
Языки описания схем
mk.cs.msu.ru → Лекционные курсы → Языки описания схем

Блок 23

Verilog:
Поддерживаемое использование
постоянной процедуры

Лектор:
Подымов Владислав Васильевич

E-mail:
valdus@yandex.ru

ВМК МГУ, 2024/2025, осенний семестр
Языки описания схем, Блок 23 1/19

https://mk.cs.msu.ru

Вступление

Если содержательно представить себе поведение
известных триггеров и регистров, то оно будет выглядеть примерно так:

всегда, когда <что-то> происходит,
значения на выходах <как-то> изменяются

Синхронный триггер/регистр:
I <что-то>: передний фронт тактового сигнала
I <как-то>: как записано в таблице значений

Асинхронный триггер/регистр:
I <что-то>: изменение значений на входах
I <как-то>: сохраняются или изменяются согласно таблице значений

Такое описание поведения асинхронных регистров
подходит и для комбинационных схем

Языки описания схем, Блок 23 2/19

Поддержка значения X в процедурах
Явное использование
значения X в коде поддерживается только в следующих случаях:

1. В правой части присваиваний,
если к этому значению не применяются никакие операции

Можно
x <= 2’bx0;

assign x = 2’bx0;

Нельзя
x <= 2’bx0 + 1;

assign x = 2’bx0 + 1;

2. В выражениях случаев casex
Можно

casex(x)
2’b00: y = 0;
2’bx0: y = 1;
default: y = 1’bx;

endcase

Нельзя
case(x)
2’b00: y = 0;
2’bx0: y = 1;
default: y = 1’bx;

endcase

Все другие виды явного использования значения X
являются неподдерживаемыми
Языки описания схем, Блок 23 3/19

Реагирующая процедура

всегда, когда <что-то> происходит,
значения на выходах <как-то> изменяются

В V в программной семантике:
I «всегда» = «процедура always»
I «<что-то> происходит» = «происходит событие (<что-то>)»
I «значение изменяется» =

«блокирующее/неблокирующее присваивание»1

Процесс, имеющий такое поведение, записывается следующим
образом:2

always @(<список событий>) <команда>

Для ясности будем называть такой процесс реагирующей процедурой

1 Есть и другие виды присваиваний, но можно обойтись и без них
2 Более точно, <список событий> относится не к процессу, а к <команде> —
но в V поддерживается только такая форма записи, на ней и остановимся

Языки описания схем, Блок 23 4/19

Реагирующая процедура

always @(<список событий>) <команда>

Поведение: <команда> выполняется
после каждого выполнения любого <события> из <списка>

Основные виды <событий>:
I <имя точки>: изменение значения в точке
I posedge <имя одноразрядной точки>: положительный фронт

в одноразрядной точке
I negedge <имя одноразрядной точки>: отрицательный фронт

в одноразрядной точке

Внимание! Положительными фронтами в V также считаются
изменения значений 0→ X и X → 1, и отрицательными — 1→ X и
X → 0

<События> в <списке> разделяются запятой или словом or

Языки описания схем, Блок 23 5/19

Реагирующая процедура
Пример:

always @(x, posedge y or negedge z) b = a;

Присваивание «b = a» выполняется каждый раз, когда в системе
происходит хотя бы одно из трёх событий:
I изменяется значение в точке x
I наступает положительный фронт в одноразрядной точке y
I наступает отрицательный фронт в одноразрядной точке z

xx 00 01 x1

0
1

0
1

0
1

0
1

x

y

z

a

b

Языки описания схем, Блок 23 6/19

always и синхронные регистры

Пример: поддерживаемое описание D-триггера
reg q;
always @(posedge clk) q <= d;

Общие требования к поддерживаемому описанию
синхронного регистра (как реагирующей процедуры)1

1. Список событий: ровно одно событие, и это событие фронта

2. Все присваивания процедуры неблокирующие

3. Выходы регистра: все переменные в левых частях присваиваний
4. Входы регистра:

