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Лекция 1
Булевы функции. Существенные и фиктивные

переменные. Формулы. Основные эквивалентности.
Разложение по переменным. Совершенная ДНФ
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Функции алгебры логики

Определение
Пусть A,B — множества.

Декартово произведение множеств A и B — это множество всех
упорядоченных пар, в которых первый элемент принадлежит A,
а второй принадлежит B:

A×B = {(a, b) | a ∈ A, b ∈ B}.

n-я декартова степень множества A — это множество векторов
длины n с элементами из A:

An = A×A× . . .×A︸ ︷︷ ︸
n раз

= {(a1, . . . , an) | ai ∈ A, i = 1, n}, n ⩾ 1.

Если A — конечное множество, то мощность A обозначается |A| и
равна количеству элементов A.
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Функции алгебры логики

Понятие функции
Функция (отображение) — это неопределяемое понятие.
Содержательно функция — это правило f , которое любому
подходящему математическому объекту (входу) x сопоставляет
математический объект (выход) f(x).
Если все подходящие входы функции f составляют множество A,
а все возможные выходы принадлежат множеству B, то говорят,
что функция действует из множества A во множество B:

f : A→ B.

Нас будут интересовать конкретные множества:
E2 = {0, 1},
En

2 = {(a1, . . . , an) | a1, . . . , an ∈ {0, 1}}.
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Функции алгебры логики

Определение
Функция алгебры логики (булева функция) от n переменных —
это функция f : En

2 → E2, n ∈ N.
Множество всех булевых функций обозначается P2.

Табличное и векторное задание булевых функциий
Булева функция определяется своей таблицей: слева указываются
все возможные значения переменных, а справа — значения
функции на этих наборах переменных. Например:

x y x& y

0 0 0

0 1 0

1 0 0

1 1 1

В таблице наборы значений переменных обычно
упорядочены стандартно — лексикографически.
В случае стандартного порядка наборов
достаточно задать только вектор функции.
Например, вектор функции x& y — (0001).
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Функции алгебры логики

Функции одной переменной

x 0 1 x x

0 0 1 0 1

1 0 1 1 0

Считаем, что 0 = false (ложь), 1 = true (истина).
0, 1 — константы.
x — тождественная функция.
x = ¬x = «x не истинно» — отрицание.
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Функции алгебры логики

Логические связки

x y x& y x ∨ y x ∼ y
0 0 0 0 1

0 1 0 1 0

1 0 0 1 0

1 1 1 1 1

x& y = x · y = xy = «x истинно и y истинно» — конъюнкция
(умножение по модулю 2).
x ∨ y = «x истинно или y истинно» — дизъюнкция.
x ∼ y = «x истинно тогда и только тогда, когда y истинно» —
эквивалентность.

7/274



Функции алгебры логики

Логические связки (импликация)

x y x& y x ∨ y x ∼ y x→ y

0 0 0 0 1 1

0 1 0 1 0 1

1 0 0 1 0 0

1 1 1 1 1 1

x→ y = x ∨ y = «если x истинно, то y истинно» — импликация.
Импликация — это логическое следование, не имеющее
отношения к причинно-следственным связям между x и y.
Если известно, что x и x→ y истинны, то y тоже истинно.
Но x→ y может быть истинно и не из-за внутренней связи x и y,
а, например, потому что y — заведомо истинное утверждение.
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Функции алгебры логики

Прочие функции

x y x& y x ∨ y x ∼ y x→ y x⊕ y x | y x ↓ y
0 0 0 0 1 1 0 1 1

0 1 0 1 0 1 1 1 0

1 0 0 1 0 0 1 1 0

1 1 1 1 1 1 0 0 0

x⊕ y = x ∼ y — сложение по модулю 2 (исключающее «или»).
x | y = xy — штрих Шеффера.
x ↓ y = x ∨ y — стрелка Пирса.
Мнемоническое правило для выражения функций x | y и x ↓ y:
поворачиваем черту на 90◦ и кладём сверху в виде отрицания.
Внизу остаётся либо часть ∨ от стрелки (дизъюнкция), либо
ничего (конъюнкция).
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Функции алгебры логики

Лемма (о числе слов)
В алфавите A = {a1, . . . , ar} из r букв можно построить ровно rm

различных слов длины m.

Доказательство
Зафиксируем любое r ∈ N и проведём индукцию по m.
База индукции (m = 1): слов из одной буквы ровно r = r1.
Пусть утверждение леммы верно для m− 1.
Шаг индукции. Для построения слова длины m можно взять
слово длины m− 1 и дополнить его одной буквой.
По индуктивному предположению всего rm−1 различных слов
длины m− 1. Дополнить слово буквой можно r способами.
Итого получаем rm−1 · r = rm способов.
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Функции алгебры логики
Утверждение
Всего существует 22

n
булевых функций от n переменных.

Доказательство
x1 x2 . . . xn−1 xn f(x1, . . . , xn)

0 0 . . . 0 0

0 0 . . . 0 1

. . . . . . . . . . . . . . . . . .

1 1 . . . 1 0

1 1 . . . 1 1

Функция задаётся таблицей. В её левой части — наборы из En
2 .

Наборы идут в лексикографическом порядке. По лемме их 2n.
В правой части имеется слово длины 2n в алфавите {0, 1}. По
лемме получается 22

n
способов заполнить таблицу.
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Существенные и фиктивные переменные

Определение
Пусть f(x1, . . . , xn) ∈ P2. Переменная xi существенная, если
существуют такие числа a1, . . . , ai−1, ai+1,. . . ,an ∈ {0, 1}, что

f(a1, . . . , ai−1, 0, ai+1, . . . , an) 6= f(a1, . . . , ai−1, 1, ai+1, . . . , an).

В противном случае переменная xi фиктивная.

Фиктивные переменные — это переменные, от значений которых
выход функции не зависит.
Например, у функции f(x, y, z) = x ∨ z переменная y является
фиктивной, а переменные x, z — существенными.
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Существенные и фиктивные переменные

Определение
Функции называются конгруэнтными, если одну из них можно
получить из другой путём добавления и удаления фиктивных
переменных и путём перестановки переменных.

Например, функции f(x, y, z) = x→ z и f(x, y) = y → x — это
различные, но конгруэнтные функции.
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Формулы

Считаем, что задано счётное множество символов переменных
и что для каждой функции из P2 задан функциональный символ.

Определение (формула)
Пусть Q ⊆ P2.

Если f — символ функции из Q от k переменных, xi1 , . . . , xik —
символы переменных, то f(xi1 , . . . , xik) — формула над Q.
Если f — символ функции из Q от k переменных, а Φ1, . . . ,Φk —
формулы над Q или символы переменных, то f(Φ1, . . . ,Φk) —
формула над Q.

Формула — это строка из символов, устроенная по определённым
правилам.
Пример: Q = {f(x, y), g(x)}, Φ = g(f(g(z), f(x, x))).
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Формулы

Соглашения при записи формул
Функция может иметь несколько функциональных символов.
Вместо ¬(Φ) можно писать (¬Φ): ¬(x) = (¬x).
Вместо f(Φ1,Φ2) можно писать (Φ1 f Φ2): &(x, y) = (x& y).
Можно опускать скобки с учётом приоритета операций для
некоторых стандартных функциональных символов:

▶ ¬ имеет наибольший приоритет, далее идут · и &,
далее все остальные функциональные символы.

▶ Операции с одинаковым приоритетом применяются слева направо.

Функциональный символ · в записи Φ1 · Φ2 можно опускать.
Вместо ¬(Φ) можно писать (Φ) или Φ.
Символы функций-констант, можно записывать без переменных:
0 вместо 0(x); и 1 вместо 1(x).
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Формулы

Определение (функция, реализуемая формулой)
Пусть Q ⊆ P2, (x1, . . . , xn) — произвольный упорядоченный набор
различных символов переменных, а X = {x1, . . . , xn}.

Если f — символ функции из Q от k переменных, xi1 , . . . , xik ∈ X,
1. То f(xi1 , . . . , xik) — формула над Q.
2. Она реализует функцию h(x1, . . . , xn) = f(xi1 , . . . , xik).

Если f — символ функции из Q от k переменных, а Φ1, . . . ,Φk —
формулы над Q или символы переменных из X,

1. То f(Φ1, . . . ,Φk) — формула над Q.
2. Она реализует функцию

h(x1, . . . , xn) = f(g1(x1, . . . , xn), . . . , gk(x1, . . . , xn)),
3. где gj(x1, . . . , xn) — функция, реализуемая формулой Φj ,

либо gj(x1, . . . , xn) = xij , если Φj — символ переменной xij .
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Формулы

Пример
Пусть Q = {f(x, y), g(x)}, Φ = g(f(g(z), f(x, x))).
Выбираем набор переменных (x, y, z):

1. Формула g(z) реализует функцию h1(x, y, z) = g(z).
2. Формула f(x, x) реализует функцию h2(x, y, z) = f(x, x).

Например, h2(0, 1, 1) = f(0, 0).
3. Формула f(g(z), f(x, x)) реализует функцию

h3(x, y, z) = f(h1(x, y, z), h2(x, y, z)).
Эта запись значит, что h3(a1, a2, a3) будет равно f(b1, b2),
где b1 = h1(a1, a2, a3), b2 = h2(a1, a2, a3).

4. Формула g(f(g(z), f(x, x))) реализует функцию
h(x, y, z) = g(h3(x, y, z)).

Если g(x) = x и f(x, y) = xy, то это формула z · (x · x).
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Формулы

Графическое представление формулы

x1

y

y = x1x2 ∨ (x1x2)x3

x2 x3
Число входных полюсов равно числу
различных символов переменных.
Во входные полюса не входят дуги, но
из них может исходить любое число дуг.
Выходной полюс один, в него входит
одна дуга, и из него не исходит дуг.
В функциональный элемент входит по
одной дуге на каждый аргумент его
функции, а исходит ровно одна дуга.
Формула реализует булеву функцию.
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Формулы

Функция, реализуемая формулой, зависит не только от самой
формулы, но и от выбранного набора переменных (x1, . . . , xn).

Пример
Формула над {→, ∨}:

Φ = x2 → x1.

Формула Φ при наборе (x1, x2, x3) реализует функцию

f(x1, x2, x3) = x2 → x1 (f(x, y, z) = y → x).

При наборе (x2, x1) формула Φ реализует функцию

f(x2, x1) = x2 → x1 (f(x, y) = x→ y).

Эти функции обязательно конгруэнтны, но могут отличаться
порядком переменных и количеством фиктивных переменных.
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Формулы

Каждая формула — это схема построения сложных функций
путём подстановки простых функций друг в друга, а также путём
переименования переменных.

Определение
Формулы Φ1 и Φ2 называются эквивалентными, если они реализуют
одну и ту же функцию при некотором одинаковом выборе набора
переменных. Обозначение: Φ1 = Φ2.

Формулы x→ y и x ∨ y эквивалентны.
Формулы x · x и y · y эквивалентны (при (x, y) реализуют 0).
Формулы xy и x ∨ y не эквиваленты.
Формулы x ∨ y и y ∨ z не эквиваленты:
нельзя записать x ∨ y = y ∨ z.
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Формулы

Замечания
Булева функция — это вектор значений. Она содержит
информацию о количестве своих переменных (определяется по
длине вектора), но не содержит информации об их именах.
Функции f(x, y) = xy и g(x, z) = xz одинаковы (имеют вектор
значений (0001)). А функция h(x, y, z) = xy отличается от этих
функций (имеет вектор значений (0000 0011)).
Формула, наоборот, содержит информацию об именах своих
переменных, но не о количестве переменных, от которых зависит
реализуемая ей функция.
Формулы x · y и x · z не эквиваленты. Например, при выборе
набора (x, y, z) первая формула реализует функцию (0000 0011),
а вторая — (0000 0101). Аналогично при других наборах.
Формула x · y может реализовывать любую функцию вида
f(x1, . . . , xn) = xixj , где i, j ∈ {1, . . . , n}, i 6= j, n ⩾ 2.
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Функции алгебры логики

Основные тождества
Коммутативность: xy = yx, x ∨ y = y ∨ x, x⊕ y = y ⊕ x,

x ∼ y = y ∼ x, x | y = y | x, x ↓ y = y ↓ x.

Ассоциативность: x · (y · z) = (x · y) · z,

x ∨ (y ∨ z) = (x ∨ y) ∨ z, x⊕ (y ⊕ z) = (x⊕ y)⊕ z.

Дистрибутивность конъюнкции относительно операций ∨,⊕:

x(y ∨ z) = xy ∨ xz, x(y ⊕ z) = xy ⊕ xz.

Дистрибутивность дизъюнкции относительно конъюнкции:

x ∨ yz = (x ∨ y)(x ∨ z).

Правила де Моргана: xy = x ∨ y, x ∨ y = x y, x = x.
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Функции алгебры логики

Основные тождества (продолжение)
Простейшие поглощения:
x ∨ x = x, x ∨ x = 1, x ∨ 1 = 1, x ∨ 0 = x,

x · x = x, x · x = 0, x · 1 = x, x · 0 = 0.
Выражение ¬ и ∼ через ⊕:
x = x⊕ 1, x ∼ y = x⊕ y = x⊕ y ⊕ 1

Выражение различных функций через &,∨,¬:
x→ y = x ∨ y, x | y = xy, x ↓ y = x ∨ y.
x⊕ y = xy ∨ xy, x ∼ y = x y ∨ xy.
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Разложение функции по переменным

Обозначим xσ =

{
x, σ = 0,

x, σ = 1.

xσ = 1 тогда и только тогда, когда x = σ.

