остальные символы пусты. Головка
машины обозревает самый левый непустой символ.
Машина работает в дискретном времени согласно программе.
Если машина остановилась, то результат её работы — это участок
ленты от самого левого непустого символа до самого правого. В
противном случае результат не определён.

81/227

Лекция 5
Вычислимые функции. Композиция и итерация машин

Тьюринга. Вычислимость простейших функций.

82/227

Вычислимые функции

Базовые понятия
N0 = {0, 1, 2, . . .} — множество натуральных чисел с добавлением
нуля.
f : Nn

0 → N0 — функции натурального аргумента.
Мы расширяем понятие функции до частичной функции:
частичная функция может быть определена не на всех элементах
базового множества.

Примеры
x+ y — всюду определённая функция.
Функция x− y определена при x ⩾ y и не определена при x < y.

Усечённая разность x ·− y =

{
x− y, x ⩾ y,

0, x < y.
всюду определена.

x/2 определена только при чётных x, а bx/2c всюду определена.

83/227

Вычислимые функции
Будем использовать машины Тьюринга с алфавитом
A = {0, 1, a2, . . . , ak}. При этом считаем a0 = 0 — пустой символ.
Для записи входных значений на ленте машины Тьюринга будем
использовать основной код.

Основной код
Кодируем число x ∈ N0 в виде 1x+1.

0 0 0 0

x+ 1

11

Кодируем набор (x1, . . . , xk) из Nn
0 в виде 1x1+101x2+10 . . . 01xn+1.

0 0

x1 + 1

11

x2 + 1

11 0 0

xn + 1

11 0

84/227

Вычислимые функции

Определение
Машина ТьюрингаM вычисляет частичную функцию f(x̄), если,
начиная работу на первой единице основного кода набора x̄
(остальные символы ленты — нули) в состоянии q1, машина:

1. Если f(x̄) определено, тоM через конечное число тактов
останавливается, и в этот момент на ленте представлено значение
f(x̄) в основном коде (остальные символы ленты — нули, головка
может находиться где угодно).

2. Если f(x̄) не определено, тоM либо не останавливается, либо
останавливается, но на ленте не оказывается основной код числа
из N0 (либо все символы ленты — нули, либо на ленте несколько
массивов из единиц).

85/227

Вычислимые функции
Определение
Машина ТьюрингаM правильно вычисляет частичную функцию
f(x̄), если, начиная работу на первой единице основного кода набора x̄
(остальные символы ленты — нули) в состоянии q1, машина:

1. Если f(x̄) определено, тоM через конечное число тактов
останавливается, и в этот момент на ленте представлено значение
f(x̄) в основном коде (остальные символы ленты — нули), причём
головка машина находится на первом символе этого основного
кода.

2. Если f(x̄) не определено, тоM не останавливается.

Если машина вычисляет некоторую функцию, то можно изменить
её так, чтобы она правильно вычисляла эту функцию.
В дальнейшем мы будем не будем ссылаться на простое
вычисление функций, а будем использовать только правильные
вычисления.

86/227

Вычислимые функции

Определение
Частичная функция называется вычислимой (на машинах Тьюринга),
если существует машина Тьюринга, правильно вычисляющая эту
функцию.

Примеры

0 0 0 0

x+ 1

11 1

1∗

0 1Sq0
1 1L1

x+ 1

1∗

0 1Sq0
1 0R1

0

1∗ 2

0 1Sq0
1 0R2 1Sq0

x ·− 1

87/227

Композиция машин Тьюринга

Безусловная композиция
Имеем две машины ТьюрингаM1 = (A,Q1, f1, q

′
1, q

′
0) и

M2 = (A,Q2, f2, q
′′
1 , q

′′
0). Хотим построить машинуM, которая

сначала работает как машинаM1, а когдаM1 останавливается,
на полученном содержимом ленты запускается работаM2, и
результат её работы будет результатом машиныM.

M1,M2 →M

Считаем, что Q1 ∩Q2 = ∅. В качестве множества состоянийM
выбираем Q1 ∪Q2. Начальное состояние q′1, заключительное — q′′0 .
В программеM1 заменяем переходы к q′0 на переходы к q′′1 .
Объединяем программыM1 иM2, получаем программуM.

88/227

Композиция машин Тьюринга

Иллюстрация
Имеем

q′1 . . .

0
1

q′0

M1

q′′1 . . .

0
1

q′′0

M2

ВM1 заменяем ячейки: arDq
′
0 → arDq

′′
1 .

Объединяем программыM1 иM2. Начальное состояние q′1,
заключительное q′′0 .

89/227

Композиция машин Тьюринга

Условная композиция
Имеем две машины ТьюрингаM1 = (A,Q1, f1, q

′
1, q

′
0) и

M2 = (A,Q2, f2, q
′′
1 , q

′′
0).

Хотим построить машинуM, которая в некоторых случаях
работает как машинаM1, а в некоторых — как безусловная
композицияM1 иM2.
Строим аналогично безусловной композиции, но заменяем q′0 на
q′′1 не во всех ячейкахM1, а только в тех, где нужно запустить
работу машиныM2. В остальных ячейках заменяем q′0 на
заключительное состояние q′′0 .

90/227

Композиция машин Тьюринга

Условная композиция трёх машин
Имеем три машины ТьюрингаM1 = (A,Q1, f1, q

′
1, q

′
0),

M2 = (A,Q2, f2, q
′′
1 , q

′′
0),M3 = (A,Q3, f3, q

′′′
1 , q

′′′
0).

Хотим построить машинуM, которая в некоторых случаях
работает как безусловная композиция машинM1 иM2, а в
некоторых — как безусловная композицияM1 иM3.

M1,M2,M3 →M

Строим аналогично безусловной композиции, но объединяем
программы всех машин и заменяем q′0 на q′′1 или q′′′1 в
зависимости от того, какую машину нужно запустить при
попадании управления в эту ячейку программы.
Заключительным выбираем состояние q′′0 , и у машиныM3 в
программе заменяем состояние q′′′0 на q′′0 .

91/227

Композиция машин Тьюринга

Пример
rm(x, y) — остаток от деления x на y (0 при y = 0).

rm(x, 2) =

{
0, x чётно,
1, x нечётно.

11∗ 12

0 0Sq′0 0Sq′
0

1 0R12 0R11

M1

21∗

0 1Sq′′0
1

M2

31∗ 32

0 1R32 1Lq′′′0
1

M3

Условная композиция этих машин вычисляет функцию rm(x, 2):
выделенное жирным состояние нужно заменить на 21, а
выделенное красным — на 31. Состояния q′′0 , q

′′′
0 объединяем в

общее заключительное состояние.

92/227

Композиция машин Тьюринга

Пример (продолжение)

0 0 0 0

x+ 1

11 1

11∗ 12 21 31 32

0 0S31 0S21 1Sq0 1R32 1Lq0
1 0R12 0R11

rm(x, 2)

93/227

Итерация машин Тьюринга

Итерация
Имеем машину ТьюрингаM = (A,Q, f, q1, q0). Хотим построить
машинуM′, которая выполняет работу машиныM несколько раз
(каждый раз применяя её к результату работы предыдущей
машины). Цикл завершается при выполнении некоторого условия.
В программе машины выделяем клетки с переходами в
заключительное состояние, после которых нужно запускать
машинуM снова. Заменяем в них состояние q0 на q1.
arDq0 → arDq1

94/227

Вычислимость простейших функций

Селекторные функции

0 0

x1 + 1

11

x2 + 1

11 0 0

xn + 1

11 0

Inm(x1, . . . , xn) = xm, m ∈ {1, . . . ,m}, n ∈ N — селекторные
функции.

1∗ 2 . . . m− 1 m

0 0R2 0R3 . . . 0Rm 0R(m+ 1)
1 0R1 0R2 . . . 0R(m− 1) 1Rm

m+ 1 . . . n n+ 1 n+ 2

0 0R(m+ 2) . . . 0R(n+ 1) 0L(n+ 1) 0Rq0
1 0R(m+ 1) . . . 0Rn 1L(n+ 2) 1L(n+ 2)

95/227

Вычислимость простейших функций

Селекторные функции
В примерах были построены программы для правильного
вычисления следующих простейших функций:

1. Константа 0;
2. Функция x+ 1;
3. Селекторные функции

Inm(x1, . . . , xn) = xm, m ∈ {1, . . . ,m}, n ∈ N.

Кроме того, были построены программы для правильного
вычисления функций x ·− 1 и rm(x, 2).
Таким образом, все перечисленные функции являются
вычислимыми.

96/227

Лекция 6
Моделирование машин Тьюринга. Механизм дорожек.

Универсальные функции.

97/227

Моделирование машин Тьюринга

Мы рассмотрим моделирование машин Тьюринга, работающих в
алфавите {0, 1, a2, . . . , ak}, машинами Тьюринга, работающими в
алфавите {0, 1}.

Теорема 1
При любом k ⩾ 2 классы функций, вычислимых машинами Тьюринга
в алфавитах {0, 1, a2, . . . , ak} и {0, 1}, совпадают.

Доказательство
⊇. Если функция вычислима на машине Тьюринга с алфавитом
{0, 1}, то она вычислима и на машине Тьюринга с алфавитом
{0, 1, a2, . . . , ak} (дополнительные символы в вычислении можно
не использовать).

98/227

Моделирование машин Тьюринга

Доказательство (продолжение)

⊆. Выберем такое l, что 2l ⩾ k + 1. Кодируем все символы
{0, 1, a2, . . . , ak} наборами из l нулей и единиц.
0 кодируем в виде 0l, а 1 — в виде 1l. Остальные символы
кодируем произвольно.
ПустьM — машина Тьюринга, работающая в алфавите
{0, 1, a2, . . . , ak} и правильно вычисляющая некоторую функцию
f(x1, . . . , xn).
Отметим, в начале вычисления и в конце вычисления на ленте
этой машины находятся только нули и единицы. Остальные
символы могут появляться только на промежуточных шагах.
Строим машинуM′ в алфавите {0, 1}, моделирующую машину
M и правильно вычисляющую функцию f(x1, . . . , xn).

99/227

Моделирование машин Тьюринга

Доказательство (продолжение)
Моделирование проходит в 3 этапа (машиныM1,M2,M3):

1. Все единицы и нули на ленте заменяются своими кодами: вход
«растягивается» в l раз.

2. Моделирующая машина «воспроизводит» на ленте работу
машиныM, обрабатывая коды символов, вместо самих символов.

3. Получив результат, заменяем коды единиц на единицы: выход
«сжимается» в l раз.

Сперва рассмотрим этап 2. Пусть Q = {q0, . . . , qm} — множество
состояний исходной машиныM.

100/227

Моделирование машин Тьюринга

Доказательство (продолжение)
МашинаM2 будет иметь 3 группы состояний и команд.
Первая группа — чтение кода символа.

▶ Состояния: [b1 . . . bp, j], b1, . . . , bp ∈ {0, 1}, p = 1, l, j = 1,m.
▶ Команды: bqj → bR[b, j],
b[b1 . . . bp, j]→ bR[b1 . . . bpb, j], p = 1, l − 2,
b[b1 . . . bl−1, j]→ bS[b1 . . . bl−1b, j] (b ∈ {0, 1}).

Первая группа команд обеспечивает чтение кода очередного
символа за l тактов. Этот код, а также номер состояния машины
в начале чтения, сохраняются с помощью перехода машины в
специальные состояния.

101/227

Моделирование машин Тьюринга

Доказательство (продолжение)
Вторая группа — запись кода нового символа на ленту.

▶ Пусть aiqj → arDqs — команда машиныM. Пусть b1 . . . bl — код
ai, а c1 . . . cl — код ar. Для каждой такой команды машинаM2

будет иметь указанные ниже состояния и команды.
▶ Состояния: [i, j, p], p = 1, l − 1, i = 0, k, j = 1,m;

Состояние кодирует текущую выполняемую команду (i, j) и номер
p текущего записываемого элемента кода символа.

