
Математические методы
верификации схем и программ

mk.cs.msu.ru → Лекционные курсы
→ Математические методы верификации схем и программ

Блок 24

Символьные представления моделей

Лектор:
Подымов Владислав Васильевич

E-mail:
valdus@yandex.ru

ВМК МГУ, 2025, сентябрь–декабрь
Математические методы верификации схем и программ, Блок 24 1/18

https://mk.cs.msu.ru


Вступление

Базовый алгоритм проверки моделей для CTL

I идеологически прост: сводит задачу проверки выполнимости
формулы на модели к набору хорошо известных задач теории
графов:
I выделение компонент сильной связности,
I проверка достижимости вершин
I ...

I теоретически эффективен: его сложность полиномиальна с
невысокой степенью (без учёта алгоритма вычисления н.к.с.с. —
линейна) относительно размеров модели и формулы

Математические методы верификации схем и программ, Блок 24 2/18



Вступление

Но у базового алгоритма есть и недостатки

Для примера можно представить относительно небольшую систему из
20 процессов, в каждом из которых содержится 20 булевых переменных

В такой системе будет более 10120 состояний (чтобы осознать,
насколько это много: больше, чем гуго́л)

В базовом алгоритме граф модели хранится явно и полностью, что
приводит к неразумному и даже невозможному расходу памяти

А можно ли сократить расход памяти, представив модель более
эффективно?

Математические методы верификации схем и программ, Блок 24 3/18



Вступление

Напоминание: конечная модель Крипке M = (S ,S0,→,L) — это
I конечное множество состояний S
I конечное множество начальных состояний S0

I отношение переходов на паре конечных множеств состояний →
I функция разметки, сопоставляющая каждому состоянию конечное

множество L

Другое напоминание:
I B = {0, 1} (будем использовать 0 как синоним f и 1 как синоним t)
I Булева функция местности n — это функция f : Bn → B

Математические методы верификации схем и программ, Блок 24 4/18



Символьные представления
Символьные представления — это семейство эффективных
представлений структур (графовых и не только), становящееся всё
более популярным в практике «умного» программирования, и коротко
можно описать его так:

1. Представляемый объект переписывается (кодируется) как
совокупность множеств наборов нолей и единиц заданной длины

2. Каждое множество наборов нолей и единиц длины представляется
булевой функцией, принимающей значение 1 на наборах этого
множества

3. Выбирается подходящее представление получающихся булевых
функций в зависимости от природы исходных объектов и от того,
как с ними предполагается взаимодействовать (этот пункт
необязателен, пока речь не идёт о программной реализации)

4. Символьное представление объекта — это совокупность
представлений булевых функций, кодирующих объект, и реализация
требуемых операций над объектом в терминах булевых функций

Математические методы верификации схем и программ, Блок 24 5/18



Символьное представление графа
Начнём с простого примера: опишем символьное представление
конечного ориентированного графа G = (V ,E ), где V — это конечное
множество вершин и E ⊆ V × V — множество дуг (двуместное
отношение на множестве вершин)
Для этого научимся символьно представлять конечные множества (как
здесь V ) и конечные двуместные отношения на представленных
символьно множествах (как здесь E)
Для начала представим символьно множество V
Сопоставим элементам V уникальные числа, их номера:
I если нумерация уже задана, то используем её,
I а иначе пронумеруем элементы по своему усмотрению

Например, V = {v0, v1, . . . , vn}, и вершине vi отвечает номер n(vi) = i
(дальше в примерах будем использовать эту нумерацию)
Как-либо выберем такое количество разрядов k , в которое вмещается
двоичная запись наибольшего рассматриваемого числа
Например, k = blog2(n)c+ 1
Математические методы верификации схем и программ, Блок 24 6/18



Символьное представление графа
Заме́ним каждый номер i на его двоичную запись (i)k2 в k разрядах

В результате получим множество VB наборов нолей и единиц длины k ,
представляющее множество V

Например, VB = {(0)k2, (1)k2, (2)k2, . . . , (n)k2}
Характеристическая функция множества X ⊆ Bk — это функция
f : Bk → B, такая что f (α̃) = 1 ⇔ α̃ ∈ X

Перейдём от множества VB к его характеристической функции fV
Например, для V = {v0, v1, . . . , vn} эта функция задаётся так:

fV ((i)k2) = 1 ⇔ i ≤ n

Будем считать, что переменные этой функции устроены так:
fV (xk−1, . . . , x1, x0)

