Математические методы верификации схем и программ

 $\mathsf{mk.cs.msu.ru} o \mathsf{Лекционные}$ курсы $o \mathsf{Математические}$ методы верификации схем и программ

Блок 24

Символьные представления моделей

Лектор:
Подымов Владислав Васильевич
E-mail:
valdus@yandex.ru

ВМК МГУ, 2023/2024, осенний семестр

Вступление

Базовый алгоритм model checking для CTL

- идеологически прост: сводит задачу проверки выполнимости формулы на модели к набору хорошо известных задач теории графов:
 - выделение компонент сильной связности,
 - проверка достижимости вершин

▶ теоретически эффективен: его сложность полиномиальна с невысокой степенью (без учёта алгоритма вычисления н.к.с.с. линейна) относительно размеров модели и формулы

Вступление

Но у базового алгоритма есть и недостатки

Для примера можно представить *относительно небольшую* систему из 20 процессов, в каждом из которых содержится 20 булевых переменных

В такой системе будет более 10^{120} состояний (*чтобы осознать*, насколько это много: больше числа́ гуго́л)

В базовом алгоритме граф модели хранится **явно и полностью**, что приводит к неразумному и даже невозможному расходу памяти

А можно ли сократить расход памяти, представив модель более эффективно?

Вступление

Напоминание: конечная модель Крипке $M = (S, S_0, \rightarrow, L)$ — это

- ▶ конечное множество состояний S
- ightharpoonup конечное множество начальных состояний S_0
- lacktriangle отношение переходов на паре конечных множеств состояний ightarrow
- ightharpoonup функция разметки, сопоставляющая каждому состоянию конечное множество L

Другое напоминание:

- $ightharpoonup \mathbb{B} = \{0,1\}$ (будем использовать 0 как синоним \mathfrak{f} и 1 как синоним \mathfrak{t})
- ▶ Булева функция местности n это функция $f: \mathbb{B}^n \to \mathbb{B}$

Символьные представления

Символьные представления — это семейство эффективных представлений структур (графовых и не только), становящееся всё более популярным в практике «умного» программирования, и коротко можно описать его так:

- 1. Представляемый объект переписывается (кодируется) как совокупность множеств наборов нолей и единиц заданной длины
- 2. Каждое множество S наборов нолей и единиц длины n расценивается как характеристическое множество n-местной булевой функции f_S : $f_S(\widetilde{\alpha}) = 1 \Leftrightarrow \widetilde{\alpha} \in S$
- 3. Выбирается подходящее представление получающихся булевых функций в зависимости от природы исходных объектов и от того, как с ними предполагается взаимодействовать (этот пункт необязателен, пока речь не идёт о программной реализации)
- 4. Символьное представление объекта это совокупность представлений булевых функций, кодирующих объект, и реализация требуемых операций над объектом в терминах булевых функций

Начнём с простого **примера**: опишем символьное представление конечного ориентированного графа G=(V,E), где V — это конечное множество вершин и $E\subseteq V\times V$ — множество дуг (двуместное отношение на множестве вершин)

Пронумеруем вершины графа: $V = \{v_0, v_1, \dots, v_n\}$

Сопоста́вим каждой вершине уникальное число — например, её номер: $V_{\mathbb{N}} = \{0, 1, \dots, n\}$

Как-либо выберем такое количество битов k, в которое вмещается двоичная запись наибольшего рассматриваемого числа — например, $k = |\log_2(n)| + 1$

Заменим каждое число i на его двоичную запись $(i)_2^k$ в k битах

В результате получим множество наборов нолей и единиц длины k, представляющее множество V:

$$V_{\mathbb{B}} = \{(00...00), (00...01), (00...10), ..., (n)_{2}^{k}\}$$

Перейдём от этого множества к булевой функции: $\mathfrak{f}_{V_{\mathbb{B}}}((i)_2^k) \Leftrightarrow i \leq n$

Будем считать, что это функция над переменными x_0, \dots, x_{k-1} , от младшего (правого) бита двоичной записи к старшему (левому)

Представим как-либо эту функцию — например (*но так обычно не делают*), в виде совершенной ДНФ: $\varphi_V = \neg x_{k-1} \& \dots \& \neg x_1 \& \neg x_0 \lor \neg x_{k-1} \& \dots \& \neg x_1 \& x_0 \lor \neg x_{k-1} \& \dots \& x_1 \& \neg x_0 \lor \neg x_{k-1} \& \dots \& x_1 \& x_0 \lor \dots$

Такое представление множества (какая-либо форма задания соответствующей булевой функции) будем называть стандартным