▶ Команды: b[b1 . . . bl, j]→ clL[i, j, l − 1],
b[i, j, p]→ cpL[i, j, p− 1], p = 2, l − 1,
b[i, j, 1]→ c1S{D, s} (b ∈ {0, 1}).

Вторая группа команд обеспечивает запись на ленту кода нового
символа в соответствии с командой машиныM. Она делает это
за l тактов, двигая головку справа налево. В конце она приходит в
состояние, в котором «записывается» тип движения D и номер s
текущей команды машиныM.

102/227

Моделирование машин Тьюринга

Доказательство (продолжение)
Третья группа — движение головки машиныM.

▶ Состояния: {D, s}, D ∈ {R,L, S}, s = 0,m,
{L, s, p}, {R, s, p}, p = 1, l, s = 0,m.

▶ Команды: b{S, s} → bSqs,
b{L, s} → bL{L, s, 1},
b{L, s, p} → bL{L, s, p+ 1}, p = 1, l − 1,
b{L, s, l} → bSqs

b{R, s} → bR{R, s, 1},
b{R, s, p} → bR{R, s, p+ 1}, p = 1, l − 1,
b{R, s, l} → bSqs (b ∈ {0, 1}).

Третья группа команд совершает движение головки в нужном
направлении. Для этого нужно просто остаться на месте, либо
сдвинуться l раз влево или вправо. После этого машина переходит
в состояние, в котором заново начнётся чтение символа кода.

103/227

Моделирование машин Тьюринга

Доказательство (продолжение)
Таким образом, на втором этапе машинаM2 совершает те же
преобразования над кодами символов на ленте, что машинаM
совершает над самими символами. Каждая команда машиныM
«выполняется» машинойM2 за 3(l + 1) тактов.
Отметим, что машинаM2 также содержит во множестве
состояний состояния {q0, . . . , qm}. В них она попадает в
промежутках между итерациями. Начальное состояние q1,
заключительное — q0.

104/227

Моделирование машин Тьюринга

Доказательство (продолжение)
Теперь рассмотрим этап 1. Выпишем программу машиныM1 для
случая функции от одной переменной.

0 0 0 0

x+ 1

11

1∗ 2 [3, 1] [3, 2] . . . [3, l] 4 5

0 0Rq0 0R[3, 1] 1R[3, 2] 1R[3, 3] . . . 1L4 0L5 0R1
1 0R2 1R2 1R[3, 1] 1L4 1L5

Машина стирает единицу в начале, движет головку вправо и
записывает там l единиц, после чего возвращает головку в
начало. Так продолжается, пока входное слово не кончится.

105/227

Моделирование машин Тьюринга

Доказательство (продолжение)

0 0

x1 + 1

11

x2 + 1

11 0 0

xn + 1

11 0

В общем случае машина действует аналогично, но во время
прохода по слову ей нужно «пропускать» нужное количество
нулей (разное при обработке разных входных чисел), а также
«отлавливать» моменты обработки первого символа очередного
слова, чтобы оставлять l разделительных нулей между массивами
из единиц.
МашинаM1 будет получаться как безусловная композиция
машинM0

1, . . . ,M
n−1
1 , каждая из которых обрабатывает один

вход. Программа машиныMk
1 в общем виде для k ⩾ 1 приведена

на следующем слайде.

106/227

Моделирование машин Тьюринга

Доказательство (продолжение)

[1, 0]∗ [1, 1] . . . [1, n− k] [2, 1, 1] [2, 1, 0] . . .

0 0Rq0 0R[1, 2] . . . 0R[2, 1, 1] 0R[2, 1, 0] 0R[2, 1, 0] . . .
1 0R[1, 1] 1R[1, 1] . . . 1R[1, n− k] 1R[2, 1, 1] 1R[2, 2, 1] . . .

. . . [2, k, 1] [3, 2] . . . [3, l] [4, 1] [4, 2] . . . [4, l]

0 . . . 0R[3, 2] 0R[3, 3] . . . 0R4 1R[4, 2] 1R[4, 3] . . . 1L5
1 . . . 1[2, k, 1] . . . 1R[4, 1]

5 6 [7, k, 1] [7, k, 0] . . . [7, 1, 1]

0 0L6 0L6 0L[7, k, 0] 0L[7, k, 0] . . . 0L[8, n− k]
1 1L5 1L[7, k, 1] 1L[7, k, 1] 1L[7, k − 1, 1] . . . 1L[7, 1, 1]

[8, n− k] . . . [8, 1]

0 0L[8, n− k − 1] . . . 0R[1, 0]
1 1L[8, n− k] . . . 1L[8, 1]

107/227

Моделирование машин Тьюринга

Доказательство (продолжение)

ПрограммаM0
1 будет иметь немного другой вид (так как ей нужно

«пропустить» только один ноль, а не l). Выпишем её отдельно.

[1, 0]∗ [1, 1] . . . [1, n] [4, 1] [4, 2] . . . [4, l]

0 0Rq0 0R[1, 2] . . . 0R[4, 1] 1R[4, 2] 1R[4, 3] . . . 1L5
1 0R[1, 1] 1R[1, 1] . . . 1R[1, n] 1R[4, 1]

5 [8, n] . . . [8, 1]

0 0L[8, n] 0L[8, n− 1] . . . 0R[1, 0]
1 1L5 1L[8, n] . . . 1L[8, 1]

108/227

Моделирование машин Тьюринга
Доказательство (продолжение)

0 0 0 0

l(y + 1)

11

МашинаM3 строится аналогично машинеM1, только она
должна каждый раз стирать l символов, а записывать один. При
этом ей всегда требуется обрабатывать только один блок единиц.

[1, 1]∗ [1, 2] . . . [1, l] 2 3 4 5

0 0Rq0 0R3 1L4 0L5 0R[1, 1]
1 0R[1, 2] 0R[1, 3] . . . 0R2 1R2 1R3 1L4 1L5

МашинаM′ получается путём безусловной композиции машин
M1,M2,M3.

109/227

Механизм дорожек

Дорожки

Рассмотрим машину Тьюринга в алфавите A = {0, 1, a2, . . . , ak} с
m дорожками. Эта машина имеет m лент (дорожек), на каждой
из которых могут быть записаны символы алфавита A.
Машина имеет одну головку, которая синхронно перемещается по
всем дорожкам и может считывать и записывать символы на всех
дорожках одновременно.

110/227

Механизм дорожек

Дорожки
Команды машины имеют вид ai1 . . . aimqj → ak1 . . . akmDqs.
При вычислении функций в начальный момент основной код
набора записан на первой дорожке, а остальные дорожки
содержат нули.
Результат вычисления записывается на первую дорожку, при этом
все остальные дорожки должны быть «очищены» (на них
должны содержаться нули).

111/227

Механизм дорожек
Моделирование машины с дорожками

Моделируем машинуM с m дорожками на обычной машине
ТьюрингаM′ в алфавите Am: каждый символ ленты машиныM′

кодирует в себе сразу m символов (по одному с каждой дорожки).
Нулём машиныM′ считаем символ (0, . . . , 0), а единицей —
символ (1, 0, . . . , 0). В начальный и конечный момент содержимое
лентыM′ автоматически кодирует содержимое дорожекM.
Каждая команда ai1 . . . aimqj → ak1 . . . akmDqs моделируется
командой (ai1 , . . . , aim)qj → (ak1 , . . . , akm)Dqs.
Таким образом, машинаM′ будет «воспроизводить» работуM с
помощью одной ленты с «расширенным» алфавитом и будет
вычислять ту же функцию.
С помощью рассматривавшегося ранее моделирования машин
Тьюринга теперь можно перейти от машиныM′ к машине с
одной лентой в алфавите {0, 1}, вычисляющей ту же функцию.

112/227

Универсальные функции

Определение
Пусть f0(x), f1(x), . . . — последовательность частичных функций
натурального аргумента. Частичная функция U(n, x) — универсальная
функция для {f0(x), f1(x), . . .}, если

1. При любом n0 ⩾ 0 функция U(n0, x) совпадает с одной из
функций f0(x), f1(x), . . .

2. Для любого i ⩾ 0 найдётся n′ ⩾ 0 такое, что fi(x) = U(n′, x).

Для универсальной функции
{U(0, x), U(1, x), . . .} = {f0(x), f1(x), . . .}.

Определение
Универсальная машина Тьюригна U(n, x) — это машина Тьюринга,
которая правильно вычисляет функцию, универсальную для
последовательности всех вычислимых функций от одной переменной.

113/227

Лекция 7
Существование универсальной машины Тьюринга.
Операции суперпозиции, примитивной рекурсии и
минимизации. Классы примитивно рекурсивных и

частично рекурсивных функций.

114/227

Существование универсальной машины Тьюринга

Теорема 2
Универсальная машина Тьюринга существует.

Доказательство
Мы опишем лишь идею построения программы универсальной
машины Тьюринга. Полное построение программы было бы
слишком громоздко.
Мы хотим пронумеровать все машины Тьюринга
в алфавите {0, 1} так, чтобы универсальная машина U(n, x)
могла по поданному на вход номеру машины Тьюринга n
воспроизвести её работу на числе x.

115/227

Существование универсальной машины Тьюринга

Доказательство (продолжение)
Для этого мы будем формировать номер машины при помощи
кодирования её программы.

1. Команду aiqj → arDqs кодируем словом 2ai2d(j)2ar2d(D)2d(s).
Здесь d(j), d(s) — это основные коды чисел.
d(L) = 0, d(R) = 1, d(S) = 01.

2. Пусть w1, . . . , wp — коды всех команд машины (порядок
произвольный). Тогда w13w23 . . . 3wp — код программы машины.

3. Теперь рассматриваем код программы как число в четверичной
системе счисления (сопоставление однозначно, так как первый
символ всегда не 0). Это число и будет номером машины.

Теперь нужно построить программу, которая бы расшифровывала
номер-код машины Тьюринга и выполняла бы её программу. Для
этого мы будем использовать механизм дорожек.

116/227

Существование универсальной машины Тьюринга

Доказательство (продолжение)
Нам нужно построить универсальную машину, которая по
номеру n машины ТьюрингаMn и входу x воспроизводила бы
работуMn на x и выдавала бы соответствующий результат.
Будем использовать машину Тьюринга с тремя дорожками в
алфавите {0, 1, 2, 3}:

1. Первая дорожка содержит номер n в четверичной записи и
используется для чтения программы машины Mn.

2. Вторая дорожка хранит номер текущего состояния машиныMn

в основном коде.
3. Третья дорожка хранит текущее содержимое ленты машины Mn,

а также позицию головки: символ 2 означает, что в ячейке
записан 0 и находится головка, а символ 3 — что в ячейке
записана 1 и находится головка.

117/227

Существование универсальной машины Тьюринга

Доказательство (продолжение)

1

x+ 1

w13 . . . 3ws

3 11 . . .

1

Сначала мы переписываем x на третью дорожку, 11 — на вторую
дорожку, а на первой дорожке получаем из числа n его запись в
четверичной системе счисления (т. е. код программы машины).
Мы также помечаем позицию головкиMn в начале слова x.

118/227

Существование универсальной машины Тьюринга

Доказательство (продолжение)
Происходит моделирование работы машиныMn:

1. Универсальная машина считывает текущий обозреваемый Mn

символ с третьей дорожки (запоминает в состояниях) и ищет на
первой дорожке команду, в левой части которой находится этот
символ и состояние, записанное на второй дорожке.

2. Если машина не находит такой команды (или видит нарушения
формата кода), то число n не является кодом машины Тьюринга.
Тогда машина стирает содержимое всех дорожек, записывает на
первую дорожку основной код нуля и останавливается.