Представим как-либо эту функцию — (но так обычно не делают, но)
например, в виде совершенной ДНФ

Такое представление множества V (какая-либо форма представления
функции fV ) будем называть стандартным символьным
Математические методы верификации схем и программ, Блок 24 7/18



Символьное представление графа

Теперь научимся представлять символьно отношение E ⊆ V × V , имея
нумерацию элементов V

Перейдём от множества пар E к множеству номеров элементов этих
пар: EB = {(n(v), n(w)) | (v ,w) ∈ E} ⊆ Bk × Bk

Характеристическая функция двуместного отношения R ⊆ Bk × Bk —
это функция f : B2k → B, такая что f (α̃, β̃) = 1 ⇔ (α̃, β̃) ∈ R

Перейдём от отношения EB к его характеристической функции fE

Будем считать, что переменные этой функции устроены так:
fE (xk−1, . . . , x1, x0, x ′k−1, . . . , x

′
1, x
′
0)

Какое-либо представление этой функции будем называть стандартным
символьным представлением отношения E

Математические методы верификации схем и программ, Блок 24 8/18



Символьное представление графа
Например:

Закодируем вершины числами 0 (левая), 1 (верхняя) и 2 (правая)

Запишем эти числа двоично в двух разрядах: (0)22 = (00), (1)22 = (01),
(2)22 = (10)

Характеристическую функцию множества {(00), (01), (10)},
отвечающего вершинам, можно представить формулой

¬(x1 & x0)

Характеристическую функцию отношения
{((00), (01)), ((01), (10)), ((10), (00))},

отвечающего дугам, можно представить формулой
¬x1 &¬x0 &¬x ′1 & x ′0 ∨ ¬x1 & x0 & x ′1 &¬x ′0 ∨ x1 &¬x0 &¬x ′1 &¬x ′0

Символьное представление графа — это пара написанных выше формул
Математические методы верификации схем и программ, Блок 24 9/18



Символьное представление модели Крипке

Конечную модель Крипке M = (S ,S0,→,L) над множеством AP можно
представить как набор следующих конечных множеств и отношений:
I S — конечное множество
I S0 ⊆ S
I →⊆ S × S
I Множество Sp = {s | s ∈ S , p ∈ L(s)} ⊆ S для каждого p ∈ AP

Символьным представлением модели Крипке будем называть
совокупность стандартных представлений для S , S0, → и Sp для
каждого p ∈ AP для общей нумерации элементов S и общего числа
разрядов k

Математические методы верификации схем и программ, Блок 24 10/18



Символьное представление модели Крипке

Например (AP = {p, q})
p

p, q

Пример символьного представления этой модели Крипке для нумерации
состояний 0 (левое), 1 (верхнее), 2 (правое) и двух разрядов:
I Множество состояний: ¬(x1 & x0)

I Множество начальных состояний: ¬x0

I Отношение переходов:
¬x1 &(¬x0 & x ′1 &¬x ′0 ∨ ¬x0 & x ′1 & x ′0) ∨ x1 &¬x0 &¬x ′1

I Множество Sp: x0 ⊕ x1

I Множество Sq: x1 &¬x0

Математические методы верификации схем и программ, Блок 24 11/18



Операции над символьными представлениями

Мало уметь записывать множества как булевы функции, обычно
требуется уметь их строить и применять к ним
теоретико-множественные операции

Стандартное представление ∅: f

Стандартное представление {i} — это элементарная конъюнкция,
представляющая характеристическую функцию этого множества

Если ϕ1 — представление множества S1 и ϕ2 — представление
множества S2, то:

I S1 ∪ S2 представляется как ϕ1 ∨ ϕ2

I S1 ∩ S2 представляется как ϕ1 &ϕ2

I S1 \ S2 представляется как ϕ1 &¬ϕ2

Математические методы верификации схем и программ, Блок 24 12/18



Откуда берутся символьные представления (пример)

Чтобы развеять впечатление о том, что символьное представление
модели Крипке — это «неестественная» конструкция, необходимая
только в технических целях, приведём пример, когда такое
представление возникает прежде «явного» (а ещё лучше это будет
заметно в обязательном задании по средству NuSMV )

Представим себе императивную программу над переменными
V = {v1, . . . , vn}, каждая из которых принимает значения из конечного
множества D (домена)

Считая переменные упорядоченными по номерам, будем считать
состоянием данных набор значений (d1, . . . , dn) ∈ Dn

Состоянием управления будем считать значение счётчика команд —
особой переменная pc , принимающей значения из конечного множества
Dpc и значение которой — это номер команды, которая будет
выполняться следующей