Теорема (Разложение Шеннона)
Для любой функции f(x1, . . . , xn) ∈ P2 и любого k ∈ {1, . . . , n} верно

f(x1, . . . , xn) =
∨

σ1,...,σk∈{0,1}

xσ1
1 . . . xσk

k f(σ1, . . . , σk, xk+1, . . . , xn)

Доказательство
Рассмотрим произвольный набор (a1, . . . , an) ∈ En

2 . Вычислим
значение правой части равенства на этом наборе.∨

σ1,...,σk∈{0,1}

aσ1
1 . . . aσk

k f(σ1, . . . , σk, ak+1, . . . , an)
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Разложение функции по переменным

Доказательство (продолжение)∨
σ1,...,σk∈{0,1}

aσ1
1 . . . aσk

k f(σ1, . . . , σk, ak+1, . . . , an)

Если ai 6= σi, то aσi
i = 0, и всё слагаемое равно 0.

Все слагаемые дизъюнкции будут равны нулю, кроме одного:
слагаемого при σ1 = a1, . . . , σk = ak.
Получаем aa11 . . . aakk f(a1, . . . , ak, ak+1, . . . , an) = f(a1, . . . , an).
Значит, на наборе (a1, . . . , an) правая и левая части равенства
совпадают.
Поскольку совпадение имеет место для любого (a1, . . . , an) ∈ En

2 ,
формулы в левой и правой части равенства эквивалентны.
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Разложение функции по переменным

Следствие (Разложение по одной перменной)
Для любой булевой функции f(x1, . . . , xn) верно

f(x1, . . . , xn) = x1f(0, x2, . . . , xn) ∨ x1f(1, x2, . . . , xn).

Доказательство
Это частный случай разложения Шеннона при k = 1.

Пример: x⊕ y = x(0⊕ y) ∨ x · (1⊕ y) = xy ∨ xy.
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Совершенная ДНФ

Теорема (о совершенной дизъюнктивной нормальной форме)
Для любой булевой функции f(x1, . . . , xn) 6≡ 0 верно

f(x1, . . . , xn) =
∨

σ1,...,σn∈{0,1}
f(σ1,...,σn)=1

xσ1
1 · . . . · x

σn
n .

Доказательство
Разложим по всем переменным:

f(x1, . . . , xn) =
∨

σ1,...,σn∈{0,1}

xσ1
1 . . . xσn

n f(σ1, . . . , σn)

Слагаемые, в которых f(σ1, . . . , σn) = 0, нулевые. Исключив их,
получим совершенную ДНФ.
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Совершенная ДНФ

Совершенная ДНФ — это формула над {&,∨,¬}, которую можно
построить по таблице значений любой функции (кроме 0).
Каждая строка в таблице, где функция равна 1, задаёт слагаемое
совершенной ДНФ. Набор (σ1, . . . , σn) этого слагаемого — это
набор значений переменных данной строки.
Пример:

x y f(x, y)

0 0 1

0 1 0

1 0 1

1 1 1

f(x, y) = x y ∨ xy ∨ xy

28/274



Лекция 2
Полные системы. Полиномы Жегалкина. Замкнутые

классы. Классы T0, T1, L
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Полные системы

Определение
Множество A ⊆ P2 называется полной системой, если любая булева
функция реализуема формулой над A.

Очевидно, P2 является полной системой.
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Полные системы

Теорема
Система {∨,&,¬} является полной.

Доказательство
Пусть f(x1 . . . , xn) ∈ P2, f(x1 . . . , xn) 6≡ 0. Тогда f реализуема
формулой (совершенной ДНФ) над {∨,&,¬}.
Пусть f(x1 . . . , xn) ≡ 0. Тогда f реализуется x1 · x1 — формулой
над {∨,&,¬}.
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Полные системы

Лемма
Пусть A ⊆ P2 — полная система и пусть все функции из A
реализуются формулами над B. Тогда B — полная система.

Доказательство (схематично)
Пусть f(x1 . . . , xn) ∈ P2. Тогда f реализуется формулой Φ над A.
Каждую функциональный символ в формуле Φ заменим на
реализующую его функцию формулу над B. Получим формулу
над B, реализующую f .
Тогда B — полная система.

Пример замены функционального символа:
▶ Имеем выражение x ∨ y = xy ⊕ x⊕ y.
▶ Тогда xy ∨ (x⊕ y) преобразуется в (xy)(x⊕ y)⊕ (xy)⊕ (x⊕ y).
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Полные системы
Теорема
Следующие системы полны в P2:

1. {∨,¬};
2. {&,¬};
3. {|};
4. {&,⊕, 1}.

Доказательство
1. Так как x · y = x ∨ y, а {∨,&,¬} — полная система, получаем, что
{∨,¬} — полная система.

2. x ∨ y = x · y. Получили {∨,&,¬}.
3. x | y = x · y. Поэтому x = x | x, x · y = x | y. Получили {&,¬}.
4. x = x⊕ 1. Получили {&,¬}.
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Полиномы Жегалкина

Определение
Монотонная элементарная конъюнкция над переменными
x1, . . . , xn — это формула вида 1 или u1 · . . . · uk, где u1, . . . , uk —
различные переменные из x1, . . . , xn без отрицаний.
Полином Жегалкина над переменными x1, . . . , xn — это формула
вида 0 или K1 ⊕ . . .⊕Kl, где K1, . . . ,Kl — различные
монотонные ЭК над переменными x1, . . . , xn.

Пример: 1⊕ x4 ⊕ x1 ⊕ x1x4 ⊕ x1x2x3.
Элементарные конъюнкции и полиномы Жегалкина,
различающиеся только расстановкой скобок и порядком
множителей и слагаемых, считаем одинаковыми.
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Полиномы Жегалкина

Теорема
Каждая функция f(x1, . . . , xn) ∈ P2 может быть представлена
полиномом Жегалкина, причём единственным образом.

Доказательство (существование полинома Жегалкина)
Если f ≡ 0, то её полином Жегалкина — 0.
Если f 6≡ 0, то представим f в виде совершенной ДНФ.

f(x1, . . . , xn) =
∨

σ1,...,σn∈{0,1}
f(σ1,...,σn)=1

xσ1
1 · . . . · x

σn
n .

Каждая конъюнкция xσ1
1 . . . xσn

n принимает значение 1 только на
наборе (σ1, . . . , σn).

35/274



Полиномы Жегалкина

Доказательство (существование пол. Жегалкина, продолжение)

f(x1, . . . , xn) =
∨

σ1,...,σn∈{0,1}
f(σ1,...,σn)=1

xσ1
1 · . . . · x

σn
n .

Это значит, что на каждом наборе α не более одного слагаемого
совершенной ДНФ обращается в 1.
Тогда, поскольку на всех наборах, кроме набора (1, 1) функции
x ∨ y и x⊕ y совпадают, можно заменить

∨
на
⊕

f(x1, . . . , xn) =
⊕

σ1,...,σn∈{0,1}
f(σ1,...,σn)=1

xσ1
1 · . . . · x

σn
n .
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Полиномы Жегалкина

Доказательство (существование пол. Жегалкина, продолжение)

f(x1, . . . , xn) =
⊕

σ1,...,σn∈{0,1}
f(σ1,...,σn)=1

xσ1
1 · . . . · x

σn
n .

Заменим далее x = x⊕ 1 (т.е. xσ = x⊕ σ):

f(x1, . . . , xn) =
⊕

σ1,...,σn∈{0,1}
f(σ1,...,σn)=1

(x1 ⊕ σ1) · . . . · (xn ⊕ σn).

Раскрывая скобки ((x⊕ y)z = xz ⊕ yz) и приводя подобные
слагаемые (x⊕ x = 0), получим полином Жегалкина.
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Полиномы Жегалкина

Доказательство (единственность полинома Жегалкина)
Напомним, что элементарные конъюнкции / полиномы
Жегалкина, различающиеся только порядком множителей или
слагаемых мы считаем одинаковыми.
Зафиксируем набор переменных (x1, . . . , xn) и рассмотрим
монотонные элементарные конъюнкции и полиномы Жегалкина
от этих переменных.
Подсчитаем число различных монотонных элементарных
конъюнкций. Сопоставим каждой монотонной ЭК набор из нулей
и единиц (a1, . . . , an), где

ai =

{
1, xi входит в ЭК,
0, xi не входит в ЭК,

i = 1, n.
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Полиномы Жегалкина

Доказательство (единственность пол. Жегалкина, продолжение)
Тогда число монотонных ЭК от переменных (x1, . . . , xn) равно
числу строк длины n в алфавите {0, 1}, то есть, 2n.
Пронумеруем все монотонные ЭК и сопоставим каждому
полиному Жегалкина набор из нулей и единиц (b1, . . . , b2n), где

bi =

{
1, ЭК с номером i входит в полином,
0, ЭК с номером i не входит в полином,

i = 1, 2n,

а полиному Жегалкина 0 соответствует набор из 2n нулей.
Тогда число полиномов Жегалкина от переменных (x1, . . . , xn)
равно числу строк длины 2n в алфавите {0, 1}, то есть, 22

n
.
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Полиномы Жегалкина

Вектор коэффициентов полинома: пример
x1 x2 x3 x4 ЭК Вектор полинома
0 0 0 0 1 1

0 0 0 1 x4 1

0 0 1 0 x3 0

0 0 1 1 x3x4 0

0 1 0 0 x2 0

0 1 0 1 x2x4 0

0 1 1 0 x2x3 0

0 1 1 1 x2x3x4 0

1 0 0 0 x1 1

1 0 0 1 x1x4 1

1 0 1 0 x1x3 0

1 0 1 1 x1x3x4 0

1 1 0 0 x1x2 0

1 1 0 1 x1x2x4 0

1 1 1 0 x1x2x3 1

1 1 1 1 x1x2x3x4 0

Полином:
1⊕ x4 ⊕ x1 ⊕ x1x4 ⊕ x1x2x3
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Полиномы Жегалкина

Доказательство (единственность пол. Жегалкина, продолжение)

Всего существует 22
n

полиномов от переменных (x1, . . . , xn)
и 22

n
булевых функций от n переменных.

Каждый полином Жегалкина реализует ровно одну булеву
функцию.
Кроме того, в первой части доказательства показано, что каждая
функция реализуется хотя бы одним полиномом Жегалкина.
Если какая-либо функция реализуется двумя полиномами
Жегалкина, то оставшихся 22

n − 2 полиномов не хватит, чтобы
реализовать все оставшиеся 22

n − 1 функций.
Поэтому каждая функция реализуется только одним полиномом
Жегалкина.
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Замкнутые классы

Определение
Замыкание [A] множества A ⊆ P2 — это множество всех функций
из P2, которые можно реализовать с помощью формул над A.

Свойства замыкания
1. A ⊆ [A];
2. A ⊆ B ⇒ [A] ⊆ [B];
3. [[A]] = [A].

Первые два свойства очевидны из определения замыкания.
Третье свойство: в формуле Φ над [A] можно каждый
используемый символ заменить на формулу над A. В результате
получим формулу над A, эквивалентную Φ.
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Замкнутые классы

Определение
Множество A ⊆ P2 — замкнутый класс, если [A] = A.

Утверждение
Пусть A — замкнутый класс и A 6= P2. Пусть B ⊆ A. Тогда B — не
полная система.

Доказательство
B ⊆ A⇒ [B] ⊆ [A] = A 6= P2.
Поэтому [B] 6= P2, то есть B — не полная система.
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Функции, сохраняющие константы
Класс T0

T0 = {f(x1, . . . , xn) ∈ P2 : f(0, . . . , 0) = 0}.

Теорема
Класс T0 замкнут.

Доказательство
Пусть f(y1, . . . , ym) ∈ T0 и g1(x̃1), . . . , gm(x̃m) ∈ T0.
Рассмотрим h(x̃) = f(g1(x̃1), . . . , gm(x̃m)). Тогда

h(0, . . . , 0) = f(g1(0, . . . , 0), . . . , gm(0, . . . , 0)) = f(0, . . . , 0) = 0.

Если на месте gi в формуле переменная, то gi(x̃i) = xik ∈ T0,
и равенство остаётся справедливым.
То есть, h(x̃) ∈ T0. Поэтому класс T0 замкнут.
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Функции, сохраняющие константы
Класс T1

T1 = {f(x1, . . . , xn) ∈ P2 : f(1, . . . , 1) = 1}.

Теорема
Класс T1 замкнут.

Доказательство
Пусть f(y1, . . . , ym) ∈ T1 и g1(x̃1), . . . , gm(x̃m) ∈ T1.
Рассмотрим h(x̃) = f(g1(x̃1), . . . , gm(x̃m)). Тогда

h(1, . . . , 1) = f(g1(1, . . . , 1), . . . , gm(1, . . . , 1)) = f(1, . . . , 1) = 1.

Если на месте gi в формуле переменная, то gi(x̃i) = xik ∈ T1,
и равенство остаётся справедливым.
То есть, h(x̃) ∈ T1. Поэтому класс T1 замкнут.
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Линейные функции
Класс L

Булева функция f(x1, . . . , xn) называется линейной, если её
можно представить в виде f(x1, . . . , xn) = a0 ⊕ a1x1 ⊕ . . .⊕ anxn,
где a0, . . . , an ∈ {0, 1}.
L — класс всех линейных булевых функций.

Теорема
Класс L замкнут.

Доказательство
Линейная функция — это константа, либо сумма нескольких
переменных и, возможно, единицы.
Подставляя такие выражения друг в друга и приводя подобные,
будем получать выражения такого же вида.
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Лекция 3
Классы S,M . Лемма о несамодвойственной функции.

Лемма о немонотонной функции
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Самодвойственные функции

Определение
Пусть f(x1, . . . , xn) ∈ P2. Тогда функцией, двойственной к f ,
называется функция f∗(x1, . . . , xn) = f(x1, . . . , xn).