3. Если машина нашла нужную команду, она заменяет номер
состояния на второй дорожке, текущий обозреваемый символ на
третьей дорожке и передвигает указатель положения головки
(символ 2 или 3) на третьей дорожке.

4. Если машинаMn перешла в состояние q0, то универсальная
машина переписывает результат её работы на первую дорожку и
стирает содержимое остальных дорожек.

119/227

Существование универсальной машины Тьюринга

Доказательство (продолжение)
Если в результате работыMn на ленте не ровно один массив
единиц, то зацикливаемся. Для этой проверки нужно ещё во
время вычисления помечать задействованный участок ленты.
Теперь можно перейти к машине с одной дорожкой в алфавите
{0, 1}, и мы получим требуемую универсальную машину.
Отметим, что мы описали лишь общую идею построения
универсальной машины Тьюринга. При её реализации может
потребоваться ввести дополнительные дорожки для выполнения
технических операций универсальной машины.
Например, при поиске команды в программе нужно возвращаться
к содержимому второй дорожки для сравнения номеров
состояний. Чтобы запоминать текущую позицию поиска в коде
программы, можно использовать дополнительную дорожку.

120/227

Утверждения об универсальной функции

Утверждение
Для последовательности всех вычислимых всюду определённых
функций натурального аргумента от одной переменной не существует
вычислимой универсальной функции.

Доказательство
Пусть U ′(n, x) — вычислимая функция, универсальная для
вычислимых всюду определённых функций от одной переменной.
Функция U ′(n, x) всюду определена.
Тогда функция U ′(x, x) + 1 тоже вычислима и всюду определена.
Значит, она имеет некоторый номер n0: U ′(x, x) + 1 = U ′(n0, x).
Тогда U ′(n0, n0) + 1 = U ′(n0, n0), что невозможно,
т.к. значение U ′(n0, n0) определено.

121/227

Утверждения об универсальной функции
Утверждение
Существует вычислимая частичная функция, которую невозможно
доопределить до вычислимой всюду определённой функции.

Доказательство
Пусть U(n, x) — вычислимая универсальная функция для
последовательности вычислимых функций одного аргумента.
Пусть V (x) всюду определена и есть доопределение U(x, x) + 1.
Если функция V (x) вычислима, то вычисляющая её машина
Тьюринга имеет некоторый номер n1 и верно V (x) = U(n1, x).
Тогда V (n1) = U(n1, n1), то есть значение U(n1, n1) определено.
Но тогда V (n1) = U(n1, n1) + 1.
Противоречие показывает, что функция V (x) не может быть
вычислимой.

122/227

Утверждения об универсальной функции

Будем считать, что машины Тьюринга нумеруются тем же
способом, что и в доказательстве существования универсальной
машины Тьюринга.
Если номер некорректен, то считаем, что он задаёт машину,
правильно вычисляющую функцию 0.

Проблема остановки

stop(n, x) =


1, машина Тьюринга с номером n

останавливается на входе x,
0, машина Тьюринга с номером n

не останавливается на входе x.

Функция stop(n, x) проверяет, останавливается или зацикливается
машинаMn на входе x. Эта задача называется проблемой
остановки.

123/227

Утверждения об универсальной функции

Утверждение (неразрешимость проблемы остановки)
Функция stop(n, x) невычислима.

Доказательство
Пусть функция stop(n, x) вычислима, а машина для вычисления
U(x, x) + 1 имеет номер n0. Тогда рассмотрим функцию

V (x) =

{
U(x, x) + 1, если stop(n0, x) = 1,

0 в ином случае.

Тогда функция V (x) вычислима. Но это невозможно, так как она
является доопределением U(x, x) + 1.

124/227

Утверждения об универсальной функции

Содержательный смысл результатов
Существование универсальной машины Тьюринга на
теоретическом уровне обосновывает возможность иметь один
компьютер, который за счёт занесения в него разных программ
способен выполнять любые алгоритмические задачи.
При этом невозможно создать устройство или язык
программирования, который позволял бы составлять только
программы, которые не зацикливаются, но всё ещё позволял бы
решать любые (алгоритмически разрешимые) задачи.
Не существует алгоритмических способов избавиться от
зацикливания или даже проверить наличие зацикливаний в
произвольной программе.

125/227

Операции над частичными функциями

Определение
Функция f(x1, . . . , xn) получается из функций
g0(y1, . . . , ym), g1(x1, . . . , xn), . . . , gm(x1, . . . , xn) с помощью
операции суперпозиции, если

f(x1, . . . , xn) = g0(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)).

При этом для каждого ā ∈ Nn
0 значение f(ā) определено, если

определены все значения g1(ā), . . . , gm(ā), а также значение
g0(g1(ā), . . . , gm(ā)).
В противном случае значение f(ā) не определено.

126/227

Операции над частичными функциями

Определение
Функция f(x1, . . . , xn) получается из функций g(x1, . . . , xn−1) и
h(x1, . . . , xn+1) с помощью операции примитивной рекурсии, если{

f(x1, . . . , xn−1, 0) = g(x1, . . . , xn−1),

f(x1, . . . , xn−1, y + 1) = h(x1, . . . , xn−1, y, f(x1, . . . , xn−1, y)).

При этом для каждого (ā, an) ∈ Nn
0 значение f(ā, an) определено,

если определено значение g(ā) и все значения h(ā, y, f(ā, y)) при
y < an.
В противном случае значение f(ā, an) не определено.

127/227

Операции над частичными функциями

Пример работы рекурсии
Рассмотрим частный примитивной случай рекурсии — итерацию:{

f(0) = a,

f(y + 1) = h(f(y)).

Здесь f(1) = h(a), f(2) = h(h(a)), . . . , f(i) = h(. . . (h︸ ︷︷ ︸
i

(a)) . . .).

128/227

Операции над частичными функциями

Определение
Функция f(x1, . . . , xn) получается из функции g(x1, . . . , xn) с
помощью операции минимизации

f(x1, . . . , xn) = (µy)(g(x1, . . . , xn−1, y) = xn),

если при любых значениях x1, . . . , xn значение f(x1, . . . , xn) равно
минимальному значению y такому, что g(x1, . . . , xn−1, y) = xn.
При этом для каждого (ā, an) ∈ Nn

0 значение f(ā, an) определено,
если существует b такое, что g(ā, b) = an, причём все значения
g(ā, 0), . . . , g(ā, b) определены.
В противном случае значение f(ā, b) не определено.

Иными словами f(a1, . . . , an) = b, если g(a1, . . . , an−1, b) = an и
для всех z < b значения g(a1, . . . , an−1, z) определены и отличны
от an.

129/227

Операции над частичными функциями

Требование того, что g(ā, 0), . . . , g(ā, b) определены, существенно
в определении минимизации. Если убрать это требование, то
минимизация сможет получать из вычислимых функций
невычислимые.

Пример минимизации
Пусть g(y) ≡ 1.
f(x) = (µy)(1 = x).

Тогда f(x) =

{
0, x = 1,

не определено иначе.

130/227

Некоторые классы функций

Базовые функции
I = {0, x+ 1, Inm(x1, . . . , xn), m = 1, n, n ∈ N},
где Inm(x1, . . . , xn) = xm.

Определение
Класс примитивно рекурсивных функций Fпр — это замыкание
множества I относительно операций суперпозиции и примитивной
рекурсии [I] суперпозиция

прим. рекурсия
.

Определение
Класс частично рекурсивных функций Fчр — это замыкание
множества I относительно операций суперпозиции, примитивной
рекурсии и минимизации [I] суперпозиция

прим. рекурсия
минимизация

.

131/227

Некоторые классы функций

Простейшие свойства классов
Fпр содержит только всюду определённые функции. Fчр содержит
и частичные функции.
Fпр ⊊ Fчр.

Название «частично рекурсивные функции» не вполне корректно
с точки зрения русского языка и появилось в результате
неудачного перевода. Правильнее было бы говорить «частичные
рекурсивные функции». Но название «частично рекурсивные
функции» уже стало стандартным и повсеместно используется.

132/227

Лекция 8
Вычислимость частично рекурсивных функций.
Некоторые примитивно рекурсивные функции.

133/227

Некоторые классы функций

Тезис Чёрча
Класс Fчр совпадает с классом эффективно (алгоритмически)
вычислимых функций.

Понятие «эффективно (алгоритмически) вычислимых» не
является строгим, поэтому этот тезис невозможно доказать.
Однако на текущий момент все известные способы конкретизации
понятия эффективной вычислимости приводят к классу Fчр.
Далее мы докажем это для одной из конкретизаций: Fчр = Fвыч,
где Fвыч — это класс всех вычислимых (на машинах Тьюринга)
функций.

134/227

Вычислимость частично рекурсивных функций

Теорема 3
Имеет место включение Fчр ⊆ Fвыч.

Доказательство
Ранее были построены машины Тьюринга, правильно
вычисляющие функции системы I.
Для доказательства теоремы осталось доказать замкнутость
класса вычислимых функций относительно операций
суперпозиции, примитивной рекурсии и минимизации.

135/227

Замкнутость Fвыч относительно суперпозиции
Доказательство (продолжение)

1

m

Пусть f(x1, . . . , xn) = g0(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)), а
функции g0, . . . , gm правильно вычисляются машинами Тьюринга
M0, . . . ,Mm.
Мы будем строить машину ТьюрингаM, правильно
вычисляющую функцию f . Машина будет иметь m дорожек, на
которых она будет производить вычисление функций g1, . . . , gm.
Затем она будет записывать результаты на первую дорожку и
применять к ним функцию g0.

136/227

Замкнутость Fвыч относительно суперпозиции

Доказательство (продолжение)
Мы хотим иметь возможность «отслеживать» области ленты,
которые были затронуты вычислениями функций g1, . . . , gm. Для
этого мы вводим в машиныM1, . . . ,Mm новый символ ленты 2.
Машины будут обрабатывать символ 2 так же, как символ 0. При
этом они никогда не будут записывать на ленту 0, вместо этого
они будут записывать 2.
В машинахM1, . . . ,Mm команды aiqj → 0Dqs заменяем на
aiqj → 2Dqs. После этого для каждой команды 0qj → akDqs
добавляем новую команду 2qj → akDqs.
Полученные машины обозначимM′

1, . . . ,M′
m.

Каждая дорожка машиныM будет содержать символы 0, 1, 2.
Далее описываем работу машиныM.

137/227

Замкнутость Fвыч относительно суперпозиции

Доказательство (продолжение)

0 0

x1 + 1

11

x2 + 1

11 0 0

xn + 1

11 0

0 011 11 0 0 11 0

(1)

(m)

Вначале машина переносит основной код входного набора на m
дорожек и возвращает головку на начало этого основного кода.
Запускаем машинуM′

1 на первой дорожке. Во время своей
работы машинаM′

1 заменяет нули на всех остальных дорожках
на двойки (единицы оставляет без изменения).

138/227

Замкнутость Fвыч относительно суперпозиции
Доказательство (продолжение)

0 2 2 0

g1(x̄) + 1

112 2

Если машинаM′
1 остановится, то её результатом на первой

дорожке будет являться массив из единиц. Он может быть
окружён некоторым количеством двоек.
Возвращаем головку на первый символ входа других дорожек.
Для этого на любой из других дорожек двигаемся по единицам и
двойкам влево, пока не дойдём до нулей, а затем вправо до
первой единицы.
Далее одну за другой запускаем машиныM′

2 на второй дорожке,
M′

3 на третьей дорожке, . . . ,M′
m на m-й дорожке. Перед

каждым запуском возвращаем головку на первый символ входа.

139/227

Замкнутость Fвыч относительно суперпозиции
Доказательство (продолжение)

0 02

g1(x̄) + 1

11 2 2

gm(x̄) + 1

2 0

0 020 22 21 1 0

1

m

2 11 2 220

1 2 0

0

020202 02

Если все машины остановятся, то их результаты будут иметь
такой же вид, как уM′

1. Блоки из единиц могут находиться в
разных местах ленты, но непустые области дорожек выровнены.
Переносим все результаты вычислений на первую дорожку: как и
раньше, найти начало блока единиц можно с помощью двоек.
Стираем содержимое всех дорожек, кроме первой. Заменяем на
первой дорожке двойки на нули.