I тактовый: указанный в списке событий
I остальные: точки, значения которых используются в процедуре

1 Также необходимо соблюдать
все требования поддержки отдельных процедурных команд

Языки описания схем, Блок 23 7/19

always и синхронные регистры
Чуть более нетривиальный пример:

reg [1:0] x;
reg y;
always @(posedge clk) begin
if(& a) begin

x <= 2;
y <= 1;

end
else if(!b) x <= a;

end

0
1

00 01 00 11 00

0
1

xx 00 01 10 00

0
1

clk

a

b

x

y

Языки описания схем, Блок 23 8/19

always и синхронные регистры
Чуть более нетривиальный пример:

reg [1:0] x;
reg y;
always @(posedge clk) begin
if(& a) begin

x <= 2;
y <= 1;

end
else if(!b) x <= a;

end

Таблица значений регистра:

x y

b

a
00 01 10 11

0 00 y 01 y 10 y 10 1
1 x y x y x y 10 1

Языки описания схем, Блок 23 9/19

always и синхронные регистры
Пример: поддерживаемое описание D-триггера с асинхронным сбросом

reg q;
always @(posedge clk, posedge rst)

if(rst) q <= 0;
else q <= d;

Общие требования к поддерживаемому описанию
синхронного регистра с дополнительными асинхронными входами

1. Список событий: непустой набор событий фронтов

2. Команда процедуры:
if(<усл1>) <команда> else if(<усл2>) <команда>

else ... if(<услk>) <команда> else <команда>,
где <усл1>...<услk> — выражения,
соответствующие (7→) всем событиям списка, кроме одного:
I posedge x 7→ x
I negedge x 7→ !x или ~x

3. Все присваивания процедуры неблокирующие

Языки описания схем, Блок 23 10/19

always и синхронные регистры
Пример: поддерживаемое описание D-триггера с асинхронным сбросом

reg q;
always @(posedge clk, posedge rst)

if(rst) q <= 0;
else q <= d;

Общие требования к поддерживаемому описанию
синхронного регистра с дополнительными асинхронными входами

4. Выходы регистра: переменные в левых частях присваиваний

5. Входы регистра:
I тактовый: указанный в списке событий

и не имеющий соответствующего выражения в цепочке ветвлений
I дополнительные асинхронные: остальные указанные в списке событий
I остальные: точки, значения которых используются в процедуре

Языки описания схем, Блок 23 11/19

always и синхронные регистры
Расхождение между программной семантикой процедуры
и соответствующим синхронным регистром
с дополнительными асинхронными входами:
I Программная семантика:

I порядок условий в ветвлениях = приоритеты асинхронных входов
I асинхронные входы «срабатывают»

только в моменты фронтов согласно списку условий
I Аппаратная семантика:

I если несколько условий, соответствующих асинхронным входам,
выполняются одновременно, то поведение не специфицировано

I асинхронные входы «работают» всегда
от «включающего» фронта до «выключающего»

Компромисс:
I В программной симуляции

не «включать» несколько асинхронных входов одновременно
I В командах, описывающих действие асинхронных входов,

присваивать только константные выражения
Языки описания схем, Блок 23 12/19

always и синхронные регистры

Чуть более нетривиальный пример:
reg [1:0] x;
reg y;
always @(posedge clk, posedge a1, negedge a2)

if(!a2) begin x <= 3; y <= 0; end
else if(a1) y <= 1;
else begin x <= b; y <= x[0]; end

0
1

0
1

0
1

10 01 00

xx 10 01 11 00

0
1

clk

a1

a2

b

x

y

Языки описания схем, Блок 23 13/19

always и асинхронные регистры
Пример: поддерживаемые описания RS-триггера

reg q;
always @(s, r) if(s) q <= 1; else if(r) q <= 0;
always @(s, r) begin if(s) q <= 1; if(r) q <= 0; end