Примеры
(x ∨ y)∗ = x ∨ y = x · y = xy.
(xy)∗ = x y = x ∨ y = x ∨ y.
0∗ = 0∗(x) = 0(x) = 0 = 1, 1∗ = 0.
(x⊕ y)∗ = x⊕ y = (x⊕ 1)⊕ (y ⊕ 1)⊕ 1 = x⊕ y ⊕ 1 = x ∼ y.
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Самодвойственные функции

Утверждение
Для любой булевой функции f(x1, . . . , xn) верно

f∗∗(x1, . . . , xn) = f(x1, . . . , xn).

Доказательство

f∗∗(x1, . . . , xn) = f
∗
(x1, . . . , xn) = f(x1, . . . , xn) = f(x1, . . . , xn).
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Самодвойственные функции

Теорема (Принцип двойственности)
Пусть h(x1, . . . , xn) = f(g1(x11, . . . , x1n1), . . . , gm(xm1, . . . , xmnm)).
Тогда h∗(x1, . . . , xn) = f∗(g∗1(x11, . . . , x1n1), . . . , g

∗
m(xm1, . . . , xmnm)).

Доказательство

Напомним: f∗(y1, . . . , ym) = f(y1, . . . , ym).
Имеем

h∗(x1, . . . , xn) = h(x1, . . . , xn) =

= f(g1(x11, . . . , x1n1), . . . , gm(xm1, . . . , xmnm)) =

= f(g∗1(x11, . . . , x1n1), . . . , g
∗
m(xm1, . . . , xmnm)) =

= f∗(g∗1(x11, . . . , x1n1), . . . , g
∗
m(xm1, . . . , xmnm)).
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Самодвойственные функции

Следствие
Пусть Φ(f1, . . . , fn) — формула, содержащая только функциональные
символы функций f1, . . . , fn и реализующая функцию h.
Тогда формула Φ(f∗1 , . . . , f

∗
n) реализует функцию h∗.

Пример: ((x⊕ y) ∨ z)∗ = (x ∼ y)z.

51/274



Самодвойственные функции

Определение
Функция f ∈ P2 называется самодвойственной, если f∗ = f .
Класс самодвойственных функций обозначается S.

Примеры

(x)∗ = (x) = x.

(x)∗ = (x) = x.
x⊕ y ⊕ z.
Медиана: m(x, y, z) = xy ∨ xz ∨ yz = xy ⊕ xz ⊕ yz.

52/274



Самодвойственные функции

Утверждение
Класс S замкнут.

Доказательство
Пусть f(y1, . . . , ym) ∈ S и g1(x̃1), . . . , gm(x̃m) ∈ S.
Рассмотрим h(x̃) = f(g1(x̃1), . . . , gm(x̃m)). Тогда по принципу
двойственности

h∗(x1, . . . , xn) = f∗(g∗1(x11, . . . , x1n1), . . . , g
∗
m(xm1, . . . , xmnm)) =

= f(g1(x11, . . . , x1n1), . . . , gm(xm1, . . . , xmnm)) = h(x1, . . . , xn).

Если на месте gi в формуле переменная, то gi(x̃i) = xik ∈ S, и
равенство остаётся справедливым.
То есть, h(x̃) ∈ S. Поэтому класс S замкнут.
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Монотонные функции

Определение
Пусть α = (a1, . . . , an), β = (b1, . . . , bn) ∈ En

2 . Будем считать,
что α ⩽ β, если ai ⩽ bi при всех i = 1, n.

Примеры частичных порядков

11

1001

00

000

001
010

100

110
101

011

111
(0, 0) ⩽ (0, 1) ⩽ (1, 1)

(0, 1) и (1, 0) не сравнимы

(0, 0, 0) ⩽ (0, 1, 0) ⩽ (0, 1, 1) ⩽ (1, 1, 1)

(0, 1, 0) и (1, 0, 1) не сравнимы
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Монотонные функции

Определение
Булева функция f(x1, . . . , xn) называется монотонной если для
любых двух наборов α, β ∈ En

2 верно

α ⩽ β =⇒ f(α) ⩽ f(β).

Множество всех монотонных булевых функций обозначается M .

Примеры
0, 1, x — монотонны.
x — немонотонна.
xy, x ∨ y — монотонны.
x⊕ y немонотонна.
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Монотонные функции

Утверждение
Класс M замкнут.

Доказательство
Добавление / удаление фиктивных переменных и перестановка
переменных не влияет на монотонность функции.
Поэтому в суперпозиции достаточно рассматривать функции с
общим набором переменных.
Пусть f(y1, . . . , ym) ∈M и g1(x1, . . . , xn), . . . , gm(x1, . . . , xn) ∈M .
Рассмотрим h(x1, . . . , xn) = f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)).
Пусть α, β ∈ En

2 , α ⩽ β. Обозначим ci = gi(α) и di = gi(β) при
i = 1,m. В силу монотонности gi имеем ci ⩽ di.
Это значит, что (c1, . . . , cm) ⩽ (d1, . . . , dm).
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Монотонные функции

Утверждение
Класс M замкнут.

Доказательство (продолжение)

gi(α) = ci ⩽ di = gi(β)

В силу монотонности f имеем

h(α) = f(g1(α), . . . , gm(α)) = f(c1, . . . , cm) ⩽ f(d1, . . . , dm) =

= f(g1(β), . . . , gm(β)) = h(β).

Если на месте gi в формуле переменная, то gi(x̃) = xk ∈M ,
и все рассуждения остаются справедливыми.
То есть, h(x̃) ∈M . Поэтому класс M замкнут.
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Теорема Поста

Лемма (о несамодвойственной функции)
Пусть f(x1, . . . , xn) — булева функция и f /∈ S. Тогда, подставляя в f
на места всех переменных x и x, можно получить одну из функций
ϕ(x) ≡ 0 или ϕ(x) ≡ 1.

Доказательство
Напомним: g ∈ S, если g(x1, . . . , xm) = g(x1, . . . , xm).
Пусть f(x1, . . . , xn) /∈ S. Тогда существуют a1, . . . , an ∈ E2 такие,
что f(a1, . . . , an) = f(a1, . . . , an).
Рассмотрим ϕ(x) = f(x⊕ a1, . . . , x⊕ an). Эта функция
получается из f подстановкой x и x: x⊕ 0 = x, x⊕ 1 = x.
Ясно, что ϕ(0) = f(a1, . . . , an) = f(a1, . . . , an) = ϕ(1). Значит,
ϕ(x) является константой.
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Теорема Поста

Лемма (о немонотонной функции)
Пусть f(x1, . . . , xn) — булева функция и f /∈M . Тогда, подставляя в f
на места всех переменных 0, 1 и x, можно получить функцию ϕ(x) = x.

Доказательство
Пусть f(x1, . . . , xn) /∈M . Возьмём a1, . . . , an, b1, . . . , bn ∈ E2

такие, что ai ⩽ bi при i = 1, n, а f(a1, . . . , an) ⩽̸ f(b1, . . . , bn).
Это значит, что f(a1, . . . , an) = 1, а f(b1, . . . , bn) = 0.
Для каждого i = 1, n в силу ai ⩽ bi возможны 3 случая:

1. Если ai = bi = 0, то в f подставляем xi = 0;
2. Если ai = 0, bi = 1, то в f подставляем xi = x;
3. Если ai = bi = 1, то в f подставляем xi = 1.

Получим некоторую функцию ϕ(x). При этом имеем
ϕ(0) = f(a1, . . . , an) = 1, ϕ(1) = f(b1, . . . , bn) = 0, т.е. ϕ(x) = x.
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Лекция 4
Лемма о нелинейной функции. Теорема Поста.

Базисы. Предполные классы
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Теорема Поста

Лемма (о нелинейной функции)
Пусть f(x1, . . . , xn) — булева функция и f /∈ L. Тогда, подставляя в f
на места всех переменных 0, 1, x, y, x, y, можно получить одну из
функций ϕ(x, y) = xy или ϕ(x, y) = xy.

Доказательство
Рассмотрим полином Жегалкина для f(x1, . . . , xn). Поскольку
f /∈ L, в нём есть нелинейное слагаемое.
Выберем наименьшее по числу переменных нелинейное слагаемое.
Не ограничивая общности, считаем, что это слагаемое x1 . . . xs.
Подставляем: g(x, y) = f(x, . . . , x, y︸ ︷︷ ︸

s

, 0, . . . , 0).

Поскольку слагаемое x1 . . . xs минимально, любое другое
нелинейное слагаемое содержит переменную из xs+1, . . . , xn.
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Теорема Поста

Доказательство леммы о нелинейной функции (продолжение)

g(x, y) = f(x, . . . , x, y︸ ︷︷ ︸
s

, 0, . . . , 0)

Таким образом, все другие нелинейные слагаемые обнулились.
Тогда g(x, y) = xy ⊕ ax⊕ by ⊕ c. Выберем
h(x, y) = g(x⊕ b, y ⊕ a) = f(x⊕ b, . . . , x⊕ b, y ⊕ a, 0, . . . , 0).
Поскольку x⊕ 0 = x, x⊕ 1 = x, функция h(x, y) получена из f
подстановкой 0, 1, x, y, x, y.
Имеем

h(x, y) = (x⊕ b)(y ⊕ a)⊕ a(x⊕ b)⊕ b(y ⊕ a)⊕ c = xy ⊕ (ab⊕ c).

В зависимости от a, b, c это либо xy, либо xy.
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Теорема Поста

Замечание: «не ограничивая общности»
Выше было доказано, что для f /∈ L, у которой наименьшее по
числу переменных нелинейное слагаемое имеет вид x1 . . . xs,
выполняется условие леммы о нелинейной функции.
В общем случае минимальное нелинейное слагаемое может иметь
вид xi1 . . . xis .
Тогда в выражении g(x, y) = f(x, . . . , x, y︸ ︷︷ ︸

s

, 0, . . . , 0) только

поменяются местами подстановки: переменная x будет
подставлена на места xi1 , . . . , xis−1 , а переменная y на место xis .
При этом ход рассуждений сохранится таким же, как и для
доказанного случая, и утверждение леммы останется верным.
В таких ситуациях выбирают удобный случай для иллюстрации
доказательства, а «не ограничивая общности рассуждений»
значит, что рассуждения применимы и к общему случаю.
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Теорема Поста

Теорема (Поста о полноте)
Множество A ⊆ P2 является полной системой тогда и только тогда,
когда оно не содержится целиком ни в одном из классов
T0, T1, S, L,M .

Доказательство
⇒. Пусть N — один из классов T0, T1, S, L,M и A ⊆ N .
Тогда N — замкнутый класс.
Имеем A ⊆ N , тогда [A] ⊆ [N ] = N 6= P2.
Поэтому A — не полная система.
⇐. Пусть A не содержится целиком ни в одном из
классов T0, T1, S, L,M .
Это значит, что в A есть функции
f0 /∈ T0, f1 /∈ T1, fS /∈ S, fL /∈ L, fM /∈M .
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Теорема Поста

Доказательство (продолжение)

f0 /∈ T0, f1 /∈ T1, fS /∈ S, fL /∈ L, fM /∈M

Покажем, что формулами над выбранными функциями можно
получить все функции из P2.
а) Получение отрицания x.

▶ Рассмотрим ϕ0(x) = f0(x, . . . , x) ∈ [A].
▶ f0 /∈ T0, поэтому ϕ0(0) = f0(0, . . . , 0) = 1. Тогда ϕ0(x) ∈ {1, x}.
▶ Рассмотрим ϕ1(x) = f1(x, . . . , x) ∈ [A].
▶ f1 /∈ T1, поэтому ϕ1(1) = f1(1, . . . , 1) = 0. Тогда ϕ1(x) ∈ {0, x}.
▶ Если ни одна из функций не равна x, то ϕ0(x) ≡ 1, ϕ1(x) ≡ 0.
▶ Тогда по лемме о немонотонной функции подстановками 0, 1, x

получаем из fM функцию x ∈ [A].
▶ В любом из случаев получили x ∈ [A].
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Теорема Поста

Доказательство (продолжение)

f0 /∈ T0, f1 /∈ T1, fS /∈ S, fL /∈ L, fM /∈M, x ∈ [A]

б) Получение констант 0 и 1.
▶ По лемме о несамодвойственной функции подстановками x, x в fS

получаем константу: ϕ(x) ≡ 0 или ϕ(x) ≡ 1.
▶ С помощью отрицания получаем вторую константу:

1 = 0 или 0 = 1.
в) Получение конъюнкции xy.

▶ По лемме о нелинейной функции подстановками 0, 1, x, x, y, y в fL
получаем функцию ϕ(x, y) = xy или ϕ(x, y) = xy.

▶ Во втором случае получаем xy = ϕ(x, y).

Получили {xy, x} ⊆ [A] — полную систему. Значит, [A] = P2.
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Базисы
Определение
Множество A ⊆ P2 называется базисом (в P2), если выполнены два
условия:

1. A — полная система;
2. Для любой f ∈ A система A \ {f} не является полной.

Теорема
Максимальное число функций в базисе в P2 равно 4.