140/227

Замкнутость Fвыч относительно суперпозиции
Доказательство (продолжение)

0 0

g1(x̄) + 1

11

g2(x̄) + 1

11 0 0

gm(x̄) + 1

11 0

Мы получили на первой дорожке основной код набора
g1(x̄), . . . , gm(x̄). Остальные дорожки пусты и больше не будут
использоваться.
Запускаем на первой дорожке машинуM0. Она проведёт
вычисление функции g0 и выдаст требуемый результат. В случае
неопределённых значений функционирование машиныM тоже
соответствует определению суперпозиции.
От машины с дорожками в алфавите {0, 1, 2} переходим к
обычной машине Тьюринга в алфавите {0, 1}. Замкнутость
класса Fвыч относительно суперпозиции доказана.

141/227

Замкнутость Fвыч относительно рекурсии

Доказательство (продолжение)
Пусть f(x1, . . . , xn, xn+1) получается из функций g(x1, . . . , xn) и
h(x1, . . . , xn, y, z) с помощью примитивной рекурсии:{

f(x1, . . . , xn, 0) = g(x1, . . . , xn),

f(x1, . . . , xn, y + 1) = h(x1, . . . , xn, y, f(x1, . . . , xn, y))

и функции g и h правильно вычисляются машинамиMg иMh.
Аналогично случаю суперпозиции будем отмечать символом 2
пустые клетки, которые были затронуты работой машинMg и
Mh. Символы 2 будут использоваться для поиска блоков единиц
на дорожках, мы не будем уточнять это далее.
Будем строить машинуM с тремя дорожками в алфавите
{0, 1, 2} для вычисления функции f .

142/227

Замкнутость Fвыч относительно рекурсии

Доказательство (продолжение)

0 0

x1 + 1

11

xn + 1

11 00

xn+1 + 1

11 0

y

Первая дорожка постоянно содержит входные значения. Вторая
дорожка содержит y — номер текущей итерации рекурсии. Третья
дорожка используется для вычисленийMg иMh.
Вначале машинаM переписывает значения x1, . . . , xn с первой
дорожки на третью, записывает y = 0 на вторую дорожку и
запускает машинуMg на третьей дорожке.

143/227

Замкнутость Fвыч относительно рекурсии

Доказательство (продолжение)
Если y = xn+1, то машина переписывает результат с третьей
дорожки на первую, стирает всё остальное и завершает
вычисление.
Иначе машина формирует на третьей дорожке набор
x1, . . . , xn, y, z, где z — уже имеющийся на этой дорожке
результат прошлого вычисления.
Запускается машинаMh на третьей дорожке. После окончания её
работы содержимое второй дорожки y увеличивается на 1.
Если y = xn+1, то машина переписывает результат на первую
дорожку, стирает всё остальное и завершает вычисление.
Иначе машина вновь формирует на третьей дорожке набор
x1, . . . , xn, y, z, где z — уже записанный на ней результат
прошлого вычисления, запускаетMh и продолжает работу
циклически.

144/227

Замкнутость Fвыч относительно рекурсии

Доказательство (продолжение)
Нетрудно видеть, что полученная машина моделирует работу
примитивной рекурсии.
При этом, если в процессе вычислений встретилось
неопределённое значение, то машина никогда не остановится и
результат будет неопределён, что соответствует определению
примитивной рекурсии.
От машины с дорожками в алфавите {0, 1, 2} переходим к
обычной машине Тьюринга в алфавите {0, 1}. Замкнутость
класса Fвыч относительно примитивной рекурсии доказана.

145/227

Замкнутость Fвыч относительно минимизации

Доказательство (продолжение)
Пусть f(x1, . . . , xn) = (µy)(g(x1, . . . , xn−1, y) = xn) и функция g
вычисляется машинойMg.
Аналогично случаю суперпозиции будем отмечать символом 2
пустые клетки, которые были затронуты работой машиныMg.
Символы 2 будут использоваться для поиска блоков единиц на
дорожках, мы не будем уточнять это далее.
Будем строить машинуM с тремя дорожками в алфавите
{0, 1, 2} для вычисления функции f , аналогичную машине для
примитивной рекурсии.

146/227

Замкнутость Fвыч относительно минимизации

Доказательство (продолжение)

0 0

x1 + 1

11

xn−1 + 1

11 00

xn + 1

11 0

y

Первая дорожка постоянно содержит входные значения. Вторая
дорожка содержит y — номер текущего проверяемого значения.
Третья дорожка используется для вычисленийMg.
Вначале машинаM записывает y = 0 на вторую дорожку,
переписывает значения x1, . . . , xn−1, y на третью дорожку и
запускает машинуMg на третьей дорожке.

147/227

Замкнутость Fвыч относительно минимизации

Доказательство (продолжение)
Далее машина сравнивает результат z на третьей дорожке с xn.
Если z = xn, то она переписывает y со второй дорожки на
первую, стирает всё остальное и останавливается.
Иначе машина увеличивает y на 1, формирует на третьей дорожке
набор x1, . . . , xn−1, y и запускает машинуMg. Далее машина
продолжает работу циклически.
Таким образом, машина находит минимальное y, для которого
выполняется g(x1, . . . , xn−1, y) = xn. Если в процессе поиска она
натыкается на неопределённое значение, то она никогда не
остановится, что соответствует определению минимизации.
От машины с дорожками в алфавите {0, 1, 2} переходим к
обычной машине Тьюринга в алфавите {0, 1}. Замкнутость
класса Fвыч относительно минимизации доказана.

148/227

Примитивно рекурсивные функции

Класс примитивно рекурсивных функций
I = {0, x+ 1, Inm(x1, . . . , xn), m = 1, n, n ∈ N},
где Inm(x1, . . . , xn) = xm.
Суперпозиция:

f(x1, . . . , xn) = g0(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)).

Примитивная рекурсия:{
f(x1, . . . , xn−1, 0) = g(x1, . . . , xn−1),

f(x1, . . . , xn−1, y + 1) = h(x1, . . . , xn−1, y, f(x1, . . . , xn−1, y))

Класс примитивно рекурсивных функций Fпр — это замыкание
множества I относительно операций суперпозиции и примитивной
рекурсии [I] суперпозиция

прим. рекурсия
.

149/227

Примитивно рекурсивные функции

Некоторые простые функции
0, x+ 1 ∈ Fпр по определению.
Константа d = 0+1 + . . .+ 1︸ ︷︷ ︸

d

∈ Fпр.

sum(x, y) = x+ y:{
sum(x, 0) = x,

sum(x, y + 1) = sum(x, y) + 1.

Здесь g(x) = x = I11 (x), h(x, y, z) = z + 1 = I33 (x, y, z) + 1.
prod(x, y) = xy:{

prod(x, 0) = 0,

prod(x, y + 1) = prod(x, y) + x.

150/227

Примитивно рекурсивные функции

Некоторые простые функции

Усечённая разность: x ·− y =

{
x− y, x ⩾ y,

0, x < y.

1. Сначала докажем, что x ·− 1 ∈ Fпр:{
0 ·− 1 = 0,

(x+ 1) ·− 1 = x.

2. Теперь можно доказать, что x ·− y ∈ Fпр:{
x ·− 0 = x,

x ·− (y + 1) = (x ·− y) ·− 1.

151/227

Примитивно рекурсивные функции

Некоторые простые функции
pow(x, y) = xy (считаем, что 00 = 1):{

pow(x, 0) = 1,

pow(x, y + 1) = pow(x, y) · x.

min(x, y) = x ·− (x ·− y).
max(x, y) = (x+ y) ·−min(x, y).
|x− y| = (x ·− y) + (y ·− x).
Отметим: |x− y| не является суперпозицией функций |x| и x− y.
Это единая функция, и она всюду определена.

sg x =

{
0, x = 0,

1 x > 0,
sg x =

{
1, x = 0,

0 x > 0,

sg x = 1 ·− x, sg x = sg sg x ∈ Fпр.

152/227

Примитивно рекурсивные функции
Замена значений функции в нескольких точках

Характеристическая функция точки a: sg |x− a| =

{
1, x = a,

0, x 6= a.

Пусть функция f(x) в точках a1, . . . , am принимает значения
b1, . . . , bm соответственно, а в остальных точках она равна 0.
Тогда

f(x) = b1 sg |x− a1|+ . . .+ bm sg |x− am| ∈ Fпр.

Пусть теперь g(x) — примитивно рекурсивная функция, а f(x)
получается из g(x) заменой значений в точках a1, . . . , am на
b1, . . . , bm соответственно. Тогда f ∈ Fпр:

f(x) = b1 sg |x− a1|+ . . .+ bm sg |x− am|+
+ g(x) sg |x− a1| · . . . · sg |x− am|.

153/227

Примитивно рекурсивные функции

Выражение отношений функциями
Характеристическая функция отношения (предиката) ρ(x̄) — это
функция, принимающая значения 0 и 1, причём функция
принимает значение 1 на тех и только на тех наборах, на которых
ρ(x̄) истинно.
Характеристическая функция x = y: sg |x− y|.
Характеристическая функция x 6= y: sg |x− y|.
Характеристическая функция x < y: sg(y ·− x).
Характеристическая функция x > y: sg(x ·− y).
Характеристическая функция x ⩾ y: sg(y ·− x).
Характеристическая функция x ⩽ y: sg(x ·− y).

154/227

Примитивно рекурсивные функции

Утверждение (Разбор случаев по предикатам)

f(x1, . . . , xn) =


f1(x1, . . . , xn), если ρ1(x1, . . . , xn),
. . .

fm(x1, . . . , xn), если ρm(x1, . . . , xn),

fm+1(x1, . . . , xn) иначе,

где f1, . . . , fm+1 ∈ Fпр, ρ1, . . . , ρm — попарно несовместные предикаты,
характеристические функции χ1, . . . , χm которых примитивно
рекурсивны. Тогда функция f примитивно рекурсивна.

Доказательство

f(x̄) = f1(x̄)χ1(x̄)+ . . .+fm(x̄)χm(x̄)+fm+1(x̄) sg(χ1(x̄)+ . . .+χm(x̄))

155/227

Примитивно рекурсивные функции

Ограниченные суммирование и мультиплицирование
Операция ограниченного суммирования:

f(x1, . . . , xn) =
xn∑
i=0

g(x1, . . . , xn−1, i).{
f(x1, . . . , xn−1, 0) = g(x1, . . . , xn−1, 0),

f(x1, . . . , xn−1, y + 1) = f(x1, . . . , xn−1, y) + g(x1, . . . , xn−1, y + 1).

Операция ограниченного мультиплицирования:

f(x1, . . . , xn) =
xn∏
i=0

g(x1, . . . , xn−1, i).{
f(x1, . . . , xn−1, 0) = g(x1, . . . , xn−1, 0),

f(x1, . . . , xn−1, y + 1) = f(x1, . . . , xn−1, y) · g(x1, . . . , xn−1, y + 1).

156/227

Примитивно рекурсивные функции

Деление с остатком
Считаем, что bx/yc = 0 при y = 0.
Чтобы получить значение bx/yc, нужно получить i ∈ {0, . . . , x}
(оно будет единственным) такое, что
(i = bx/yc) ≡ (i ⩽ x/y < i+ 1) ≡ (iy ⩽ x) & ((i+ 1)y > x).
Это значение i ищем с помощью операции ограниченного
суммирования:

bx/yc =
x∑

i=0

i · sg(iy ·− x) sg((i+ 1)y ·− x).

rm(x, y) — остаток от деления x на y (0 при y = 0).
rm(x, y) = (x− y · bx/yc) sg y.