СИМВОЛЬНЫМ

Отношение $E\subseteq V\times V$ перепишем как соответствующее отношение $E_\mathbb{B}\subseteq \mathbb{B}^k\times \mathbb{B}^k$

Перейдём от этого отношения к его характеристической функции: (2k)-местной булевой функции \mathfrak{f}_E , такой что $f(\widetilde{\alpha},\widetilde{\beta})=1\Leftrightarrow (\widetilde{\alpha},\widetilde{\beta})\in E$

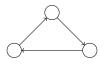
Будем считать, что это функция над двумя комплектами переменных: x_0,\ldots,x_{k-1} для первого набора (начала дуги) и x_0',\ldots,x_{k-1}' для второго (конца дуги)

Например, дуга (0010) \to (1011) может быть представлена как конъюнкция $\neg x_3$ & $\neg x_2$ & x_1 & $\neg x_0$ & x_3' & $\neg x_2'$ & x_1' & x_0'

А отношение $E_{\mathbb{B}}$ можно представить как дизъюнкцию представлений дуг

Такое представление двуместных отношений (какая-либо форма задания соответствующей булевой функции над двумя комплектами переменных) будем называть стандартным символьным

Например:



Закодируем вершины числами 0 (левая), 1 (верхняя) и 2 (правая)

Запишем эти числа двоично в двух битах: $(0)_2^2 = (00)$, $(1)_2^2 = (01)$, $(2)_2^2 = (10)$

Характеристическую функцию множества $\{(00), (01), (10)\}$, отвечающего вершинам, можно представить формулой $\neg(x_1 \& x_0)$

Характеристическую функцию отношения $\{((00), (01)), ((01), (10)), ((10), (00))\},$ отвечающего дугам, можно представить формулой $\neg x_1 \& \neg x_0 \& \neg x_1' \& x_0' \lor \neg x_1 \& x_0 \& x_1' \& \neg x_0' \lor x_1 \& \neg x_0 \& \neg x_1' \& \neg x_0'$

Символьное представление модели Крипке

Конечную модель Крипке $M = (S, S_0, \to, L)$ над множеством AP можно представить как набор следующих конечных множеств и отношений:

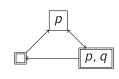
- ightharpoonup S конечное множество, самое большое по включению множество
- ► S_0 конечное множество, $S_0 \subseteq S$
- ▶ \rightarrow двуместное отношение, \rightarrow ⊆ $S \times S$
- ightharpoonup Для каждого атомарного высказывания $p, p \in \mathsf{AP}$, множество всех вершин, в которых p истинно:

$$S_p = \{ s \mid s \in S, \ p \in L(s) \}$$

Символьным представлением модели Крипке будем называть совокупность стандартных представлений для S, S_0, \to и S_p для каждого $p \in \mathsf{AP}$ с использованием общего числа битов k

Символьное представление модели Крипке

Например $(AP = \{p, q\})$



Пример символьного представления этой модели Крипке для нумерации состояний 0 (левое), 1 (верхнее), 2 (правое) и двух битов:

- ► Множество состояний: $\neg(x_1 \& x_0)$
- ▶ Множество начальных состояний: $\neg x_0$
- Отношение переходов:

$$\neg x_1 \& (\neg x_0 \& x_1' \& \neg x_0' \lor \neg x_0 \& x_1' \& x_0') \lor x_1 \& \neg x_0 \& \neg x_1'$$

- ► Множество S_p : $x_0 \oplus x_1$
- ► Множество S_a : $x_1 \& \neg x_0$

Операции над символьными представлениями

Мало уметь записывать множества как булевы функции, обычно требуется уметь их строить и применять к ним теоретико-множественные операции

Стандартное представление Ø: ff

Стандартное представление $\{i\}$ — это элементарная конъюнкция, отвечающая i

Если φ_1 — представление множества S_1 и φ_2 — представление множества S_2 , то:

- ► $S_1 \cup S_2$ представляется как $\varphi_1 \lor \varphi_2$
- ► $S_1 \cap S_2$ представляется как $\varphi_1 \& \varphi_2$
- ► $S_1 \setminus S_2$ представляется как $\varphi_1 \& \neg \varphi_2$

Чтобы развеять впечатление о том, что символьное представление модели Крипке — это «неестественная» конструкция, необходимая только в технических целях, приведём пример, когда такое представление возникает прежде «явного» (a ещё лучше это будет заметно в обязательном задании по средству NuSMV)

Представим себе императивную программу над переменными $V = \{v_1, \ldots, v_n\}$, каждая из которых принимает значения из конечного множества D (домена)

Считая переменные упорядоченными по номерам, будем считать состоянием данных набор значений $(d_1, \ldots, d_n) \in D^n$