Доказательство
Докажем, что из всякой полной системы можно выделить
подмножество из не более 4 функций, которая также будет
образовывать полную систему.
Это будет значить, что система из большего числа функций не
может являться базисом.
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Базисы

Доказательство (в базисе не более 4 функций)
Пусть A — полная система. Тогда по теореме Поста в A есть
функции f0 /∈ T0, f1 /∈ T1, fS /∈ S, fL /∈ L, fM /∈M .
Тогда {f0, f1, fS , fL, fM} — полная система. Если хотя бы две из
указанных функций совпадают, то искомая система из не более 4
функций найдена. Пусть все 5 функций различны.
Рассмотрим f0(x1, . . . , xn) /∈ T0. Верно f0(0, . . . , 0) = 1.
Если f0 /∈M , то функцию fM можно убрать из системы, и
система {f0, f1, fS , fL} полна.
Если f0 ∈M , то f0(x1, . . . , xn) ≡ 1. Тогда f0 /∈ S, и система
{f0, f1, fL, fM} полна.
В любом случае получаем систему из не более 4 функций.
Таким образом, в базисе не может быть более 4 функций.
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Базисы

Доказательство (существует базис из 4 функций)
Покажем, что существует базис из 4 функций.
Рассмотрим A = {0, 1, xy, x⊕ y ⊕ z}.
1 /∈ T0, 0 /∈ T1, 0 /∈ S, xy /∈ L, x⊕ y ⊕ z /∈M .
(последнее верно, т.к. 0, 1 ∈M, а x⊕ 0⊕ 1 = x /∈M)
По теореме Поста система A полна.
A \ {0} ⊆ T1, A \ {1} ⊆ T0,
A \ {xy} ⊆ L, A \ {x⊕ y ⊕ z} ⊆M .
По теореме Поста каждая из 4-х приведённых выше систем
неполна. То есть, при удалении из A любой функции получается
не полная система.
Значит, A является базисом из 4 функций.
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Базисы

Примеры базисов из разного количества функций
Базис из одной функции: {x | y}.
Базис из двух функций: {xy, x}.
Базис из трёх функций: {xy, x⊕ y, 1}.
Базис из четырёх функций: {0, 1, xy, x⊕ y ⊕ z}.

70/274



Предполные классы

Определение
Множество A ⊆ P2 называется предполным классом, если выполнены
два условия:

1. A — не полная система;
2. Для любой f /∈ A система A ∪ {f} является полной.

Теорема
В P2 существует в точности 5 предполных классов: T0, T1, S, L, M .

Доказательство
Нужно доказать, что указанные пять классов являются
предполными и что никаких других предполных классов нет.
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Предполные классы
Доказательство (классы не вложены друг в друга)

Докажем, что никакой из классов T0, T1, S, L,M не целиком
содержится в другом из этих классов.
Для каждой пары классов приведём пример функции, которая
принадлежит одному из них, но не принадлежит другому.
В таблице каждая функция принадлежит множествам, указанным
в её строке и столбце.

P2 \ T0 P2 \ T1 P2 \ S P2 \ L P2 \M
T0 0 0 xy x⊕ y
T1 1 1 xy x ∼ y
S x x m(x, y, z) x

L x x 0 x

M 1 0 0 xy

Напомним, что m(x, y, z) = xy ∨ xz ∨ yz = xy ⊕ xz ⊕ yz.
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Предполные классы

Доказательство (предполнота классов)
Докажем, что каждый класс K ∈ {T0, T1, S, L,M} является
предполным.
[K] = K 6= P2, система K не является полной.
Пусть f /∈ K. Поскольку классы не вложены друг в друга, система
K ∪ {f} не содержится целиком ни в одном из 4 других классов.
Но, т.к. f /∈ K, она не содержится целиком и в K.
По теореме Поста K ∪ {f} — полная система.
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Предполные классы

Доказательство (нет других предполных классов)
Покажем, что любой предполный класс принадлежит множеству
{T0, T1, S, L,M}.
Пусть A — предполный класс. Значит, A — не полная система.
По теореме Поста A ⊆ K для некоторого K ∈ {T0, T1, S, L,M}.
Предположим, что A 6= K. Тогда найдётся f ∈ K \A.
Получим, что [A ∪ {f}] ⊆ K, то есть (по теореме Поста)
A ∪ {f} — не полная система.
Получили противоречие тому, что A — предполный класс.
Противоречие означает, что A = K.
Значит, A ∈ {T0, T1, S, L,M}.
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Прикладные задачи для булевых функций

Построение эффективных схем для реализации булевых функций.
▶ Используется для создания компактных и быстрых микросхем для

электронных устройств.
Анализ задач из класса NP и SAT-solver’ы.

▶ Многие прикладные задачи принадлежат классу NP.
▶ Для них неизвестен гарантированно быстрый способ решения, но

есть методы, которые «обычно» работают быстро на практике.
▶ Все задачи из класса NP сводятся к задачам анализа некоторых

формул для булевых функций, которые решает SAT-solver.
Анализ криптографических свойств булевых функций.

▶ Преобразование и кодирование информации можно выражать с
помощью булевых функций.

▶ Сложность расшифровки кода зависит от свойств булевых
функций.

▶ Например, если используются линейные булевы функции, то код
легко расшифровать (решить систему линейных уравнений).
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Лекция 5
Графы. Изоморфизм, связность. Деревья
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Графы

Определение
Граф (простой граф) — это пара G = (V,E), где

V (множество вершин) — непустое конечное множество.
E ⊆ {{u, v} | u 6= v, u, v ∈ V } (множество рёбер) — множество
неупорядоченных пар различных элементов V .

Элементы V называют вершинами, а элементы E — рёбрами.
Ребро {u, v} традиционно обозначают (u, v), несмотря на то, что
это неупорядоченная пара

Геометрический способ изображения
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Графы

Другие типы графов
Граф, в котором дополнительно допущено повторение рёбер,
называется мультиграфом (повторяющиеся рёбра называются
параллельными).
Мультиграф, в котором дополнительно допускаются пары из
одинаковых элементов в качеств рёбер, называется псевдографом
(пары из одинаковых элементов называются петлями).
Граф (мультиграф, псевдограф), в котором рёбра являются
упорядоченными парами, называется ориентированным.

Простой граф Мультиграф Псевдограф Орграф
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Степени вершин
Определение

Две вершины графа называются смежными, если они входят в
одно и тоже ребро (соединены ребром).
Вершина и ребро графа называются инцидентными, если вершина
входит в данное ребро.
Степень вершины deg v в неориентированном графе — это число
инцидентных ей рёбер (в псевдографе петля считается за два
инцидентных ребра).

Пример

v1

v3

v2

v4

Вершины v1 и v2 смежны.
Вершины v1 и v3 не смежны.
Вершина v1 инцидентна ребру (v1, v2).
deg v1 = 1, deg v2 = 3, deg v3 = 2, deg v4 = 2.
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Степени вершин

Утверждение
Пусть G = (V,E) — граф с p вершинами v1, . . . , vp, и q рёбрами. Тогда

p∑
i=1

deg vi = 2q.

Доказательство
Каждое ребро графа инцидентно двум вершинам,
т.е. добавляет +1 к степеням двух вершин графа.
Значит, каждое из q рёбер добавляет +2 к сумме степеней
вершин.
Поскольку сумма степеней формируется только за счёт
инцидентных вершинам рёбер, она получается равна 2q.
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Подграфы

Определение
Граф G1 = (V1, E1) называется подграфом графа G = (V,E),
если V1 ⊆ V и E1 ⊆ E.

Пример

G G1
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Изоморфизм графов

Определение
Графы G1 = (V1, E1) и G2 = (V2, E2) называются изоморфными,
если существует взаимно-однозначное отображение ϕ : V1 → V2
такое, что для любых u, v ∈ V1 верно

(u, v) ∈ E1 ⇐⇒ (ϕ(u), ϕ(v)) ∈ E2.

Отображение ϕ называется изоморфизмом.

Изоморфные графы обладают одними и теми же свойствами.
В большинстве случаев они считаются одинаковыми.

82/274



Изоморфизм графов

Пример
Рассмотрим графы

G1 = (V1, E1), V1 = {1, 2, 3}, E1 = {(1, 2)};
G2 = (V2, E2), V2 = {a, b, c}, E2 = {(b, c)}.

1 2

3

a b

c

Можно построить следующий изоморфизм:

1↔ c,

2↔ b,

3↔ a.
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Пути в графах

Определение
Путь (маршрут) в графе G = (V,E) — это любая
последовательность вида

v0, (v0, v1), v1, (v1, v2), v2, . . . , vn−1, (vn−1, vn), vn,

где vi ∈ V, i = 0, n.
(это путь из v0 в vn; n ⩾ 0 — число рёбер в нём — длина пути)
Цепь — это путь, в котором v0 6= vn и все рёбра разные.
Простая цепь — это цепь, в которой все вершины различные.
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Пути в графах

Примеры путей в графе
1

23
4 1

2

3

5

1

2

3
Путь Цепь Простая цепь

4 4

Подпуть пути в графе G — это подпоследовательность, которая
тоже является путём в G.
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Пути в графах

Утверждение
Любой путь в графе G из v0 в vn, где v0 6= vn, содержит подпуть из v0
в vn, который является простой цепью.

Доказательство
Пусть в G задан путь L из v0 в vn, и v0 6= vn.
Если вершина v0 встречается несколько раз, то удалим в L
начальную часть до последнего вхождения вершины v0.
После этого, если вершина vn встречается несколько раз, удалим
заключительную часть пути после первого вхождения вершины vn.
Получим путь L1 из v0 в vn, в котором вершины v0 и vn не
повторяются.
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Пути в графах

Утверждение
Любой путь в графе G из v0 в vn, где v0 6= vn, содержит подпуть из v0
в vn, который является простой цепью.

Доказательство (продолжение)
Если в L1 вершины не повторяются, то рёбра тем более не
повторяются, и L1 является простой цепью.
Иначе L1 имеет вид v0C1vC2vC3vn, где v — вершина графа,
а C1, C2, C3 — участки пути.
Построим путь L2 = v0C1vC3vn, который является подпутём L1,
в котором вершина v повторяется на 1 раз меньше.
Повторяем аналогично, исключая все повторяющиеся вершины.
В конце концов получим простую цепь Lk.
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Связность графов

Определение
Граф G называется связным, если для любых вершин u, v графа G
существует путь из u в v.

Примеры

Связный граф Несвязный граф
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Связность графов

Отношение существования пути
Пусть G = (V,E). Введём на множестве V отношение

u→ v ≡ (в графе G существует путь из u в v).

Для этого отношения выполняются свойства:
1. Рефлексивность: ∀u ∈ V верно u→ u.
2. Симметричность: ∀u, v ∈ V , если u→ v, то v → u.
3. Транзитивность: ∀u, v, w ∈ V , если u→ v и v → w, то u→ w.

Таким образом, → — это отношение эквивалентности.
Тогда V разбивается на непересекающиеся классы
эквивалентности V1, . . . , Vk так, что любые две вершины из
одного класса соединены путём, а вершины из разных классов не
соединены путём.
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Связность графов

Компоненты связности

VkV2
G

V1

Таким образом, граф G распадается на связные подграфы,
которые друг с другом не соединены рёбрами.
Эти подграфы называются компонентами связности графа G.
Если граф G связен, то у него одна компонента связности.
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Замкнутые пути

Определение
Путь

v0, (v0, v1), v1, (v1, v2), v2, . . . , vn−1, (vn−1, vn), vn,

в графе G называется замкнутым, если vn = v0.
Цикл — это замкнутый путь, в котором все рёбра разные.
Простой цикл — это цикл, в котором все вершины различные
(не считая vn = v0).
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Замкнутые пути

Примеры замкнутых путей в графе
1

23
4

4

5

1
2

3

5

4

1

2

3
Замкнутый путь Цикл Простой цикл

5

6
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Деревья

Определение
Дерево — это связный граф без циклов.

В определении дерева подразумеваются циклы, содержащие
хотя бы одно ребро.

Примеры

Дерево Дерево Дерево Граф с циклом Лес
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Деревья
Определение
Подграф G1 = (V1, E1) графа G = (V,E) называется остовным
деревом, если V1 = V и G1 — дерево.

Лемма 1
Пусть граф G = (V,E) связен и ребро (u, v) входит хотя бы в один
цикл G. Тогда при удалении ребра (u, v) граф останется связным.

Доказательство
Если ребро (u, v) входит в цикл, то u и v соединены путём, не
содержащим ребра (u, v).
Тогда во всех путях между вершинами G ребро (u, v) можно
заменить на путь от u до v.
При удалении ребра u, v пути между всеми вершинами сохранятся.
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Деревья
Теорема
В любом связном графе G существует подграф, являющийся
остовным деревом.

Доказательство
Если в графе G нет циклов, то он сам является остовным
деревом.
Иначе в G есть цикл, т.е. существует ребро, входящее в цикл.
Удалим это ребро. По лемме 1 граф остаётся связным.
Если в графе всё ещё есть циклы, продолжаем удаление рёбер
аналогично, каждый раз получая связный граф с меньшим
числом рёбер.
Поскольку в графе конечное число рёбер, в конце концов получим
связный граф без циклов — остовное дерево G.
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Деревья
Лемма 2
Если в связный граф G = (V,E) добавить новое ребро (u, v),
где u, v ∈ V, то в графе G образуется хотя бы один простой цикл.

Доказательство
Пусть u, v ∈ V , u 6= v и (u, v) /∈ E. Поскольку граф G связный, в
нём существует путь из u в v.
По доказанному ранее утверждению в этом пути можно выделить
подпуть, который является простой цепью из u в v.
При добавлении в конец этой простой цепи ребра (v, u)
получается простой цикл.

u v
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Деревья

Лемма 3
Если в графе G = (V,E) ровно p вершин и q рёбер, то

1. в G не менее p− q компонент связности;
2. если в G нет циклов, то в нём ровно p− q компонент связности.

Доказательство
Будем строить граф G постепенно, начиная с графа из p
изолированных вершин (без рёбер), и добавляя на каждом шаге
одно ребро.
У исходного графа без рёбер p компонент связности.
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Деревья
Доказательство (число компонент связности, продолжение)

1. 2.