157/227

Примитивно рекурсивные функции

Извлечение корня
Аналогично делению можно получить вычисление корня:
(i = b

√
xc) ≡ (i ⩽

√
x < i+ 1) ≡ (i2 ⩽ x) & ((i+ 1)2 > x).

Поиск этого i с помощью ограниченного суммирования:

b
√
xc =

x∑
i=0

i · sg(i2 ·− x) sg((i+ 1)2 ·− x).

Схожим образом можно получить функции b m
√
xc, blogy xc (при

некотором доопределении в нулевых точках) и другие обратные
функции.

158/227

Лекция 9
Некоторые частично рекурсивные функции. Формула

Клини.

159/227

Частично рекурсивные функции

Частично рекурсивные функции
Операция минимизации:

f(x1, . . . , xn) = (µy)(g(x1, . . . , xn−1, y) = xn),

Класс частично рекурсивных функций Fчр — это замыкание
множества I относительно операций суперпозиции, примитивной
рекурсии и минимизации [I] суперпозиция

прим. рекурсия
минимизация

.

Нигде не определённая функция

g(x) = (µy)(1 = x) =

{
0, x = 1,

не определено, иначе.

f(x) = (µy)(g(y) = x) — нигде не определённая функция (она не
определена ни в одной точке).

160/227

Частично рекурсивные функции

Обратные функции
f1(x) = (µy)(y + 1 = x) = x− 1 (не определена при x = 0).
f2(x) = (µy)(y2 = x) =

√
x (не определена, если x не полный

квадрат).

Нумерационные функции
Пусть c(x, y) — инъективная функция, а l(v) и r(v) — такие
функции, что l(c(x, y)) = x, r(c(x, y)) = y.
Тогда набор функций c(x, y), l(v), r(v) называется тройкой
нумерационных функций.
Нумерационные функции позволяют кодировать пары чисел
одним числом. Их можно выбирать по разному, мы рассмотрим
один конкретный вариант.

161/227

Частично рекурсивные функции

Нумерационные функции
Обозначим

c(x, y) = (x+ y)2 + x, l(v) = v ·− (b
√
vc)2, r(v) = b

√
vc ·− l(v).

Легко видеть, что указанные функции составляют тройку
нумерационных функций и что эти функции примитивно
рекурсивны.
Для нумерации троек используем функцию
c3(x, y, z) = c(c(x, y), z).
Обратные функции для c3:

l1(v) = l(l(v)), l2(v) = r(l(v)), l3(v) = r(v).

Ясно, что все эти функции примитивно рекурсивны.

162/227

Частично рекурсивные функции

Функции для представления основного кода

0 0

x1 + 1

11

x2 + 1

11 0 0

xn + 1

11 0

Обозначим через Θn(x1, . . . , xn) функцию, которая выдаёт число,
двоичным представлением которого является основной код
набора (x1, . . . , xn).
Эти функции примитивно рекурсивны:{

Θ1(0) = 1,

Θ1(x+ 1) = 2Θ1(x) + 1,{
Θn+1(x̄, 0) = 4Θn(x̄) + 1,

Θn+1(x̄, xn+1 + 1) = 2Θn+1(x̄, xn+1) + 1.

163/227

Формула Клини

Теорема 4 (Формула Клини)
Для любой вычислимой функции f(x1, . . . , xn) найдутся примитивно
рекурсивные функции G(x1, . . . , xn, y) и H(x1, . . . , xn, y) такие, что

f(x1, . . . , xn) = G(x1, . . . , xn, (µy)(H(x1, . . . , xn, y) = 0)).

Для задания любой вычислимой функции достаточно только
одного использования операции минимизации.

Доказательство
Пусть машинаM правильно вычисляет функцию f . Мы будем
считать, что в программе машины есть команды для
заключительного состояния: 0q0 → 0Sq0 и 1q0 → 1Sq0.

164/227

Формула Клини
Доказательство (продолжение)

0 0 0 0

Rt

aikaij1 ail 1

Lt

qi

Предположим, что машинаM начала работать на входе
x̄ = (x1, . . . , xn). Рассмотрим конфигурацию на ленте в
произвольный момент времени t.
Обозначим через l(x̄, t) число, двоичной записью которой
является содержимое ленты левее головки Lt.
Обозначим через r(x̄, t) число, двоичной записью которой
является содержимое ленты справа от головки Rt, включая
обозреваемый головкой символ. При этом считаем, что эта запись
размещена на ленте справа налево (младшие разряды слева,
обозреваемый головкой разряд — самый младший).

165/227

Формула Клини

Доказательство (продолжение)
Обозначим q(x̄, t) номер состояния i в момент времени t при
работе на входе x̄.
Легко видеть, что тройка значений (l(x̄, t), r(x̄, t), q(x̄, t))
полностью задаёт конфигурацию машины и её дальнейшее
функционирование.
Будем кодировать всю конфигурацию машины с помощью одного
числа:

Code(x̄, t) = c3(l(x̄, t), r(x̄, t), q(x̄, t)).

Далее мы покажем, что функция Code примитивно рекурсивна. А
пока выпишем формулу Клини с использованием этой функции.

166/227

Формула Клини
Доказательство (продолжение)

ρ : (11 . . . 1︸ ︷︷ ︸
z+1

)2 → z

Через ρ(x) обозначим функцию, которая удовлетворяет условию
ρ(2z+1 − 1) = z при всех z ∈ N0. Эта функция преобразует число,
двоичной записью которого является основной код числа z, в само
число z. Далее мы покажем, что она примитивно рекурсивна.
Формула Клини:

f(x1, . . . , xn) = ρ(l2(Code(x̄, (µt)(l3(Code(x̄, t)) = 0)))).

Эта формула ищет минимальный момент времени, в котором
машина попадает в состояние q0. Далее она берёт конфигурацию
в этот момент времени, извлекает из неё правую часть ленты и
выдаёт записанный на ней результат.

167/227

Формула Клини
Доказательство (продолжение)

Сначала покажем примитивную рекурсивность функции ρ:

ρ(x) =

x∑
i=0

i sg |(2i+1 − 1)− x|.

Для завершения доказательства теоремы осталось доказать
примитивную рекурсивность функции Code. Будем задавать эту
функцию схемой примитивной рекурсии.{

Code(x̄, 0) = c3(0, Θn(xn, . . . , x1), 1),

Code(x̄, t+ 1) = h(x̄, t, Code(x̄, t)).

У Θn(xn, . . . , x1) аргументы переставлены, так как двоичная
запись r(x̄, t) пишется справа налево.
Задание функции h потребует ряда технических операций.

168/227

Формула Клини

Доказательство (продолжение)

l(x̄, t) = l1(Code(x̄, t)), r(x̄, t) = l2(Code(x̄, t)), q(x̄, t) = l3(Code(x̄, t))

Текущий обозреваемый символ — младший символ правой части:
ν(x̄, t) = rm(r(x̄, t), 2).
Пусть ν(x̄, t) = a, q(x̄, t) = i и в программе машины есть команда
aqi → ba,iDa,iqja,i . Рассмотрим, каким будет значение
Code(x̄, t+ 1) в каждом возможном случае.
Если Da,i = S, то

la,i(x̄, t+ 1) = l(x, t),

ra,i(x̄, t+ 1) = r(x, t) ·− ν(x̄, t) + ba,i,

qa,i(x̄, t+ 1) = ja,i.

169/227

Формула Клини

Доказательство (продолжение)
Если Da,i = L, то

la,i(x̄, t+ 1) = bl(x̄, t)/2c,
ra,i(x̄, t+ 1) = (r(x̄, t) ·− ν(x̄, t) + ba,i) · 2 + rm(l(x̄, t), 2),

qa,i(x̄, t+ 1) = ja,i.

Если D = R, то

la,i(x̄, t+ 1) = 2 · l(x̄, t) + ba,i,

ra,i(x̄, t+ 1) = br(x̄, t)/2c,
qa,i(x̄, t+ 1) = ja,i.

170/227

Формула Клини

Доказательство (продолжение)
Пусть Q — множество номеров состояний машиныM. Тогда

Code(x̄, t+ 1) =
∑

a∈{0,1}
i∈Q

sg |a− ν(x̄, t)| · sg |i− q(x̄, t)|×

× c3(la,i(x̄, t+ 1), ra,i(x̄, t+ 1), qa,i(x̄, t+ 1)),

где функции la,i(x̄, t+ 1), ra,i(x̄, t+ 1), qa,i(x̄, t+ 1) для каждой
пары a, i определяются индивидуально в зависимости от действия
программы машины.
Отметим, что в задании Code(x̄, t+ 1) не используется операция
ограниченного суммирования. С помощью знака суммы
сокращена запись обычной конечной суммы z1 + . . .+ zk, которую
можно получить суперпозициями функции x+ y.

171/227

Формула Клини

Доказательство (продолжение)
Итак, мы построили схему примитивной рекурсии для функции
Code(x̄, t). Значит, эта функция примитивно рекурсивна.
Отметим, что формула Клини корректно работает и тогда, когда
машинаM не останавливается. В этом случае результат
минимизации будет не определён, а значит не определено
и значение f(x̄).

172/227

Формула Клини

Теорема 5
Имеет место равенство Fчр = Fвыч.

Класс частично рекурсивных функций задан индуктивным
способом и не зависит от устройства каких-либо машин.
Совпадение класса вычислимых функций с классом частично
рекурсивных функций показывает, что класс вычислимых
функций «устойчив»: он отражает некоторые содержательные
свойства функций, а не какие-то тонкости определения машины
Тьюринга.

173/227

Лекция 10
Классы P и NP. Эквивалентность двух

определений NP

174/227

Класс P

Пусть A,B — произвольные алфавиты.
Рассматриваем частичные функции вида f : A∗ → B∗.
Считаем, что Λ /∈ A ∪B — пустой символ.
В этом разделе мы не будем делать различий между
вычислимостью и правильной вычислимостью.

Определение
Машина ТьюрингаM с алфавитом A ∪B ∪ {Λ} вычисляет функцию
f : A∗ → B∗, если, начиная работу на первом символе слова w ∈ A∗

(остальные символы ленты — Λ) в состоянии q1, машина:
1. Если f(w) определено, тоM через конечное число тактов

останавливается, и в этот момент на ленте представлено слово
f(w) (остальные символы ленты — Λ), причём головка машина
находится на первом символе этого слова.

2. Если f(w) не определено, тоM не останавливается.

175/227

Класс P

Определение
Пусть T (n) : N0 → N0 — всюду определённая функция.
Функция f вычислима за время T (n), если существует машина
ТьюрингаM, которая вычисляет функцию f , и при этом для
любого слова w длины n время вычисления не превосходит T (n).
Функция f вычислима за полиномиальное время (полиномиально
вычислима), если существует машина ТьюрингаM
и полином p(n) с натуральными коэффициентами такие,
чтоM вычисляет f за время p(n).

Если функция f зависит от двух переменных (f : A∗ ×B∗ → C∗),
то считаем, что вход w = x#y, где x ∈ A∗, y ∈ B∗, # /∈ A ∪B.
Функция f , вычислимая за время T (n), всегда всюду определена.
Класс полиномиально вычислимых функций не меняется при
изменении допустимого размера алфавита и количества дорожек
у машин Тьюринга.

176/227

Класс P

Определение
Характеристическая функция множества (языка) L ⊆ A∗ — это
функция fL(x) : A∗ → {0, 1}∗ такая, что

fL(x) =

{
0, если x /∈ L,
1, если x ∈ L.

Определение
Класс P — это множество всех языков, характеристические функции
которых вычислимы за полиномиальное время.

Язык (множество) — это формализация задачи распознавания.
Класс P — это класс задач, которые разрешимы «на практике».
Если задача не принадлежит классу P, то обычно это означает,
что для её разрешения требуется неприемлемо много времени.