Состоянием управления будем считать значение счётчика команд — особой переменная pc, принимающей значения из конечного множества D_{pc} и значение которой — это *номер* команды, которая будет выполняться следующей

Тогда состояния вычисления — это элементы множества $D^n \times D_{pc}$

Каждое «элементарное» утверждение о значениях переменных и счётчике команд: $v_i=k,\ v_i=v_j,\ pc=k$ — можно трактовать как сокращение для булевой формулы, описывающей такое равенство для двоичных записей значений переменных

Например, если переменной v_2 сопоставлены переменные x_3 , x_4 , x_5 (от младшего бита к старшему), то выражение $v_2=3$ — это сокращение для формулы $\neg x_5 \& x_4 \& x_3$

- Остальные («производные») соотношения между значениями переменных и счётчика команд аналогично можно считать сокращениями для соответствующих булевых формул
- Состоянию данных и состоянию вычисления естественно сопоставляются конъюнкции таких выражений
- **Например**, состоянию данных (2,3,5) для переменных v_1 , v_2 , v_3 соответствует формула $\varphi = (v_1 = 2) \& (v_2 = 3) \& (v_3 = 5)$, а этой оценке и значению счётчика команд 5 формула $\varphi \& (pc = 5)$

Если состояние данных, с которого программа начинает вычисление, однозначно определено, то множесто начальных состояний модели задаётся формулой, отвечающей этому состоянию и начальному значению счётчика команд (обычно — 0)

Если нет, то семейство допустимых оценок нередко *естественно* записывается в виде формулы (предусловия)

Самый простой и при этом полезный вид атомарных высказываний для рассматриваемой программы — это высказывания вида $v_i = k$

Множество состояний S_p , которые размечены высказыванием $p=(v_i=k)$, задаётся формулой $v_i=k$

Множество переходов, определяемых для команды C операционной семантикой, как правило, легко выражается в виде формулы ψ_C над двумя комплектами переменных: «обычные» для текущих значений переменных и текущего значения счётчика команд, и «штрихованные» — для значений переменных и счётчика команд после выполнения C

Например, переходы для команды x:=y+1; программы над $\{x,y\}$ задаются формулой (x'=y+1) & (y'=y) & (pc'=pc+1):

- lacktriangle Следующее значение переменной х это текущее значение переменной у плюс один
- ▶ Значение переменной у не изменяется
 - **Важно!** если вычеркнуть множитель (y' = y), то это будет означать (y' = y), то это будет означать (y' = y), то есть (y' = y), то это будет выполнении команды»
- ▶ Управление передаётся команде со следующим номером

Для примера рассмотрим программу $\mathbf{x}:=\mathbf{x}+1;\,\mathbf{y}:=\mathbf{x}+\mathbf{y};$ над переменными $\mathbf{x},\,\mathbf{y}$ с доменом $\mathbb{B},\,\mathbf{u}$ условимся, что значение счётчика команд $\mathbf{0}$ указывает на первое присваивание, $\mathbf{1}$ — на второе, \mathbf{u} $\mathbf{2}$ означает, что программа завершилась

Счётчику команд рс сопоста́вим булевы переменные pc_0 (младший бит) и pc_1 (старший бит)

Тогда:

- ▶ Множество состояний представляется формулой $\neg (pc = 3)$
- Множество переходов представляется формулой $(pc = 0) \& (x' \oplus x) \& (y' \leftrightarrow y) \& (pc' = pc + 1) \lor \\ (pc = 1) \& (x' \leftrightarrow x) \& (y' \leftrightarrow (x \oplus y)) \& (pc' = pc + 1) \lor \\ (pc = 2) \& (x' \leftrightarrow x) \& (y' \leftrightarrow y) \& (pc' = pc)$
- ▶ Утверждения о значениях рс «раскодируются» так:

$$(pc = 0) \sim (\neg pc_1 \& \neg pc_0) \quad (pc = 1) \sim (\neg pc_1 \& pc_0)$$

$$(pc = 2) \sim (pc_1 \& \neg pc_0) \quad (pc = 3) \sim (pc_1 \& pc_0)$$

$$(pc' = pc) \sim ((pc_1 \leftrightarrow pc'_1) \& (pc_0 \leftrightarrow pc'_0))$$

$$(pc' = pc + 1) \sim ((pc'_1 \leftrightarrow (pc_1 \oplus pc_0)) \& (pc'_0 \oplus pc_0))$$

Для самостоятельного размышления:

а как выглядят формулы, задающие семантику всех других команд императивных программ из блока 3 для «естественной» арифметики с переполнением?

(Это осознать не очень сложно, но весьма полезно)