Тогда состояния вычисления — это элементы множества Dn ×Dpc

Математические методы верификации схем и программ, Блок 24 13/18



Откуда берутся символьные представления (пример)

Каждое «элементарное» утверждение о значениях переменных и
счётчике команд: vi = k , vi = vj , pc = k — можно трактовать как
сокращение для булевой формулы, описывающей такое равенство для
двоичных записей значений переменных

Например, если переменной v2 сопоставлены переменные x3, x4, x5 (от
младшего разряда к старшему), то выражение v2 = 3 — это сокращение
для формулы ¬x5 & x4 & x3

Остальные («производные») соотношения между значениями
переменных и счётчика команд аналогично можно считать
сокращениями для соответствующих булевых формул

Состоянию данных и состоянию вычисления естественно
сопоставляются конъюнкции таких выражений

Например, состоянию данных (2, 3, 5) для переменных v1, v2, v3
соответствует формула ϕ = (v1 = 2)&(v2 = 3)&(v3 = 5), а этой оценке
и значению счётчика команд 5 — формула ϕ&(pc = 5)

Математические методы верификации схем и программ, Блок 24 14/18



Откуда берутся символьные представления (пример)

Если состояние данных, с которого программа начинает вычисление,
однозначно определено, то множесто начальных состояний модели
задаётся формулой, отвечающей этому состоянию и начальному
значению счётчика команд (обычно — 0)

Если нет, то семейство допустимых оценок нередко естественно
записывается в виде формулы (предусловия)

Самый простой и при этом полезный вид атомарных высказываний для
рассматриваемой программы — это высказывания вида vi = k

Множество состояний Sp, которые размечены высказыванием
p = (vi = k), задаётся формулой vi = k

Математические методы верификации схем и программ, Блок 24 15/18



Откуда берутся символьные представления (пример)
Множество переходов, определяемых для команды C операционной
семантикой, как правило, легко выражается в виде формулы ψC над
двумя комплектами переменных: «обычные» для текущих значений
переменных и текущего значения счётчика команд, и
«штрихованные» — для значений переменных и счётчика команд после
выполнения C

Например, переходы для команды x := y+ 1; программы над {x, y}
задаются формулой (x′ = y+ 1)&(y′ = y)&(pc′ = pc+ 1):

I Следующее значение переменной x — это текущее значение
переменной y плюс один

I Значение переменной y не изменяется
I Важно! — если вычеркнуть множитель «y′ = y», то это будет

означать «выбор следующего значения y не влияет на истинность
формулы», то есть «значение y может произвольно измениться при
выполнении команды»

I Управление передаётся команде со следующим номером
Математические методы верификации схем и программ, Блок 24 16/18



Откуда берутся символьные представления (пример)
Для примера рассмотрим программу x := x+ 1; y := x+ y; над
переменными x, y с доменом B, и условимся, что значение счётчика
команд 0 указывает на первое присваивание, 1 — на второе, и 2
означает, что программа завершилась
Счётчику команд pc сопоста́вим булевы переменные pc0 (младший
разряд) и pc1 (старший разряд)
Тогда:
I Множество состояний представляется формулой ¬(pc = 3)
I Множество переходов представляется формулой

(pc = 0)&(x′ ⊕ x)&(y′↔ y)&(pc′ = pc+ 1)∨
(pc = 1)&(x′↔ x)&(y′↔(x⊕ y))&(pc′ = pc+ 1)∨
(pc = 2)&(x′↔ x)&(y′↔ y)&(pc′ = pc)

I Утверждения о значениях pc «раскодируются» так:
(pc = 0) ∼ (¬pc1 &¬pc0) (pc = 1) ∼ (¬pc1 & pc0)
(pc = 2) ∼ (pc1 &¬pc0) (pc = 3) ∼ (pc1 & pc0)
(pc′ = pc) ∼ ((pc1↔ pc′1)&(pc0↔ pc′0))
(pc′ = pc+ 1) ∼ ((pc′1↔(pc1 ⊕ pc0))&(pc′0 ⊕ pc0))

Математические методы верификации схем и программ, Блок 24 17/18



Откуда берутся символьные представления (пример)

Для самостоятельного размышления:
а как выглядят формулы, задающие семантику всех других команд
императивных программ из блока 3 для «естественной» арифметики
с переполнением?

(Это осознать не очень сложно, но весьма полезно)

Математические методы верификации схем и программ, Блок 24 18/18