177/227

Полиномиальная сводимость

Определение
Пусть L1 ⊆ A∗, L2 ⊆ B∗. L1 полиномиально сводится
(P-сводится) к L2 (L1 ⩽P L2), если существует полиномиально
вычислимая функция f : A∗ → B∗ такая, что

(∀w)(w ∈ L1 ⇐⇒ f(w) ∈ L2).

L1
L2w

f(w)
w′ f(w′)f

f

Множество L2 используется как «оракул»: для решения задачи
L1 можно (при помощи функции f) использовать решение L2.

178/227

Полиномиальная сводимость

Утверждение
Пусть множество L1 полиномиально сводится к множеству L2

и L2 ∈ P. Тогда L1 ∈ P.

Доказательство
Пусть f2 — характеристическая функция множества L2.
Поскольку L2 ∈ P, существует полином с натуральными
коэффициентами p2(n) такой, что f2 вычислима за время p2(n).
Пусть функция f1 сводит L1 к L2 и вычисляется за время p1(n),
где p1(n) — полином с натуральными коэффициентами.

L1
L2

x
f1(x)

x′
f1(x

′)f1

f1

0 = f2(f1(x
′))

1 = f2(f1(x))

f2

f2

Характеристическая функция множества L1 есть f(x) = f2(f1(x)).

179/227

Полиномиальная сводимость

Доказательство (продолжение)
Вычисляем функцию f(x) = f2(f1(x)). Пусть n = |x|.

▶ Сначала вычисляем y = f1(x) за время p1(n).
▶ Длина y не превосходит n+p1(n), так как на каждом такте машина

может добавить символ не более чем в одну пустую ячейку.
▶ Далее вычисляем f(x) = f2(y) за время p2(|y|) ⩽ p2(n+ p1(n)).
▶ Общее время не превосходит p1(n) + p2(n+ p1(n)) — полином.

Таким образом, функция f(x) полиномиально вычислима,
поэтому L1 ∈ P.

Аналогичным образом нетрудно показать, что отношение ⩽P

рефлексивно и транзитивно.
Поэтому, если L1 полиномиально сводится к L2, то L1 является
«равной по сложности» или «более простой» задачей, чем L2.

180/227

Класс NP

Определение
Недетерминированная машина ТьюрингаM — это
набор (A,Q, f, q1, q0), где

A = {a0, . . . , ak}, k ⩾ 1 — алфавит. a0 = Λ — пустой символ.
Q 6= ∅ — множество состояний.
q1 ∈ Q — начальное состояние.
q0 ∈ Q, q0 6= q1 — заключительное состояние.
f : A×Q→ 2A×{L,R,S}×Q \∅ — программа машины.

Программу машины можно считать набором команд вида
aiqj → arDqs, j 6= 0. В программе может быть несколько команд
с каждой допустимой левой частью:

aiqj → ar1D1qs1 | ar2D2qs2 | . . . | arlDlqsl .

181/227

Класс NP

Работа недетерминированной машины
В начальный момент времени машина находится в состоянии q1,
на ленте записано входное слово w ∈ A \ {Λ}, а головка машины
обозревает первый символ этого слова.
В каждый момент времени машина считывает символ a из
обозреваемой головкой ячейки. По этому символу и текущему
состоянию qi машина выбирает команду с левой частью aqj .
Если команд с левой частью aqj несколько, то машина выбирает
произвольную.
После этого машина записывает в текущую ячейку символ b,
передвигает головку и переходит в состояние qj .
Машина останавливается при переходе в состояние q0
Такое вычисление называется допускающим (ответ «да»).
Если этого не происходит, машина работает бесконечно
(считаем это ответом «нет»).

182/227

Класс NP

Вычисления недетерминированной машины
На каждом входном слове w недетерминированная машина
Тьюринга может отработать несколькими разными способами.
Все вычисления машины на слове w можно изобразить в виде
дерева конфигураций (возможно, бесконечного).
Ветвление дерева происходит при произвольном выборе команды
среди команд с одной и той же левой частью.

q1

q0

q0q0

183/227

Класс NP

Распознавание множеств недетерминированными машинами
ПустьM — недетерминированная машина Тьюринга с входным
алфавитом A.
D(M) — это множество всех слов w ∈ A∗ таких, что существует
допускающее вычисление машиныM на слове w.

Иными словами, D(M) — это множество всех слов w ∈ A∗ таких,
что в дереве вычислений машиныM имеется хотя бы одна
заключительная ветвь (ветвь с заключительным состоянием q0).
Недетерминированная машина Тьюринга может выдавать только
ответы «да» и «нет». Она может распознавать множества, но не
может вычислять функции.

184/227

Класс NP

Определение
Пусть T (n) : N0 → N0 — всюду определённая функция.
Недетерминированная машина ТьюрингаM распознаёт язык L
за время T (n), если D(M) = L, и для любого слова w ∈ L
существует допускающее вычислениеM на слове w длительности
не более T (n), где n = |w|.
Недетерминированная машина ТьюрингаM распознаёт язык L
за полиномиальное время, если она распознаёт его за время p(n),
где p(n) — полином с натуральными коэффициентами.

Определение (основное)
Класс NP — это множество всех языков, распознаваемых на
недетерминированных машинах Тьюринга за полиномиальное время.

185/227

Альтернативное определение класса NP

Определение (альтернативное)
Класс NP — это класс всех языков L (в произвольных алфавитах A),
для которых существует полином q(n) с натуральными
коэффициентами, алфавит B и полиномиально вычислимая
функция Q(x, y) : A∗ ×B∗ → {0, 1}∗ со значениями 0 и 1 такая, что

(x ∈ L) ⇐⇒ (∃y)|y|⩽q(|x|)(Q(x, y) = 1).

Функция Q(x, y) называется функцией проверки сертификата.
Слово y = y(x) такое, что Q(x, y) истинно, называется
сертификатом для входа x.
x ∈ L, если существует сертификат для x (имеющий длину,
полиномиальную от длины x).

186/227

Альтернативное определение класса NP

Утверждение
Основное и альтернативное определения класса NP равносильны.

Доказательство
⇒. Пусть язык L ⊆ A∗ распознаётся недетерминированной
машиной ТьюрингаM за полиномиальное время p(n).
Пусть r — максимальное число командM с одинаковой левой
частью и B = {b1, . . . , br} — алфавит.
Строим детерминированную машину ТьюрингаMQ для
вычисления Q(x, y):

▶ Машина MQ имеет две дорожки и моделирует работу M.
▶ Первая дорожка хранит содержимое ленты M. В начальный

момент — вход x.
▶ Вторая дорожка хранит вход y ∈ B∗, указывающий, какие команды

машина M выбирает при недетерминированном вычислении.

187/227

Альтернативное определение класса NP

Доказательство (продолжение)
МашинаMQ работает следующим образом:

▶ Сначала машинаMQ переписывает y на вторую дорожку.
▶ При моделировании каждого такта машина MQ:

1. Считывает текущий символ a ленты;
2. Считывает и стирает очередной символ b слова y;
3. Определяет выполняемую команду машины M (если их несколько

для данной левой части, то символ b указывает, какую выбрать);
4. Выполняет выбранную команду.

▶ Если машина M переходит в состояние q0, то MQ завершает
вычисление и выдаёт 1.

▶ Если слово y закончилось или символ b не указывает ни на одну
команду, то MQ завершает вычисление и выдаёт 0.

В качестве q(n) выбираем полином p(n). По построениюMQ

ясно, что заключительная ветвь в вычисленииM на слове x
существует тогда и только тогда, когда (∃y)|y|⩽q(|x|)(Q(x, y) = 1).

188/227

Альтернативное определение класса NP

Доказательство (продолжение)
⇐. Пусть для L существует полином q(n) и вычислимая за
полиномиальное время p(n) функция Q(x, y) такая, что

(x ∈ L) ⇐⇒ (∃y)|y|⩽q(|x|)(Q(x, y) = 1).

Строим недетерминированную машинуM, работающую
следующим образом:

▶ Сначала недетерминированно формируется произвольное слово
y ∈ B∗ = {b1, . . . , br}∗.

▶ Для этого на каждом такте машина выбирает одну из команд:
дописать символ b1, . . . , br или завершить формирование y.

▶ После этого машина детерминированно вычисляет Q(x, y). Если
Q(x, y) = 1, то машина останавливается, иначе — зацикливается.

▶ На словах из L общее время вычисления хотя бы в одной из
ветвей не превосходит q(n) + p(n+ q(n) + 1) — полином.

189/227

Лекция 11
Проблема выполнимости и проблема существования

клики. NP-полнота. Теорема Кука

190/227

Проблема выполнимости
Определение

Литерал — это формула вида xk или xk.
Элементарная дизъюнкция (ЭД) — это формула вида
ti1 ∨ . . . ∨ tini , где все tij — литералы, а переменные в них
различны.
Конъюнктивная нормальная форма (КНФ) — это формула вида 1
или D1 &D2 & . . .&Dl, где все Di — различные (с точностью до
порядка литералов) элементарные дизъюнкции.

Определение
Пусть F — формула с символами переменных x1, . . . , xm,
реализующая булеву функцию fF (x1, . . . , xm),
а α = (a1, . . . , am) ∈ {0, 1}m.
Набор α выполняет формулу F , если fF (a1, . . . , am) = 1.
Формула выполнима, если существует выполняющий её набор.

191/227

Проблема выполнимости

Проблема выполнимости (ВЫП или SAT)
Алфавит: A = {(,), x, 0, 1, ¬, &, ∨}.
Вход: КНФ K.
Вопрос: верно ли, что КНФ K выполнима?
Язык ВЫП состоит из слов в алфавите A∗, которые являются
записями выполнимых КНФ.

При записи КНФ номера переменных записываются в двоичной
системе счисления.
Например, для K = (x1 ∨ x2 ∨ x3) & (x1 ∨ x3) имеем

(x1 ∨ x10 ∨ ¬x11) & (¬x1 ∨ x11) ∈ A∗.

192/227

Проблема выполнимости

Утверждение
ВЫП ∈ NP.

Доказательство
Пусть функция Q(x, y) выдаёт 1, если x — КНФ, y — двоичный
набор, длина которого равна числу переменных в КНФ x,
и набор y выполняет КНФ x.
Вычисление Q(x, y) можно произвести за полиномиальное время:

▶ Проверить корректность КНФ, число переменных и длину набора;
▶ Подставить значения из набора на места переменных;
▶ Инвертировать значения под отрицаниями;
▶ Проверить, во всех ли ЭД есть хотя бы по одной единице.

Тогда (x ∈ ВЫП) ⇐⇒ (∃y)|y|⩽|x|(Q(x, y) = 1).

193/227

Проблема существования клики

Рассматриваем простые неориентированные графы
(без петель и кратных рёбер).
Полный граф на k вершинах — это граф с k вершинами,
у которого каждая пара вершин соединена ребром.

Определение
Клика размера k — это полный граф на k вершинах.
В графе G существует клика размера k, если существует подграф
графа G, являющийся кликой размера k.

194/227

Проблема существования клики

Проблема существования клики (КЛИКА)
Алфавит: A = {(,), [,], ; , 0, 1}.
Вход: граф G, натуральное число k.
Вопрос: существует ли в графе G клика размера k?
Язык КЛИКА состоит из слов в алфавите A∗, которые являются
описаниями пар (G, k), где G — граф, k — натуральное число,
и в G существует клика размера k.

Считаем, что граф задан списками вершин и рёбер. Номера
вершин и число k представлены в двоичном виде.
Например, для G = ({v1, v2, v3, v4}, {(v1, v3), (v3, v4), (v4, v1)})
и k = 2 имеем

[1; 10; 11; 100]; [(1; 11); (11; 100); (100; 1)]; 10 ∈ A∗.

195/227

Проблема существования клики

Утверждение
КЛИКА ∈ NP.