При добавлении ребра:
1. Ребро между разными компонентами связности
⇒ число компонент уменьшается на 1;

2. Ребро внутри компоненты связности
⇒ число компонент не изменяется и по лемме 2 появляется цикл.

При добавлении всех q рёбер число компонент уменьшится на q
или менее. Получится число, не меньшее p− q.
Если в G нет циклов, то при добавлении ребра возможен только
первый случай. Поэтому получится ровно p− q компонент.
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Лекция 6
Эквивалентные определения деревьев. Корневые

деревья. Геометрическая реализация графов.
Планарные графы. Граф K5
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Деревья

Теорема
Пусть G = (V,E), p = |V |, q = |E|.
Следующие утверждения эквиваленты:

1. G — дерево (т.е. связный граф без циклов);
2. G — граф без циклов и q = p− 1;
3. G — связный граф и q = p− 1;
4. G — связный граф, но при удалении любого ребра становится

несвязным;
5. G — граф без циклов, но при добавлении любого ребра на тех же

вершинах появляется цикл.
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Деревья
Доказательство (разные определения дерева)

Будем доказывать 1⇒ 2⇒ 3⇒ 4⇒ 5⇒ 1.
1⇒ 2. G — связный граф без циклов.

▶ По лемме 3 в графе должно быть ровно p− q компонент
связности.

▶ Тогда имеем 1 = p− q, то есть q = p− 1.

2⇒ 3. Имеем граф без циклов и q = p− 1.
▶ По лемме 3 в графе должно быть p− q = 1 компонент связности.
▶ То есть граф G связный.

3⇒ 4. Имеем связный граф и q = p− 1.
▶ Удалим любое ребро G. Тогда останется q′ = p− 2 рёбер.
▶ По лемме 3 число компонент связности не меньше p− q′ = 2.
▶ Таким образом, при удалении любого ребра получается несвязный

граф.
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Деревья

Доказательство (разные определения дерева, продолжение)
4⇒ 5. Имеем связный граф, который при удалении любого ребра
становится несвязным.

▶ Если бы в G был цикл, то, удаляя ребро из этого цикла, по
лемме 1 получили бы связный граф, что невозможно.

▶ Поэтому в G нет циклов.
▶ По лемме 2 при добавлении в связный граф G ребра появляется

цикл.

5⇒ 1. Имеем граф без циклов, в котором при добавлении любого
ребра появляется цикл.

▶ Пусть G не связный. Тогда при добавлении ребра между разными
компонентами связности цикла не добавится.

▶ Это противоречит условию. Значит, G связный.
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Корневые деревья

Определение
Корневое дерево — это дерево c выделенной вершиной.
Выделенная вершина называется корнем.

Пример

1 2 3

Корневые деревья 1 и 2 изоморфны, корневое дерево 3 неизоморфно
им.
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Корневые деревья
Определение (индуктивное)

1. Граф из одной вершины (корня), является корневым деревом.
2. Пусть D1 = (V1, E1), . . . , Dm = (Vm, Em) — корневые деревья с

корнями v1, . . . , vm (V1, . . . , Vm попарно не пересекаются). Тогда
корневым деревом является граф D = (V,E), где

▶ V = V1 ∪ . . . ∪ Vm ∪ {v0}, где v0 /∈ V1 ∪ . . . ∪ Vm — новая вершина.
▶ E = E1 ∪ . . . ∪ Em ∪ {(v0, v1), . . . , (v0, vm)}.
▶ Корнем D выбирается v0.

Пример

D1
2

D2
1

D3
1 D3

2

D4
1

D4
2

D5
1

D4
2 = (◦, ◦)

D1
1

D1
1 = ◦

D1
2 = ◦

D2
1 = (◦, ◦) D4

1 = (D2
1)

D3
1 = ◦, D3

2 = ◦ D5
1 = (D4

1, D
4
2)

D = (D5
1)
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Корневые деревья

Определение
В индуктивном определении корневого дерева деревья D1, . . . Dm

называются поддеревьями дерева D.

Иллюстрация

D1 D2 Dm

D

Эквивалентность определений
Общее и индуктивное определения корневого дерева эквивалентны.
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Корневые деревья
Определение
Упорядоченным корневым деревом называется корневое дерево, в
котором

1. Задан порядок поддеревьев;
2. Каждое поддерево является упорядоченным корневым деревом.

Корневое дерево из одной вершины является упорядоченным
корневым деревом.

Пример

D1
2

D2
1

D3
1 D3

2

D4
1

D4
2

D5
1

D4
2 = (◦, ◦)

D1
1

D1
1 = ◦

D1
2 = ◦

D2
1 = (◦, ◦) D4

1 = (D2
1)

D3
1 = ◦, D3

2 = ◦ D5
1 = (D4

1, D
4
2)

D = (D5
1)
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Корневые деревья
Теорема
Число различных упорядоченных корневых деревьев с q рёбрами
не превосходит 4q.

Доказательство
Рассмотрим алгоритм обхода «в глубину» упорядоченного
корневого дерева.

1. Начать с корня. Пока есть не пройденные поддеревья выполнять:
2. Перейти в корень очередного поддерева, обойти это поддерево «в

глубину»;
3. Вернуться в корень исходного дерева.
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Корневые деревья

Доказательство теоремы о числе деревьев (продолжение)
Вдоль каждого ребра дерева алгоритм обхода проходит дважды:
один раз при заходе в поддерево и один раз при возврате.
Каждый обход формирует последовательность из 0 и 1:

1. Движение по ребру от корня добавляет 0;
2. Движение по ребру к корню добавляет 1.

0
0

01

1

1

1
1

1 0

0

0

Таким образом, каждому дереву сопоставляется
последовательность из 0 и 1 длины 2q (код дерева).
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Корневые деревья

Доказательство теоремы о числе деревьев (продолжение)
По коду упорядоченное корневое дерево восстанавливается
однозначно:

1. Начинаем с одной вершины — корня.
2. 0 указывает, что нужно добавить ребро из текущей вершины в

новую вершину и перейти в неё («движемся вверх»).
3. 1 указывает, что нужно вернуться на предыдущую вершину, на

один ярус назад («движемся вниз»).

Таким образом, каждому коду соответствует только одно
упорядоченное корневое дерево.
Поэтому число упорядоченных корневых деревьев с q рёбрами не
превосходит числа последовательностей из 0 и 1 длины 2q.
Таких последовательностей всего 22q = 4q.
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Корневые деревья

Замечание
Корневые деревья получаются из деревьев добавлением пометки
«корень» на одну из вершин.
Поэтому число деревьев с q рёбрами не превосходит числа
корневых деревьев с q рёбрами.
Упорядоченные корневые деревья получаются из корневых
деревьев добавлением порядка поддеревьев.
Поэтому число корневых деревьев с q рёбрами не превосходит
числа упорядоченных корневых деревьев с q рёбрами.

Следствие
1. Число неизоморфных корневых деревьев с q рёбрами

не превосходит 4q.
2. Число неизоморфных деревьев с q рёбрами не превосходит 4q.
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Геометрическая реализация графов

Определение
Пусть G = (V,E) — граф и V = {v1, . . . , vp}, а E = {e1, . . . , eq}.
Будем говорить, что задана геометрическая реализация графа G
в пространстве M , если

1. Каждой вершине vi графа G сопоставляется точка ai
в пространстве M (разным вершинам разные точки);

2. Каждому ребру ek = (vi, vj) сопоставлена непрерывная кривая lk
(без самопересечения и самоналегания), соединяющая точки ai
и aj , причём lk не проходит через другие точки as /∈ {ai, aj}.

3. Любые две различные кривые lk и lm не имеют общих точек,
за исключением концов.
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Геометрическая реализация графов
Теорема
Для любого конечного графа G = (V,E) существует геометрическая
реализация в трёхмерном евклидовом пространстве.

Доказательство
Выберем произвольную прямую l в пространстве и разместим на
ней точки вершин a1, . . . , ap.
Проведём q = |E| плоскостей через прямую l, и разместим
кривую каждого ребра в отдельной плоскости (вне прямой l).
Проведённые таким образом кривые не могут пересекаться.

· · ·
a1 a2 a3 a4

ap−1 ap
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Планарные графы
Определение
Граф называется планарным, если существует его геометрическая
реализация на плоскости.

Напомним, что у геометрической реализации графа не должно
быть пересечений рёбер.

Пример

корректная
геометрическая

реализация

некорректная
геометрическая

реализация
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Планарные графы
Определение

Грань геометрической реализации графа на плоскости — это
максимальный по включению связный участок плоскости, не
содержащий точек вершин и рёбер этой реализации.
Ограниченные грани называются внутренними. Неограниченная
грань называется внешней.

Пример

Грань 5

Грань 4

Грань 6

Грань 7
(внешняя)

Грань 3

Грань 1
Грань 2
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Планарные графы
Теорема (формула Эйлера для планарных графов)
Пусть G = (V,E) — связный планарный граф, p = |V |, q = |E|.
Пусть r — число граней в некоторой геометрической реализации G
на плоскости. Тогда p− q + r = 2.

Доказательство
Индукция по q при фиксированном p.
База: q = p− 1 (т.к. при q < p− 1 граф не связен).
Тогда, в силу связности, G является деревом.

Поскольку в дереве нет циклов,
число граней r = 1.
Тогда при q = p− 1 имеем p− q + r = 2.
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Планарные графы

Доказательство формулы Эйлера (продолжение)
Пусть равенство верно для некоторого q = q0 − 1 ⩾ p− 1.
Шаг индукции: докажем, что равенство верно для q = q0.
Имеем q0 ⩾ p, т.е. G — не дерево. Тогда в G есть цикл.
Удалим любое ребро e из цикла, а также кривую этого ребра из
геометрической реализации G с r гранями.

G G1

Получаем геометрическую реализацию графа G1.
Поскольку ребро выброшено из цикла, граф G1 остался связным.
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Планарные графы

Доказательство формулы Эйлера (продолжение)

Грань 1Грань 2

Гр. 1G G1

Поскольку ребро было в цикле, оно разделяло две разные грани.
После удаления ребра они соединяются в одну.
Тогда у G1 имеется p вершин, q0 − 1 ребро и r − 1 граней.
По индуктивному предположению (для q0 − 1) имеем формулу
Эйлера для G1: p− (q0 − 1) + (r − 1) = 2.
Тогда p− q0 + r = 2.
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Планарные графы

Каждая грань геометрической грани графа на плоскости отделена
кривыми рёбер от других граней.
В простых случаях граница грани представляет собой цикл.
Для более сложных случаев можно ввести понятие обхода
границы грани.

Пример

Грань 5

Грань 4

Грань 6

Грань 7
(внешняя)

Грань 3

Грань 1
Грань 2
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Планарные графы
Обход границы грани
Обход границы грани геометрической реализации графа G
на плоскости — это минимальный по суммарной длине
набор замкнутых маршрутов, содержащий все вершины и рёбра,
точки которых являются граничными точками грани.

Пример
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Планарные графы

Утверждение
Пусть G = (V,E) — планарный граф, |E| = q, геометрическая
реализация G на плоскости имеет r граней и q1, . . . , qr — количества
рёбер в обходе границы каждой грани. Тогда

r∑
i=1

qi = 2q.

Доказательство
Каждое ребро графа участвует в обходе границы двух граней
графа, либо в обходе границы одной грани дважды.
Значит, каждое из q рёбер добавляет +2 к сумме длин обходов.
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Граф K5

Определение

K5 — это полный граф с 5 вершинами
(каждая вершина соединена с каждой).

Теорема
Граф K5 не планарен.

Доказательство
Пусть существует геометрическая реализация графа K5

на плоскости.
Тогда в ней p = 5, q = 10. При этом K5 связен.
По формуле Эйлера p− q + r = 2, где r — число граней.
Тогда K5 имеет r = 2 + q − p = 7 граней.
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Граф K5

Доказательство (непланарность K5, продолжение)
K5 имеет q = 10 рёбер и r = 7 граней.
Пусть qi — длина обхода границы i-й грани, i = 1, r.
Каждая грань должна быть отделена от других как минимум
одним циклом, а в цикле не может быть менее 3 ребёр.
Поэтому qi ⩾ 3, i = 1, r.
Тогда имеем

21 = 3r ⩽
r∑

i=1

qi = 2q = 20.

Противоречие означает, что граф K5 не планарный.
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Лекция 7
Граф K3,3. Теорема Понтрягина-Куратовского. Число
вершин и рёбер в планарном графе. Раскраски графов
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Граф K3,3

Определение
K3,3 — это полный двудольный граф, у
которого в каждой доле по 3 вершины
(все вершины из разных долей соединены,
все вершины из одной доли не соединены).

Теорема
Граф K3,3 не планарен.

Доказательство
Пусть существует геометрическая реализация графа K3,3

на плоскости.
Тогда в ней p = 6, q = 9. При этом K3,3 связен.
По формуле Эйлера p− q + r = 2, где r — число граней.
Тогда K3,3 имеет r = 2 + q − p = 5 граней.
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Граф K3,3

Доказательство (непланарность K3,3, продолжение)
K3,3 имеет q = 9 рёбер и r = 5 граней.
Пусть qi — длина обхода границы i-й грани, i = 1, r.
Каждая грань должна быть отделена от других как минимум
одним циклом, а в цикле не может быть менее 3 ребёр.
Но в графе K3,3 нет циклов длины 3, т.е. в цикле не менее 4 ребёр.
Поэтому qi ⩾ 4, i = 1, r.
Тогда имеем

20 = 4r ⩽
r∑

i=1

qi = 2q = 18.