Общие требования к поддерживаемому описанию
асинхронного регистра

1. Список событий: непустой набор событий смены значения

2. В списке событий перечислены все точки,
значения которых используются в процедуре

3. Все присваивания процедуры неблокирующие

4. Выходы регистра: переменные в левых частях присваиваний

5. Входы регистра: точки, значения которых используются в
процедуре

6. Для каждого выходного разряда должен существовать
набор значений на входах, для которого
никакое значение не присваивается в этот разряд

Языки описания схем, Блок 23 14/19

always и комбинационные схемы
Пример: поддерживаемое описание мультиплексора

reg out;
always @(in0, in1, s) begin
out = 1’bx;
case(s)
1’d0: out = in0;
1’d1: out = in1;

endcase
end

Общие требования к поддерживаемому описанию
комбинационной схемы

1. Список событий: непустой набор событий смены значения

2. Для каждого разряда каждой переменной,
встречающейся в левых частях присваиваний
I либо все присваивания в этот разряд блокирующие,
I либо все присваивания в этот разряд неблокирующие

Языки описания схем, Блок 23 15/19

always и комбинационные схемы
Пример: поддерживаемое описание мультиплексора

reg out;
always @(in0, in1, s) begin
out = 1’bx;
case(s)
1’d0: out = in0;
1’d1: out = in1;

endcase
end

Общие требования к поддерживаемому описанию
комбинационной схемы

3. Выходы схемы: переменные в левых частях присваиваний

4. Входы схемы: точки, значения которых на момент начала
выполнения процедуры используются в присваиваниях

5. В списке событий должны быть перечислены все входы схемы

6. Для каждого набора значений на входах должно выполняться
хотя бы одно присваивание значения в каждый выход

Языки описания схем, Блок 23 16/19

always и комбинационные схемы
Чуть более нетривиальный пример:

wire [1:0] z;
wire u;
reg x, y;
always @(z, u) begin

x = 1’bx; y = 0;
case(z)
2’d0: x = u;
2’d3: begin y = !u; x = y; end

endcase
end

Аппаратная семантика — комбинационная схема
со входами u (ширины 1), z (ширины 2) и выходами x, y (ширины 1),
реализующая систему функций со следующей таблицей значений:

x y

u

z
00 01 10 11

0 00 -0 -0 11
1 10 -0 -0 00

Языки описания схем, Блок 23 17/19

Краткое задание списка событий
Список событий поддерживаемой реагирующей процедуры, задающей
асинхронный регистр или комбинационную схему, можно устроить так:
перечислить в точности все точки, встречающиеся в правых частях
присваиваний и условиях ветвлений и команд выбора

Перечислять эти точки вручную — это долго и приводит к ошибкам:
I описали процедуру, проглядели точку в правой части

и не включили её в список ⇒ не поддерживается
I переделали процедуру, добавив зависимость от новой точки,

и не обновили список ⇒ не поддерживается

Рекомендуемый способ записи реагирующей процедуры,
позволяющий избежать таких ошибок:

always @(*) <команда> или always @* <команда>

@(*) и @* = «список событий смены значения для всех точек,
встречающихся в правых частях присваиваний и в условиях <команды>»

Языки описания схем, Блок 23 18/19

Краткое задание списка событий
Пример:

always @* begin
x = 1’bx; y = 0;
case(z)
2’d0: x = u;
2’d3: begin
y = !u;
x = y;

end
endcase

end

=

always @(z, u, y) begin
x = 1’bx; y = 0;
case(z)
2’d0: x = u;
2’d3: begin
y = !u;
x = y;

end
endcase

end

Небольшая тонкость

Переменная y является выходом и при этом включена в список событий

В этом нет ничего страшного: значение y на момент начала
выполнения процедуры не используется ни в одном присваивании,
а значит, не посылается на вход соответствующей схемы
Языки описания схем, Блок 23 19/19