Доказательство
Пусть функция Q(x, y) выдаёт 1, если x — пара (G, k), где G —
граф и k ∈ N, y — список из k номеров вершин G,
и граф G имеет клику на вершинах из y.
Вычисление Q(x, y) можно произвести за полиномиальное время:

▶ Проверить корректность описания графа, числа k и списка
вершин, проверить число в вершин в списке y;

▶ Перебрать все k(k − 1)/2 пар вершин из y;
▶ Для каждой пары (u, v) вершин из y проверить,

что в списке рёбер G есть пара (u, v) или (v, u).

Тогда (x ∈ КЛИКА) ⇐⇒ (∃y)|y|⩽|x|(Q(x, y) = 1).

196/227

Соотношение классов P и NP

Утверждение
P ⊆ NP.

Доказательство
Пусть L ∈ P, т.е. L распознаётся детерминированной машиной
Тьюринга за полиномиальное время p(n).
Дополним эту машину: если после остановки она выдаёт 0,
заставляем её вместо этого зациклиться.
Рассмотрим эту машину как недетерминированную. Она
распознаёт язык L за время p(n). Поэтому L ∈ NP.

197/227

Соотношение классов P и NP

Содержательный смысл классов P и NP

P — это класс задач, решение которых требует «не слишком
много» времени.
NP — это класс задач на проверку существования объекта с
заданными (полиномиально проверяемыми) свойствами.
Задачи из NP можно решать перебором, но это требует
экспоненциального времени. Неизвестно, можно ли для этих
задач придумать алгоритм, избегающий перебора.
На практике для решения задач из NP применяют SAT-солверы,
использующие оптимизированный перебор. Обычно это работает,
но нет гарантии быстрой работы во всех случаях.

198/227

Соотношение классов P и NP

Проблема соотношения классов P и NP

Легко видеть, что P ⊆ NP.
Вопрос о том, верно ли P = NP, был поставлен в 1970 г.
С. Куком. Это одна из самых известных нерешённых проблем
современной математики.
Большинство специалистов предполагают, что P 6= NP, но
неизвестно, как это можно было бы доказать.
Этот вопрос имеет большое теоретическое и практическое
значение.
Доказательство P = NP позволило бы быстро решать многие
прикладные переборные задачи и взламывать ряд кодов.
Доказательство P 6= NP позволило бы получать нижние оценки
сложности задач и обосновало бы надёжность ряда криптосистем.

199/227

Соотношение классов P и NP

Определение
Множество L является NP-трудным, если к L P-сводится любое
множество из класса NP.

Определение
Множество L является NP-полным, если L ∈ NP и L NP-трудное.

NP-полные языки — это «самые сложные» языки класса NP.
Если какое-то NP-полное множество принадлежит P, то P = NP.

200/227

Теорема Кука

Теорема 6 (С. Кук)
Задача ВЫП является NP-полной.

Благодаря этой теореме для решения любой задачи из NP
достаточно уметь решать задачу ВЫП (SAT).
На практике для решения задачи ВЫП используются
SAT-солверы, а другие задачи сводятся к ВЫП.

Доказательство
Ранее было доказано, что ВЫП ∈ NP. Осталось доказать,
что ВЫП NP-трудна.
Пусть L ∈ NP и L ⊆ A∗, где A = {a1, . . . , ak}, a0 = Λ.
По определению NP существует НМТM и полином p(n) такие,
что w ∈ L ⇐⇒ в некотором вычислении на wM приходит в q0
через не более p(|w|) тактов.

201/227

Теорема Кука

Доказательство (продолжение)
Будем считать, что в программе машиныM есть команды для
заключительного состояния: aiq0 → aiSq0, i = 1, r.
w ∈ L ⇐⇒ машинаM, начиная работу со словом w на ленте,
в каком-то вычислении в момент p(n) будет находиться в q0.
Покажем, что L P-сводится к ВЫП. Будем строить
полиномиально вычислимую функцию ϕ : A∗ → B∗ такую,
что w ∈ L ⇐⇒ Fw = ϕ(w) является выполнимой КНФ.
Конфигурация Kt машиныM в момент времени t представляет
собой набор из трёх элементов:

1. Содержимое ленты;
2. Положение головки на ленте;
3. Текущее состояние машины.

202/227

Теорема Кука

Доказательство (продолжение)
Пусть w = aj1aj2 . . . ajn и p(n) ⩾ n. Пронумеруем ячейки ленты
последовательными целыми числами слева направо, считая
нулевой обозреваемую в начале вычисления ячейку.

aj2aj1 ajn

0 1 n−1 p(n)−p(n) −1 n

При вычислении за время p(n) машинаM не выйдет за пределы
области ленты, состоящей из ячеек с номерами от −p(n) до p(n).
Тогда:

1. Содержимое ленты — это слово в ячейках от −p(n) до p(n).
2. Положение головки — это номер ячейки из {−p(n), . . . , p(n)}.
3. Текущее состояние — это номер из {0, . . . , r}.

Конфигурация Kt машиныM полностью определяет все ветви
возможных дальнейших вычислений.

203/227

Теорема Кука

Доказательство (продолжение)
Можно записать: w ∈ L ⇐⇒ (∃K0)(∃K1) . . . (∃Kp(|w|)) такие, что
выполнены все следующие условия (n = |w|):

1. K0 — начальная конфигурация для слова w;
2. Kp(n) содержит состояние q0;
3. Kt+1 можно получить из Kt за один такт работы машины M,

t = 0, p(n)− 1.

Выразим условия на конфигурации с помощью КНФ Fw = ϕ(w).
Вводим три типа булевых переменных:

▶ xti,j : (x
t
i,j = 1) ⇐⇒ в Kt в ячейке i записан символ aj ;

▶ yti : (yti = 1) ⇐⇒ в Kt головка обозревает ячейку i;
▶ ztl : (ztl = 1) ⇐⇒ в Kt машина находится в состоянии ql.
▶ Здесь t = 0, p(n), i = −p(n), p(n), j = 0, k, l = 0, r.

204/227

Теорема Кука

Доказательство (продолжение)
Строим КНФ Fw, принимающую значение 1 на наборе значений
своих переменных, если выполнены все следующие условия:

1. Набор корректно задаёт последовательность конфигураций
K0, . . . ,Kp(n);

2. Конфигурация K0 является правильной начальной конфигурацией
для входа w;

3. Конфигурация Kp(n) сдержит состояние q0;
4. Для всякого t ∈ {0, . . . , p(n)− 1} конфигурация Kt+1 может быть

получена из Kt согласно программеM за один такт работы.

Итоговая КНФ будет конъюнкцией КНФ F1, F2, F3, F4,
реализующих указанные условия по отдельности.

205/227

Теорема Кука

Доказательство (продолжение)
Условие 1: «Корректная последовательность конфигураций».
При каждом t должны выполняться все следующие условия:

▶ В каждой ячейке один символ: для любого i ровно одна
переменная xti,j (при различных j) принимает значение 1;

▶ Головка обозревает одну ячейку : ровно одна переменная yti (при
различных i) принимает значение 1;

▶ Машина находится в одном состоянии: ровно одна переменная ztl
(при различных l) принимает значение 1.

Чтобы выразить это условие с помощью КНФ, введём
вспомогательную функцию.

206/227

Теорема Кука

Доказательство (продолжение)
Обозначим

h(v1, . . . , vs) = (v1 ∨ . . . ∨ vs) & &
i,j=1,s
i<j

(vi ∨ vj).

Функция h принимает значение 1, если ровно одна из её
переменных содержит 1.
Для этой функции выписана КНФ. Её ранг (число символов
переменных) равен s2.

207/227

Теорема Кука

Доказательство (продолжение)
Теперь выпишем КНФ для условия 1:

F1 =

p(n)

&
t=0

((p(n)

&
i=−p(n)

h(xti,0, . . . , x
t
i,k)

)
&

& h(yt−p(n), . . . , y
t
p(n)) & h(zt0, . . . , z

t
r)

)

В этой КНФ (p(n)+1)((2p(n)+1)(k+1)2+(2p(n)+1)2+(r+1)2)
символов переменных, и длина её записи полиномиальна от n.
Поэтому её можно построить за полиномиальное от n время.
КНФ F1 зависит только от чисел n = |w|, p(n), k, r.

208/227

Теорема Кука

Доказательство (продолжение)
Условие 2: «Правильная начальная конфигурация».
При t = 0 должны выполняться все следующие условия:

▶ В ячейках 0, . . . , n− 1 символы слова w, остальные ячейки пусты;
▶ Головка обозревает ячейку 0;
▶ Машина находится в состоянии q1.

Выразим это условие с помощью КНФ:

F2 = x00, j1 & . . .& x0n−1, jn&

&

(−1

&
i=−p(n)

x0i,0

)
&

(p(n)

&
i=n

x0i,0

)
& y00 & z01 .

Ранг этой КНФ 2p(n) + 3, длина её записи полиномиальна от n.
Поэтому её можно построить за полиномиальное от n время.

209/227

Теорема Кука

Доказательство (продолжение)
Условие 3: «Заключительная конфигурация содержит q0».
Это условие элементарно выражается с помощью КНФ:

F3 = z
p(n)
0 .

Ранг этой КНФ равен 1, длина её записи полиномиальна от n.
Поэтому её можно построить за полиномиальное от n время.

210/227

Лекция 12
Завершение доказательства теоремы Кука.

Проблемы 3-ВЫП и 2-ВЫП

211/227

Теорема Кука

Доказательство (продолжение)
Условие 4: «Kt+1 может быть получена из Kt за один шаг».
Пусть для каждой левой части ajql программа машиныM имеет
набор команд ajql → aσp(j,l)Dp(j, l)qτp(j,l), p = 1, c(j, l).
Считаем, что Dp(j, l) ∈ {−1, 0, 1}.
Распишем условие 4. При каждом t, i, j, l:

▶ Пусть в момент t головка обозревает i-ю ячейку, в ней находится
символ aj и машина находится в состоянии ql.

▶ Тогда существует такое p, что в момент t+ 1 в i-й ячейке будет
символ aσp(j,l), головка будет обозревать ячейку i+Dp(j, l),
а машина будет в состоянии qτp(j,l).

▶ Если в момент t головка не обозревает i-ю ячейку,
то в момент t+ 1 в ней будет тот же символ, что и в момент t.

212/227

Теорема Кука

Доказательство (продолжение)
Выразим условие 4 с помощью булевой формулы:

F ′
4 =

p(n)−1

&
t=0

p(n)

&
i=−p(n)

k

&
j=0

r

&
l=0

((
xti,j & yti & ztl →

→
c(j,l)∨
p=0

xt+1
i,σp(j,l)

& yt+1
i+Dp(j,l)

& zt+1
τp(j,l)

)
&

(
yti → (xt+1

i,j ∼ x
t
i,j)

))
.

Если i+Dp(j, l) < −p(n), заменяем на −p(n).
Если i+Dp(j, l) > p(n), заменяем на p(n).
Часть формулы во внешних скобках зависит от не более
3 + (k+ 1)+ 3+ (r+ 1) = 8+ k+ r переменных (не зависит от n):
3 с индексом t и не более (k + 1) + 3 + (r + 1) — с t+ 1.

213/227

Теорема Кука
Доказательство (продолжение)

F ′
4 =

p(n)−1

&
t=0

p(n)

&
i=−p(n)

k

&
j=0

r

&
l=0

((
xti,j & yti & ztl →

→
c(j,l)∨
p=0

xt+1
i,σp(j,l)

& yt+1
i+Dp(j,l)

& zt+1
τp(j,l)

)
&

(
yti → (xt+1

i,j ∼ x
t
i,j)

))

Перепишем часть формулы во внешних скобках в виде
совершенной КНФ. Она будет иметь не более (8 + k + r)28+k+r

символов переменных.
Получим КНФ F4 с p(n)(2p(n) + 1)(k + 1)(r + 1)(8 + k + r)28+k+r

символами переменных — длина записи полиномиальна от n.
КНФ F4 можно построить за полиномиальное от n время.