Противоречие означает, что граф K3,3 не планарный.
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Теорема Понтрягина-Куратовского

Определение
Подразделение ребра e = (u, v) в графе G — это удаление ребра e
и добавление новой вершины w с рёбрами (u,w) и (w, v).
Граф H называется подразделением графа G, если H можно
получить из G путём конечного числа подразделений рёбер.
Графы G1 и G2 называются гомеоморфными, если существуют
их подразделения, которые изоморфны между собой.

Примеры

u v wu v

Подразделение ребра

Исключение вершины степени 2

e
∼=
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Теорема Понтрягина-Куратовского

Теорема (Понтрягин, Куратовский)
Граф планарен тогда и только тогда, когда он не содержит подграфов,
гомеоморфных K5 или K3,3.

K5 K3,3

Доказательство
⇒. Пусть в G есть подграф G1, гомеоморфный K5 или K3,3.
Рассмотрим геометрическую реализацию графа G на плоскости.
Удалим из нее точки и линии, которые соответствуют вершинам и
рёбрам, отсутствующим в G1.
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Теорема Понтрягина-Куратовского

Доказательство (продолжение)
Получаем геометрическую реализацию G1.
Если в этой геометрической реализации считать вершины
степени 2 частью линий, то получим геометрическую реализацию
графа K5 или K3,3 на плоскости.

Но графы K5 и K3,3 не планарны, поэтому такой геометрической
реализации быть не может.
Противоречие означает, что в G нет подграфа, гомеоморфного
K5 или K3,3.
⇐. Без доказательства.
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Число вершин и рёбер в планарном графе

Теорема
Пусть G — связный планарный граф, не являющийся деревом,
имеющий p вершин и q рёбер и пусть в G нет циклов длины меньше k
(k ⩾ 3). Тогда

q ⩽
k

k − 2
(p− 2).

Доказательство
Рассмотрим геометрическую реализацию G на плоскости.
Пусть q1, . . . , qr — это количества рёбер в обходе границы каждой

грани этой реализации. Имеем
r∑

i=1
qi = 2q.

Каждая грань должна быть отделена от других как минимум
одним циклом, поэтому qi ⩾ k, i = 1, r.
Тогда 2q ⩾ kr, т.е. r ⩽ 2q

k .
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Число вершин и рёбер в планарном графе

Доказательство теоремы о числе рёбер (продолжение)

Имеем r ⩽ 2q
k .

По формуле Эйлера для связного графа имеем p− q + r = 2,
т.е. r = 2− p+ q.
Тогда 2− p+ q = r ⩽ 2q

k , т.е. qk − 2q ⩽ (p− 2)k.

Наконец, получаем q ⩽ k
k−2(p− 2).
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Число вершин и рёбер в планарном графе

Следствие
В планарном графе с p вершинами и q рёбрами, где p ⩾ 3,
верно q ⩽ 3(p− 2).

Доказательство
Пусть G связен. Если G не дерево, то в G, так как в G нет циклов
длины меньше 3, по доказанной теореме получаем q ⩽ 3(p− 2).
Если G — дерево, то q = p− 1. Нужное неравенство выполняется
при p− 1 ⩽ 3(p− 2), т.е. 5 ⩽ 2p. При p ⩾ 3 это верно.
Пусть G — не связный планарный граф и p ⩾ 3. Рассмотрим
любую его геометрическую реализацию на плоскости.
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Число вершин и рёбер в планарном графе

Доказательство следствия (продолжение)
Добавляя в G рёбра (и соответствующие линии в геометрическую
реализацию) можно получить связный граф G′ с его
геометрической реализацией на плоскости.

Тогда имеем связный планарный граф G′ с p ⩾ 3 вершинами
и q′ > q рёбрами.
Применяя к G′ один из прошлых случаев, имеем q < q′ ⩽ 3(p− 2).
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Число вершин и рёбер в планарном графе
Лемма
В любом планарном графе G = (V,E) есть вершина степени 5
или менее.

Доказательство
Если в G менее 3 вершин, то их степени не превосходят 1,
и утверждение леммы очевидно.
Иначе пусть q = |E|, а V = {v1, . . . , vp}.

Имеем
p∑

i=1
deg vi = 2q и q ⩽ 3p− 6. Тогда

p∑
i=1

deg vi ⩽ 6p− 12.

Пусть d0 — минимальная степень вершины. Тогда

pd0 ⩽
p∑

i=1
deg vi ⩽ 6p− 12.

Получаем d0 ⩽ 6− 12
p , то есть, поскольку d0 целое, d0 ⩽ 5.
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Раскраски графов

Определение
Пусть G = (V,E) — граф. Пусть C = {c1, . . . , ck} — произвольное
множество, элементы которого называются цветами.
Раскраска (вершинная) графа G — это отображение ϕ : V → C,
Раскраска называется правильной, если любые две смежные
вершины раскрашены в разные цвета,
т.е. для любого ребра (u, v) ∈ E выполнено ϕ(u) 6= ϕ(v).

Пример правильной раскраски
1

4

3

1

2

3
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Раскраски графов

Теорема
Вершины любого планарного графа можно правильно раскрасить
в 5 или меньшее число цветов.

Доказательство
Индукция по чилу вершин p. Для p = 1 утверждение очевидно.
Предположим, что любой планарный граф с k вершинами
правильно раскрашивается в 5 или менее цветов.
Шаг индукции. Докажем, что это верно для планарного графа G
с k + 1 вершиной.
По лемме в G есть вершина v степени не больше 5.
Рассмотрим геометрическую реализацию G на плоскости.
Удалим из G вершину v и все рёбра, инцидентные ей. Получим
граф G1 c k вершинами и его геометрическую реализацию.
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Раскраски графов

Доказательство теоремы о 5 красках (продолжение)
Граф G1 тоже планарен. По индуктивному предположению
правильно раскрасим G1 в 5 или менее цветов.
а) Если у вершин, смежных с v, используется не более 4 цветов,
то раскрашиваем v в любой оставшийся цвет. Получим
правильную раскраску G в 5 или менее цветов.
б) Иначе deg v = 5 и вершины, смежные с v, раскрашены во все 5
цветов. Упорядочим эти вершины по часовой стрелке
и обозначим v1, . . . , v5, а их цвета — c1, . . . , c5.

v1(c1)

v2(c2)

v3(c3)

v4(c4)
v5(c5)

v
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Раскраски графов

Доказательство теоремы о 5 красках (продолжение)
Пусть A — это множество всех вершин графа G1, до которых есть
путь из v1 по рёбрам G1 и вершинам цветов c1 и c3.
б1) Если v3 /∈ A, то поменяем в A цвета вершин c1 ↔ c3.
Раскраска G1 останется правильной.
Теперь цвета v1 и v3 совпадают и равны c3. Красим v в цвет c1,
получаем правильную раскраску G в 5 цветов.

v1(c1)

v2(c2)

v3(c3)

v4(c4)
v5(c5)

v
c3

c1c3

c3
A v1(c3)

v2(c2)

v3(c3)

v4(c4)
v5(c5)

v(c1)
c1

c3c1

c1
A
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Раскраски графов

Доказательство теоремы о 5 красках (продолжение)
Почему раскраска G1 останется правильной:

1. Вершины вне A не затронуты перекраской. Поэтому любое ребро
между вершинами не из A соединяет вершины разных цветов.

2. Любое ребро внутри A соединяет вершины цветов c1 и c3. При
перекраске цвета поменяются местами, но останутся различными.

3. У вершин из A не может быть соседних вершин не из A цвета c1
или c3. Поэтому любое ребро между вершиной из A и вершиной не
из A соединяет вершину цвета c1/c3 с вершиной цвета c2/c4/c5.
При перекраске это не поменяется.
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Раскраски графов

Доказательство теоремы о 5 красках (продолжение)
б2) Пусть v3 ∈ A. Тогда рассмотрим B — множество всех вершин
графа G1, до которых есть путь из v2 по рёбрам G1

и по вершинам цветов c2 и c4.
Поскольку v3 ∈ A, существует путь из v1 в v3 по рёбрам G1

и вершинам цветов только c1 и c3.
Этот путь вместе с рёбрами (v3, v) и (v, v1) образует цикл, причём
точки вершин v2 и v4 лежат по разные стороны замкнутой линии
этого цикла.
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Раскраски графов

Доказательство теоремы о 5 красках (продолжение)

v1

v2
v3

v4
v5

v

B
v1

v2
v3

v4
v5

v

B

Поэтому любой путь из v2 в v4 пересекает этот цикл, а значит,
содержит вершину цвета c1 или c3.
Тогда v4 /∈ B. Поменяем в B цвета вершин c2 ↔ c4.
Раскраска G1 останется правильной.
Теперь цвета v2 и v4 совпадают и равны c4. Красим v в цвет c2,
получаем правильную раскраску G в 5 цветов.
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Лекция 8
Алфавитное кодирование. Однозначные коды.

Граф кода. Теорема Маркова
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Алфавитное кодирование
Определение

Алфавит (конечный алфавит) A — это непустое конечное
множество. Элементы алфавита называются символами.
Через A∗ обозначается множество слов (конечной длины) в
алфавите A, включая пустое слово Λ.
Длина |w| слова w ∈ A∗ — это количество символов в слове w.
Длина пустого слова Λ есть нуль.

Определение
Слово u ∈ A∗ является префиксом слова w ∈ A∗, если существует
слово v ∈ A∗ такое, что w = uv.
Слово u ∈ A∗ является суффиксом слова w ∈ A∗, если существует
слово v ∈ A∗ такое, что w = vu.
Префикс или суффикс называется собственным, если он не равен
Λ и не совпадает со всем словом w.
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Алфавитное кодирование

Определение
Кодирование из алфавита A в алфавит B — это произвольное
отображение ϕ : A∗ → B∗.

Определение
Алфавитное кодирование из A в B задаётся отображением
ϕ : A→ B∗ и условием, что слова из A∗ кодируются побуквенно:

ϕ(ai1 . . . ais) = ϕ(ai1) . . . ϕ(ais), ϕ(Λ) = Λ.

Пусть A = {a1, . . . , ar} и Bi = ϕ(ai), i = 1, r.
Слова Bi ∈ B∗ называют кодовыми словами.
Будем считать, что Bi 6= Bj при i 6= j и i, j = 1, r.
Набор {B1, . . . , Br} называют кодом.
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Алфавитное кодирование

Пример
Пусть A = {a, b, c}, B = {0, 1} и кодирование ϕ имеет вид:

a→ 0

b→ 01

c→ 10

ϕ(ca) = 100. ϕ(ac) = ϕ(ba) = 010.

Определение
Алфавитное кодирование называется однозначным, если для любых
различных слов u, v ∈ A∗ выполнено ϕ(u) 6= ϕ(v).

Заметим, что однозначность кодирования ϕ : A→ B∗ не зависит
от алфавита A. Она зависит только от кода C = {B1, . . . , Br}.
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Разновидности однозначных кодов
Определение
Код называется равномерным, если все кодовые слова имеют
одинаковую длину.

Утверждение
Любой равномерный код является однозначным.

Доказательство
Пусть кодовые слова имеют длину m, а мы имеем закодированное
сообщение w.
Чтобы декодировать w, нужно разбить его на слова длины m
и для каждого из них определить закодированный символ.
Это можно сделать только одним способом (если слово w
действительно кодирует некоторое сообщение).
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Разновидности однозначных кодов
Определение
Код называется префиксным, если никакое кодовое слово не является
префиксом другого кодового слова.

Утверждение
Любой префиксный код является однозначным.

Доказательство
Имеем закодированное сообщение w. Поскольку код префиксный,
только одно кодовое слово Bi1 является началом w = Bi1w2.
Теперь только одно кодовое слово Bi2 является началом слова
w2 = Bi2w3.
Продолжая аналогично, можно однозначно декодировать
сообщение w = Bi1w2 = Bi1Bi2w3 = . . . = Bi1 . . . Bik .

146/274



Разновидности однозначных кодов
Определение
Код называется суффиксным, если никакое кодовое слово не является
суффиксом другого кодового слова.

Утверждение
Любой суффиксный код является однозначным.

Доказательство
Имеем закодированное сообщение w. Поскольку код суффиксный,
только одно кодовое слово Bi1 является концом w = w2Bi1 .
Теперь только одно кодовое слово Bi2 является концом слова
w2 = w3Bi2 .
Продолжая аналогично, можно однозначно декодировать
сообщение w = w2Bi1 = w3Bi2Bi1 = . . . = Bik . . . Bi1 .

147/274



Граф кода

Вершины графа кода
Имеем код C = {B1, . . . , Br} ⊆ B∗.
Пусть S1 = {β1, . . . , βk} — множество всех слов βi ∈ B∗ таких,
что βi является одновременно собственным префиксом
некоторого слова из C и собственным суффиксом некоторого
(возможно, другого) слова из C.
S = S1 ∪ {β0}, где β0 = Λ.
S — множество вершин графа кода.

Пример
C = {0010, 1100, 01, 001, 11} ⊆ {0, 1}∗.
(1100, 01), (01, 1100), (001, 1100).
S = {Λ, 1, 0, 00}.
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Граф кода

Имеем код C = {B1, . . . , Br} и построенное по нему множество
вершин S = {β0, . . . , βk}.

Граф кода
GC = (S,E) — ориентированный псевдограф с пометками на дугах.
Пусть βi, βj ∈ S.

1. βi, βj 6= Λ. Если Bi1 , . . . , Bil ∈ C (l ⩾ 0) и βiBi1 . . . Bilβj ∈ C, то
в GC есть дуга (βi, βj) с пометкой Bi1 . . . Bil (Λ при l = 0).

βjβi

Bi1 . . . Bil

2. Если βi = Λ, βj 6= Λ или βi 6= Λ, βj = Λ, то пункт 1 работает с
условием l ⩾ 1.

3. Если βi = βj = Λ, то пункт 1 работает с условием l ⩾ 2.
Т.е. среди βi, Bi1 , . . . , Bil , βj должно быть хотя бы два непустых слова.