214/227

Теорема Кука

Доказательство (продолжение)
Наконец, получаем КНФ Fw = F1 & F2 & F3 & F4. Она строится
по слову w и машинеM за полиномиальное от n = |w| время.
Данная КНФ принимает значение 1, если набор значений
переменных «изображает» последовательность конфигураций
«успешного» вычисленияM (в котором она останавливается).
Поэтому КНФ Fw выполнима ⇐⇒ существует успешное
вычислениеM ⇐⇒ w ∈ L.
Таким образом, произвольный язык L P-сводится к ВЫП.
В силу этого задача ВЫП NP-трудна, а значит и NP-полна.

215/227

Проблема 3-выполнимости

Определение
3-КНФ — это КНФ, в которой каждая элементарная дизъюнкция
имеет не более трёх литералов.

Проблема 3-выполнимости (3-ВЫП)
Алфавит: A = {(,), x, 0, 1, ¬, &, ∨}.
Вход: 3-КНФ K.
Вопрос: верно ли, что 3-КНФ K выполнима?
Язык 3-ВЫП состоит из слов в алфавите A∗, которые являются
записями выполнимых 3-КНФ.

При записи КНФ номера переменных записываются в двоичной
системе счисления.

216/227

Проблема 3-выполнимости

Теорема 7
Задача 3-ВЫП является NP-полной.

Эта теорема также была доказана С.Куком.

Доказательство
Задача 3-ВЫП является частным случаем ВЫП. Проверка того,
что КНФ является 3-КНФ, полиномиальна, поэтому 3-ВЫП ∈ NP.
В силу теоремы Кука, чтобы доказать NP-трудность 3-ВЫП,
достаточно доказать, что ВЫП полиномиально сводится к 3-ВЫП.
Пусть K = D1 & . . .&Dk — произвольная КНФ. Преобразуем её
в 3-КНФ K ′ с сохранением выполнимости / невыполнимости.
Преобразуем каждую ЭД Di в КНФ Fi. Если Di имеет не более 3
литералов, то Fi = Di.

217/227

Проблема 3-выполнимости

Доказательство (продолжение)
Иначе Di = (t1 ∨ t2 ∨ . . . ∨ tm), m > 3, где ti — литералы. Строим

Fi = (t1 ∨ t2 ∨ y1) & (y1 ∨ t3 ∨ y2) & (y2 ∨ t4 ∨ y3) & . . .

. . .& (ym−4 ∨ tm−2 ∨ ym−3) & (ym−3 ∨ tm−1 ∨ tm).

Здесь y1, y2, . . . , ym−3 — переменные, отсутствующие в КНФ K.
Для разных КНФ Fi используем непересекающиеся наборы
переменных yj .
Получаем K ′ = F1 & . . .& Fk.
Очевидно, ранг Fi не превосходит 3m. Поэтому длина записи K ′

полиномиальна от длины записи K, а построение K ′ требует
полиномиального от длины K времени.

218/227

Проблема 3-выполнимости

Доказательство (продолжение)
Покажем, что если Fi выполнима, то и Di выполнима.
Пусть α = (a1, . . . , an; b1, . . . , bm−3), где ai — значения
переменных КНФ K, а bj — значения новых переменных yj .
Пусть Fi(α) = 1. Тогда

▶ Если b1 = 0, то t1(α) ∨ t2(α) = 1, т.е. Di(α) = 1.
▶ Если bm−3 = 1, то tm−1(α) ∨ tm(α) = 1, т.е. Di(α) = 1.
▶ Пусть b1 = 1 и bm−3 = 0. Тогда существует k: bk = 1 и bk+1 = 0.

Имеем bk ∨ tk+2(α) ∨ bk+1 = 1, т.е. tk+2(α) = 1. Тогда Di(α) = 1.

Таким образом, если Fi выполнима, то и Di выполнима.

219/227

Проблема 3-выполнимости

Доказательство (продолжение)
Теперь покажем, что если Di выполнима, то и Fi выполнима.
Пусть α = (a1, . . . , an) и Di(α) = 1.
Тогда существует такое k, что tk(α) = 1.
Построим набор β = (α; b1, . . . , bm−3) такой, что Fi(β) = 1.

▶ Если k ∈ {1, 2}, то выбираем b1 = . . . = bm−3 = 0.
ЭД t1 ∨ t2 ∨ y1 обращается в 1 из-за tk(β) = 1, а остальные ЭД Fi
содержат yj(β) = 1.

▶ Если k ∈ {m− 1, m}, то выбираем b1 = . . . = bm−3 = 1.
ЭД ym−3 ∨ tm−1 ∨ tm обращается в 1 из-за tk(β) = 1, а остальные
ЭД Fi содержат yj(β) = 1.

▶ Иначе выбираем b1 = . . . = bk−2 = 1 и bk−1 = . . . = bm−3 = 0.
ЭД yk−2 ∨ tk ∨ yk−1 обращается в 1 из-за tk(β) = 1, а остальные
ЭД Fi содержат yj(β) = 1 (j ⩽ k − 2) или yl(β) = 1 (l ⩾ k − 1).

220/227

Проблема 3-выполнимости

Доказательство (продолжение)
Итак, Fi выполнима тогда и только тогда, когда выполнима Di.
Значит, K ′ выполнима тогда и только тогда, когда выполнима K.

221/227

Проблема 2-выполнимости

Определение
2-КНФ — это КНФ, в которой каждая элементарная дизъюнкция
имеет не более двух литералов.

Проблема 2-выполнимости (2-ВЫП)
Алфавит: A = {(,), x, 0, 1, ¬, &, ∨}.
Вход: 2-КНФ K.
Вопрос: верно ли, что 2-КНФ K выполнима?
Язык 2-ВЫП состоит из слов в алфавите A∗, которые являются
записями выполнимых 2-КНФ.

При записи КНФ номера переменных записываются в двоичной
системе счисления.

222/227

Проблема 2-выполнимости

Теорема 8
Задача 2-ВЫП принадлежит классу P.

Доказательство
Построим полиномиальный алгоритм решения задачи 2-ВЫП.
Пусть K(x1, . . . , xn) — 2-КНФ, содержащая только символы
переменных x1, . . . , xn.
Если n = 1, то K имеет вид 1, x1, x1 или x1x1. В первых трёх
случаях K выполнима, а в последнем невыполнима.
Пусть n ⩾ 2. Покажем, что можно исключить из КНФ K
переменную xn с сохранением выполнимости / невыполнимости.
Имеем K = K ′ & (xn ∨ t1) . . . (xn ∨ tk) & (xn ∨ t′1) . . . (xn ∨ t′m),
где K ′ — 2-КНФ без xn и xn, а все ti и t′i — литералы или нули.

223/227

Проблема 2-выполнимости

Доказательство (продолжение)
КНФ K(x1, . . . , xn) выполнима ⇐⇒ выполнима формула

F = K(x1, . . . , xn−1, 0) ∨K(x1, . . . , xn−1, 1).

В формуле F множитель K ′ можно вынести за скобки. Тогда
получим

F = K ′ & (t1 . . . tk ∨ t′1 . . . t′m).

Используя тождество x ∨ yz = (x ∨ y) & (x ∨ z), преобразуем

F = K ′ & (t1 . . . tk ∨ t′1 . . . t′m) = K ′ & &
i=1,k
j=1,m

(ti ∨ t′j).

Если k = 0 или m = 0, то F = K ′.

224/227

Проблема 2-выполнимости

Доказательство (продолжение)

F = K ′ & &
i=1,k
j=1,m

(ti ∨ t′j)

Совершаем простейшие поглощения. Если есть скобка 0 ∨ 0, то
заменяем КНФ на x1x1. Иначе устраняем константы и дубликаты,
применяя тождества 1 · x = x, 0 ∨ x = x, x ∨ x = x и x · x = x.
Получили 2-КНФ. Поскольку различных ЭД t1 ∨ t2 не более (2n)2,
ранг полученной 2-КНФ не превосходит 2 · (2n)2 = 8n2.
Последовательно исключаем из КНФ K переменные xn, . . . , x2 и
сводим задачу к проверке выполнимости КНФ с одной
переменной x1, которая уже рассмотрена ранее.

225/227

Проблема 2-выполнимости

Доказательство (продолжение)

На каждом шаге мы получаем КНФ ранга не более 8n2, т.е. КНФ
с длиной записи, полиномиальной от длины записи K.
Поэтому каждый шаг требует полиномиального от длины записи
КНФ K времени, а всего шагов n.
Таким образом, приведённый алгоритм проверки выполнимости
задачи 2-ВЫП является полиномиальным.

Итак, задача 3-ВЫП NP-полна, а задача 2-ВЫП полиномиально
разрешима.

226/227

Литература

1. Лекции С. С. Марченкова: Плейлист на YouTube
2. Марченков С. С. Избранные главы дискретной математики. — М.:

МАКС Пресс, 2016. — 136 с.
https://mk.cs.msu.ru/images/2/25/ИзбрГлавыДискрМатем_2015.pdf

3. Яблонский С. В. Введение в дискретную математику. — М.: Наука,
1986. — 384 с.

4. Алексеев В. Б. Введение в теорию сложности алгоритмов. — М.:
Издательский отдел ф-та ВМиК МГУ, 2002. — 82 с.
https://mk.cs.msu.ru/images/c/c4/KNIGA1.pdf

5. https://ru.wikipedia.org/wiki/Регулярные_выражения

227/227

https://www.youtube.com/playlist?list=PLOaW8o20mEgi_9DKM3zURWlvd7BF7MIXp
https://mk.cs.msu.ru/images/2/25/%D0%98%D0%B7%D0%B1%D1%80%D0%93%D0%BB%D0%B0%D0%B2%D1%8B%D0%94%D0%B8%D1%81%D0%BA%D1%80%D0%9C%D0%B0%D1%82%D0%B5%D0%BC_2015.pdf
https://mk.cs.msu.ru/images/c/c4/KNIGA1.pdf
https://ru.wikipedia.org/wiki/%D0%A0%D0%B5%D0%B3%D1%83%D0%BB%D1%8F%D1%80%D0%BD%D1%8B%D0%B5_%D0%B2%D1%8B%D1%80%D0%B0%D0%B6%D0%B5%D0%BD%D0%B8%D1%8F

	Лекция 1. Конечные автоматы-распознаватели. Правоинвариантные отношения эквивалентности. Теоретико-множественные операции над автоматными множествами.
	Лекция 2. Недетерминированные конечные автоматы. Операции произведения и итерации автоматных множеств. Регулярные выражения и регулярные множества.
	Лекция 3. Теорема Клини. Детерминированные функции. Конечные автоматы-преобразователи.
	Лекция 4. Операции суперпозиции и введения обратной связи. Полные системы конечно-автоматных функций. Машина Тьюринга.
	Лекция 5. Вычислимые функции. Композиция и итерация машин Тьюринга. Вычислимость простейших функций.
	Лекция 6. Моделирование машин Тьюринга. Механизм дорожек. Универсальные функции.
	Лекция 7. Существование универсальной машины Тьюринга. Операции суперпозиции, примитивной рекурсии и минимизации. Классы примитивно рекурсивных и частично рекурсивных функций.
	Лекция 8. Вычислимость частично рекурсивных функций. Некоторые примитивно рекурсивные функции.
	Лекция 9. Некоторые частично рекурсивные функции. Формула Клини.
	Лекция 10. Классы P и NP. Эквивалентность двух определений NP
	Лекция 11. Проблема выполнимости и проблема существования клики. NP-полнота. Теорема Кука
	Лекция 12. Завершение доказательства теоремы Кука. Проблемы 3-ВЫП и 2-ВЫП
	Литература