149/274



Граф кода

Теорема
Код C является однозначным тогда и только тогда, когда в графе
кода GC нет ориентированных циклов (включая петли), проходящих
через вершину Λ.

Пример
C = {0010, 1100, 01, 001, 11} ⊆ {0, 1}∗.
S = {Λ, 1, 0, 00}.

Λ

1

0
00

001

01
11

GS

ΛΛ

Λ

01

Код C не однозначный.
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Граф кода

Доказательство теоремы о графе кода
⇒ Пусть в графе GC есть ориентированный цикл, проходящий
через вершину Λ.
Тогда существует ориентированный цикл, который начинается и
оканчивается в вершине β0 = Λ и не содержит Λ
в промежуточных точках маршрута.
Пусть этот цикл обходит некоторые вершины Λ, β1, . . . , βm,Λ в
указанном порядке.
Выпишем все пометки вершин и дуг цикла в порядке его обхода:

w = β0Bi1 . . . Bipβ1Bj1 . . . Bjqβ2 . . . βmBl1 . . . Blsβ0

По построению графа кода p, s ⩾ 1 и имеем
β0Bi1 . . . Bipβ1, β1Bj1 . . . Bjqβ2, . . . , βmBl1 . . . Blsβ0 ∈ C.
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Граф кода

Доказательство теоремы о графе кода (продолжение)
Тогда (учитывая β0 = Λ) есть два способа декодировать слово:

w = β0Bi1 . . . Bip β1Bj1 . . . Bjq β2 . . . βmBl1 . . . Bls β0.

Указанное выше разделение верно при нечётных m. При чётных m

w = . . .β0Bi1 . . . Bip β1Bj1 . . . Bjq β2 . . . βmBl1 . . . Bls β0 .

Если m = 0 (цикл состоит из одной петли), то имеем p ⩾ 2 и

w = β0Bi1 . . . Bip β0 .

Таким образом, в любом из случаев код C не однозначный.
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Граф кода

Доказательство теоремы о графе кода (продолжение)
⇐. Пусть код C не однозначный.
Тогда существует слово, которое декодируется несколькими
способами. Возьмём самое короткое такое слово w.
Рассмотрим два способа разбить это слово на кодовые слова:

w = a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 .

Поскольку это самое короткое слово, точки разбиения первым
и вторым способом не могут совпадать.
Обозначим слова между точками разных разбиений β1, . . . , βm.

w = a1 a2 a3 β1 a7 a8 β2 β3 a11 a12 a13 β4 a16 a17 .
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Граф кода

Доказательство теоремы о графе кода (продолжение)
Нетрудно видеть, что все слова βi являются собственными
префиксами и собственными суффиксами некоторых кодовых
слов, то есть, вершинами GC .
Между двумя словами βi и βi+1 может находиться несколько
точек одного разбиения:

. . . βiBj1 . . . Bjq βi+1 . . .

В таком случае в GC есть дуга из βi в βi+1 с пометкой, которая
является соединением нуля или более кодовых слов.
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Граф кода

Доказательство теоремы о графе кода (продолжение)
Начальный отрезок:

Bj1 . . . Bjq β1 . . .

В таком случае в GC есть дуга из Λ в β1 с пометкой, которая
является соединением одного или более кодовых слов.
Конечный отрезок:

. . . βmBj1 . . . Bjq

В таком случае в GC есть дуга из βm в Λ с пометкой, которая
является соединением одного или более кодовых слов.
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Граф кода

Доказательство теоремы о графе кода (продолжение)
Если все точки принадлежат одному разбиению, то имеем

Bj1 . . . Bjq

В таком случае в GC есть дуга из Λ в Λ с пометкой, которая
является соединением двух или более кодовых слов.
В любом из случаев получаем, что в GC существует
ориентированный путь из Λ в Λ.
Выбрасывая участки пути между повторяющимися вершинами,
получим ориентированный путь из Λ в Λ без повторений вершин.
Такой путь является циклом.
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Теорема Маркова

Теорема (Марков)

Пусть ϕ : ai → Bi, i = 1, r — алфавитное кодирование из A в B.

Пусть li = |Bi|, i = 1, r и L =
r∑

i=1
li.

Пусть W — максимальное количество кодовых слов, которые можно
поместить подряд в каком-либо кодовом слове: Bj = C ′Bi1 . . . BiWC

′′.
Тогда, если ϕ не однозначно, то существуют
два разных слова u′, u′′ ∈ A∗ такие, что ϕ(u′) = ϕ(u′′) и

|u|, |u′′| ⩽
⌊
(W + 1)(L− r + 2)

2

⌋
.
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Теорема Маркова
Доказательство

Рассмотрим код C = {B1, . . . , Br} и граф кода GC .
Поскольку код не однозначный, существует ориентированный
цикл в GC , проходящий через вершину β0 = Λ.
Выбрасывая участки цикла между одинаковыми вершинами,
получим ориентированный путь из Λ в Λ без повторений вершин

β0β1 . . . βmβ0.

Выпишем пометки вершин и дуг пути в порядке его обхода:

w = β0Bi1 . . . Bipβ1Bj1 . . . Bjqβ2 . . . βmBl1 . . . Blsβ0

По построению GC слово w неоднозначно расшифровывается:

w = β0Bi1 . . . Bip β1Bj1 . . . Bjq β2 . . . βmBl1 . . . Bls β0.
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Теорема Маркова

Доказательство
Выберем u′, u′′ ∈ A∗ — две расшифровки w. Тогда ϕ(u′) = ϕ(u′′).
|u′| — это число кодовых слов в первом разбиении w,
|u′′| — во втором.
Слова β1, . . . , βm различны и непусты и являются собственными
префиксами каких-то кодовых слов Bj .
У каждого слова Bi всего li − 1 собственных префиксов. Всего

различных собственных префиксов не более
r∑

i=1
(li − 1) = L− r.

Таким образом, m ⩽ L− r.
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Теорема Маркова

Доказательство
Рассмотрим участок w между тремя подряд идущими словами βj :

βiBi1 . . . Bip βi+1Bj1 . . . Bjq βi+2.

Этот участок в любом разбиении содержит не более W + 1
кодовых слов.
Подсчитаем, на сколько участков указанного вида можно разбить

w = β0D0β1D1β2 . . . βmDmβ0.

Участки будут содержать пары (D0, D1), (D2, D3) и т.д.
Если m чётно, то последний участок берём неполным: βmDmβ0
(в нём тоже не более W + 1 кодовых слов).
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Теорема Маркова

Доказательство
Имеем пар: d(m+ 1)/2e ⩽ d(L− r + 1)/2e ⩽ (L− r + 2)/2.
Тогда всего кодовых слов в любом разбиении не больше

(W + 1)(L− r + 2)

2

Поскольку число кодовых слов целое, оно не превосходит⌊
(W + 1)(L− r + 2)

2

⌋
.

Итак,

|u′|, |u′′| ⩽
⌊
(W + 1)(L− r + 2)

2

⌋
.
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Лекция 9
Неравенство Макмиллана. Существование

префиксного кода с заданными длинами кодовых слов.
Оптимальные коды
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Неравенство Макмиллана

Теорема (неравенство Макмиллана)

Пусть ϕ : ai → Bi ∈ B∗, i = 1, r — кодирование из алфавита
A = {a1, . . . , ar} в алфавит B, q = |B|, а li = |Bi|, i = 1, r.

Если ϕ однозначно, то
r∑

i=1

1
qli

⩽ 1.

Доказательство

Пусть x =
r∑

i=1

1
qli

, а n ∈ N. Нужно доказать, что x ⩽ 1.

Рассмотрим xn =

(
r∑

i1=1

1

q
li1

)
·

(
r∑

i2=1

1

q
li2

)
· . . . ·

(
r∑

in=1

1

qlin

)
.

Для раскрытия скобок мы выбираем по одному слагаемому из
каждой скобки и перемножаем. Суммируем по всем способам
выбрать так слагаемые.
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Неравенство Макмиллана

Доказательство неравенства Макмиллана (продолжение)

xn =

(
r∑

i1=1

1

qli1

)
·

(
r∑

i2=1

1

qli2

)
· . . . ·

(
r∑

in=1

1

qlin

)
=

=

r∑
i1=1

r∑
i2=1

· · ·
r∑

in=1

1

qli1
· 1

qli2
· . . . · 1

qlin
=

r∑
i1=1

· · ·
r∑

in=1

1

qli1+...+lin

Обозначим lmax = max(l1, . . . , lr).
В полученной сумме все слагаемые имеют вид 1

qk
, где k ∈ N,

причём k ⩽ n · lmax.
Обозначим через ck число слагаемых вида 1

qk
в этой сумме.
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Неравенство Макмиллана

Лемма
В условиях теоремы о неравенстве Макмиллана ck ⩽ qk.

Доказательство леммы
Fk = {(i1, . . . , in) | i1, . . . , in ∈ {1, . . . , r}, li1 + . . .+ lin = k}.
Тогда ck = |Fk|. Каждому набору (i1, . . . , in) ∈ Fk сопоставим
слово ψ(i1, . . . , in) = Bi1 . . . Bin ∈ B∗ длины li1 + . . .+ lin = k.
Поскольку кодирование ϕ однозначно, все слова ψ(i1, . . . , in)
различны.
Таким образом, каждому набору из Fk соответствует слово в
алфавите B длины k, причём разным наборам разные слова.
Тогда ck = |Fk| ⩽ |Bk| = qk.
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Неравенство Макмиллана

Доказательство неравенства Макмиллана (продолжение)

В сумме сгруппируем все слагаемые вида 1
qk

при каждом k.

xn =

(
r∑

i1=1

1

qli1

)
·

(
r∑

i2=1

1

qli2

)
· . . . ·

(
r∑

in=1

1

qlin

)
=

=
r∑

i1=1

· · ·
r∑

in=1

1

qli1+...+lin
=

n·lmax∑
k=1

ck
qk

⩽
n·lmax∑
k=1

qk

qk
= n · lmax.

Итак, мы получили xn ⩽ n · lmax, т.е. x ⩽ n
√
n · lmax при n ∈ N.

Тогда lim
n→∞

x ⩽ lim
n→∞

n
√
n · lmax.

Имеем lim
n→∞

x = x и lim
n→∞

n
√
n · lmax = 1, т.е. x ⩽ 1.
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Неравенство Макмиллана

Комментарий к доказательству неравенства Макмиллана

Значение x =
r∑

i=1

1
qli

описывает набор кодовых слов: слагаемое 1
qli

соответствует кодовому слову Bi.
Значение

xn =

(
r∑

i1=1

1

qli1

)
· . . . ·

(
r∑

in=1

1

qlin

)
=

r∑
i1=1

· · ·
r∑

in=1

1

qli1+...+lin
=

n·lmax∑
k=1

ck
qk

описывает набор всех слов, которые можно составить из n
кодовых слов: слагаемое 1

q
li1

+...+lin
соответствует слову Bi1 . . . Bin .

В силу однозначности кода все указанные слова различны, а
значит их количество ограничено: ck не больше, чем qk.
Поэтому можно оценить xn ⩽ n · lmax, откуда следует и x ⩽ 1.
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Существование префиксного кода с заданными длинами

Теорема
Пусть даны натуральные числа l1, . . . , lr, q

и алфавиты A = {a1, . . . , ar} и B = {b1, . . . , bq}. Пусть
r∑

i=1

1
qli

⩽ 1.

Тогда существует префиксное кодирование ϕ : ai → Bi ∈ B∗, i = 1, r
такое, что |Bi| = li, i = 1, r.

Доказательство
Пусть lmax = max(l1, . . . , lr), а
при k = 1, lmax пусть dk — число таких i ∈ {1, . . . , r}, что li = k
(т.е. число кодовых слов, которые должны иметь длину k).

Тогда имеем
r∑

i=1

1
qli

=
lmax∑
k=1

dk
qk

⩽ 1.

Мы хотим построить префиксный код в алфавите B такой, что
в нём d1 слов длины 1, . . . , dlmax слов длины lmax.
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Существование префиксного кода с заданными длинами

Доказательство (продолжение)

При каждом m = 1, lmax имеем
m∑
k=1

dk
qk

⩽
lmax∑
k=1

dk
qk

⩽ 1.

Домножая на qm и перенося часть слагаемых в правую часть,
получим dm ⩽ qm − (d1q

m−1 + . . .+ dm−1q).
Будем строить префиксный код в порядке возрастания длин слов.
База: m = 1. d1 ⩽ q = |B|. Поэтому можно выбрать d1 разных
слов длины 1. Выбираем их произвольно. Они не являются
префиксами друг друга.
Пусть выбрали d1 слов длины 1, . . . , dm−1 слов длины m− 1, и
все выбранные слова не являются префиксами друг друга.
Шаг для m. Нужно добавить в код dm различных слов длины m
так, чтобы добавленные ранее слова не являлись префиксами
новых слов.
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Существование префиксного кода с заданными длинами

Доказательство (продолжение)
Всего существует qm слов длины m. Уже выбранные более
короткие слова запрещают выбирать часть из этих qm слов:

▶ Каждое слово P длины l, включённое в код, запрещает добавлять
слова вида w = Pv, где |w| = m, |v| = m− l.

▶ Таким образом, слово длины l запрещает добавлять qm−l слов.
▶ Все dl слов длины l запрещают добавлять суммарно dlqm−l слов.
▶ Все уже выбранные слова запрещают не более
d1q

m−1 + d2q
m−2 + . . .+ dm−1q слов.

Тогда не запрещённых слов остаётся не менее
qm − (d1q

m−1 + d2q
m−2 + . . .+ dm−1q) ⩾ dm.

Тогда среди них можно выбрать dm слов длины m и включить в
код так, чтобы никакие слова не являлись префиксами друг друга.
Повторяя для m = 1, . . . , lmax, получим искомый префиксный код.
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Существование префиксного кода с заданными длинами

Следствие
Пусть в алфавите B существует однозначный код с длинами кодовых
слов l1, . . . , lr. Тогда в алфавите B существует префиксный код с теми
же длинами кодовых слов.

Доказательство
Пусть q = |B|. Тогда в силу существования однозначного кода
выполняется неравенство Макмиллана:

r∑
i=1

1

qli
⩽ 1.

Тогда по доказанной теореме существует префиксный код с
длинами кодовых слов l1, . . . , lr.

171/274



Оптимальные коды

Содержательные соображения
Пусть имеется алфавит A = {a1, . . . , ar}, набор вероятностей
P = (p1, . . . , pr) и кодирование ϕ : ai → Bi ∈ {0, 1}∗, кодирующее
тексты в алфавите A словами из нулей и единиц.
Считаем, что символ ai встречается в текстах с вероятностью pi,
т.е. в тексте длины N символ ai встречается ≈ piN раз.
Такое условие выполняется, например, для длинных текстов на
естественных языках: каждый символ ai во всех достаточно
длинных текстах встречается с примерно одинаковой частотой pi.
Пусть исходный текст имеет длину N . После кодирования каждый
символ ai заменится словом длины li = |Bi|.
Поскольку каждый символ ai встречается ≈ piN раз, общая

длина текста после кодирования будет ≈
r∑

i=1
lipiN = N ·

r∑
i=1

pili.
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Оптимальные коды

Определение
Пусть A = {a1, . . . , ar}, B = {0, 1}, P = (p1, . . . , pr) — набор
вероятностей:

pi > 0, i = 1, r,

r∑
i=1

pi = 1.

Пусть ϕ : ai → Bi ∈ B∗, i = 1, r — префиксное кодирование, li = |Bi|.
Цена кодирования ϕ относительно набора вероятностей P есть

cP (ϕ) =

r∑
i=1

pili.

При заданных A,B, P кодирование ϕ называется оптимальным,
если cP (ϕ) ⩽ cP (ψ)
для любого префиксного кодирования ψ из алфавита A в B.

173/274



Оптимальные коды

Утверждение
Для любого набора вероятностей P = (p1, . . . , pr) существует
оптимальное кодирование.

Доказательство
Рассмотрим произвольное равномерное кодирование ϕ

с r словами длины r. Тогда cP (ϕ) =
r∑

i=1
pir = r.

Рассмотрим все кодирования ψ такие, что cP (ψ) =
r∑

i=1
pili ⩽ r.

Тогда li ⩽ r
pi
, i = 1, r и таких кодирование конечное число.

Значит, среди них существует кодирование наименьшей цены.
Оно и будет оптимальным.
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Оптимальные коды

В условиях следующих лемм используем обозначения из
определения оптимального кодирования.

Лемма 1
Пусть ϕ — оптимальное префиксное кодирование и pi > pj .
Тогда li ⩽ lj .

Доказательство
Пусть li > lj . Поменяем местами слова Bi и Bj и получим
префиксное кодирование ψ.
cP (ϕ)− cP (ψ) = (pili + pjlj)− (pilj + pjli) = (pi − pj)(li − lj) > 0.
То есть cP (ψ) < cP (ϕ) и ϕ не оптимально. Противоречие.
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Оптимальные коды

Лемма 2
Пусть ϕ — оптимальное префиксное кодирование, r ⩾ 2
и lmax = max(l1, . . . , lr).
Пусть слово B′a, где a ∈ {0, 1}, является кодовым у ϕ и |B′a| = lmax.
Тогда в коде присутствует и кодовое слово B′a.

Доказательство
Пусть у ϕ есть кодовое слово B′a (с вероятностью ps > 0)
максимальной длины и нет кодового слова B′a.
Построим новое кодирование ψ, заменив слово B′a на B′.
Покажем, что ψ — это префиксное кодирование.
Поскольку B′a — кодовое слово ϕ, и ϕ — префиксное
кодирование, у ϕ нет кодового слова B′. Значит, и у ψ нет
кодового слова B′, а значит все его кодовые слова разные.
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Оптимальные коды

Доказательство леммы 2 (продолжение)
В ϕ никакие кодовые слова не являлись префиксами друг друга.
При переходе от кодирования ϕ к кодированию ψ слово B′a было
заменено на более короткое слово B′. Поэтому только слово B′

может оказаться префиксом какого-то другого кодового слова.
Поскольку |B′| = lmax − 1 и B = {0, 1}, слово B′ может быть
префиксом только слов B′a и B′a.
Но по предположению кодового слова B′a нет у ϕ (значит и у ψ),
а кодовое слово B′a было удалено при переходе к ψ.
Таким образом, код ψ является префиксным.
cP (ϕ)− cP (ψ) = pslmax − ps(lmax − 1) = ps > 0.
То есть cP (ψ) < cP (ϕ) и ϕ не оптимально. Противоречие.
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Оптимальные коды

Лемма 3
Пусть ϕ — оптимальное префиксное кодирование и p1 ⩾ p2 ⩾ . . . ⩾ pr.
Тогда можно переставить кодовые слова ϕ так, что получится
оптимальное префиксное кодирование, в котором частотам pr−1 и pr
соответствуют кодовые слова, отличающиеся только в последнем
символе.

Доказательство
По лемме 2 в коде ϕ есть два слова Bi = B′a и Bj = B′a
максимальной длины, где i < j.
Поменяем эти слова местами со словами Br−1 и Br. Получим
префиксное кодирование ψ.
Если i = r − 1 или j = r, то приведённая ниже оценка всё равно
останется верной.
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Оптимальные коды

Доказательство леммы 3 (продолжение)
Учитывая li = lj ⩾ lr−1, lr, а также pi ⩾ pr−1 и pj ⩾ pr, имеем

cP (ϕ)− cP (ψ) =
= (pili + pr−1lr−1) + (pjlj + prlr)− (pilr−1 + pr−1li)− (pjlr + prlj) =

= (pi − pr−1)(li − lr−1) + (pj − pr)(lj − lr) ⩾ 0

То есть cP (ψ) ⩽ cP (ϕ). Поскольку ϕ оптимально, то и ψ
оптимально.
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Лекция 10
Теорема редукции. Коды, исправляющие ошибки.

Оценка функции Mr(n)
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Оптимальные коды

Лемма 4
Пусть есть два набора вероятностей и два кодирования (p′ + p′′ = pk):

P : p1 p2 . . . pk−1 pk
ϕ : B1 B2 . . . Bk−1 Bk

P ′ : p1 p2 . . . pk−1 p′ p′′

ϕ′ : B1 B2 . . . Bk−1 Bk0 Bk1

1. Если одно из кодирований ϕ,ϕ′ является префиксным, то и
второе тоже является префиксным.

2. cP ′(ϕ′) = cP (ϕ) + pk.

Доказательство
1.1) Пусть ϕ — префиксное кодирование. Тогда ни одно из
слов B1, . . . , Bk−1, Bk не является префиксом другого.
Какое-то из слов B1, . . . , Bk−1 может быть началом Bk0 или Bk1
только если совпадает с ним. Но тогда Bk было бы его началом.
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Оптимальные коды

Доказательство леммы 4 (продолжение)
Поскольку само слово Bk не является префиксом B1, . . . , Bk−1, то
Bk0 или Bk1 тем более не являются их префиксами.
Bk0 и Bk1 также не могут быть префиксами друг друга. Таким
образом, кодирование ϕ′ префиксное.
1.2) Пусть теперь ϕ′ префиксное кодирование. Тогда ни одно из
слов B1, . . . , Bk−1 не является префиксом другого.
Никакое из слов B1, . . . , Bk−1 не может быть началом Bk, так как
не является началом Bk0.
Если Bk является началом какого-либо из слова Bi, то оно либо
должно совпадать с ним (тогда Bi является началом Bk0), либо
одно из слов Bk0, Bk1 является началом Bi.
Последнее тоже невозможно, поэтому кодирование ϕ префиксное.
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Оптимальные коды

Доказательство леммы 4 (продолжение)
2) Подсчитаем искомое соотношение:

cP ′(ϕ′)− cP (ϕ) = (p′|Bk0|+ p′′|Bk1|)− pk|Bk| =
= (p′ + p′′)(|Bk|+ 1)− pk|Bk| = pk(|Bk|+ 1)− pk|Bk| = pk.
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Теорема редукции

Теорема (редукции)
Пусть есть два набора вероятностей и два кодирования (p′ + p′′ = pk):

P : p1 p2 . . . pk−1 pk
ϕ : B1 B2 . . . Bk−1 Bk

P ′ : p1 p2 . . . pk−1 p′ p′′

ϕ′ : B1 B2 . . . Bk−1 Bk0 Bk1

1. Если ϕ′ — оптимальное префиксное кодирование для P ′,
то ϕ — оптимальное префиксное кодирование для P .

2. Если ϕ — оптимальное префиксное кодирование для P
и p1 ⩾ . . . ⩾ pk−1 ⩾ p′ ⩾ p′′, то ϕ′ — оптимальное префиксное
кодирование для P ′.
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Теорема редукции

Доказательство
1) ϕ′ — оптимальное префиксное кодирование. По лемме 4
кодирование ϕ тоже префиксное.
Предположим, что кодирование ϕ не оптимально. Тогда
существует префиксное кодирование ψ:

P : p1 p2 . . . pk−1 pk
ψ : D1 D2 . . . Dk−1 Dk

такое, что cP (ψ) < cP (ϕ).
Построим кодирование ψ′:

P ′ : p1 p2 . . . pk−1 p′ p′′

ψ′ : D1 D2 . . . Dk−1 Dk0 Dk1

По лемме 4 ψ′ — тоже префиксный код.
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Теорема редукции

Доказательство (продолжение)
По лемме 4 имеем cP ′(ϕ′) = cP (ϕ) + pk и cP ′(ψ′) = cP (ψ) + pk.
Тогда cP ′(ψ′) = cP (ψ) + pk < cP (ϕ) + pk = cP ′(ϕ′).
Противоречие тому, что код ϕ′ оптимальный.
Тогда ϕ должен быть оптимальным префиксным кодом.
2) ϕ — оптимальное префиксное кодирование
и p1 ⩾ . . . ⩾ pk−1 ⩾ p′ ⩾ p′′.
По лемме 4 кодирование ϕ′ тоже префиксное.
Предположим, что кодирование ϕ′ не оптимально.
Тогда выберем оптимальное префиксное кодирование ψ′ для P ′.
Для него будет верно cP ′(ψ′) < cP ′(ϕ′).
По лемме 3, с учётом p1 ⩾ . . . ⩾ pk−1 ⩾ p′ ⩾ p′′, переставим в ψ′

слова так, чтобы частотам p′, p′′ соответствовали кодовые слова,
отличающиеся только в последнем символе.
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Теорема редукции

Доказательство (продолжение)
Получим оптимальное префиксное кодирование ψ′:

P ′ : p1 p2 . . . pk−1 p′ p′′

ψ′ : D1 D2 . . . Dk−1 Dk0 Dk1

Построим кодирование ψ (тоже префиксное по лемме 4):

P : p1 p2 . . . pk−1 pk
ψ : D1 D2 . . . Dk−1 Dk

По лемме 4 имеем cP ′(ϕ′) = cP (ϕ) + pk и cP ′(ψ′) = cP (ψ) + pk.
Тогда cP (ψ) = cP ′(ψ′)− pk < cP ′(ϕ′)− pk = cP (ϕ).
Противоречие тому, что код ϕ оптимальный.
Тогда ϕ′ должен быть оптимальным префиксным кодом.
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Теорема редукции

Построение оптимального префиксного кода
Строим оптимальный код рекурсивным алгоритмом.
Имеем набор вероятностей Pk = (p1, . . . , pk).
Если k = 2, то оптимальное кодирование имеет слова 0 и 1.
Иначе переставим вероятности и получим набор P ′

k = (p′1, . . . , p
′
k)

такой, что p′1 ⩾ . . . ⩾ p′k.
Далее (рекурсивно) ищем оптимальное кодирование для
вероятностей Pk−1 = (p′1, . . . , p

′
k−2, p), где p = p′k−1 + p′k.

Если {B1, . . . , Bk−1} — оптимальный код для Pk−1, то по теореме
редукции {B1, . . . , Bk−2, Bk−10, Bk−11} — оптимальный код
для P ′

k.
Переставляя слова в этом коде, получим оптимальный код для Pk.
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Коды, исправляющие ошибки

Содержательные соображения
При передаче цифровой информации часто возникают искажения.
Чтобы бороться с этим, на практике используют не оптимальные
коды, а коды с избыточной информацией.
Эта дополнительная информация позволяет восстановить
исходное сообщение, даже если при передаче появились ошибки.
Рассматриваем равномерные двоичные коды со словами длины n.
Считаем, что допускаются ошибки типа «замещение»: замены
символов 0↔ 1 в пересылаемом сообщении.
В этом случае сообщение с ошибками можно разделить на части
длины n (при отсутствии ошибок — на кодовые слова),
и исправлять ошибки в каждом кодовом слове отдельно.
Считаем, что ошибки возникают редко; тогда можно
рассчитывать, что в каждом кодовом слове их будет немного.
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Коды, исправляющие ошибки

Определение
Пусть дан равномерный двоичный код C = {B1, . . . , Bk}, в котором
все слова составлены из нулей и единиц и имеют длину n.

Ошибка в кодовом слове — это замена в нём 0 на 1 или 1 на 0.
Код C исправляет r ошибок, если по любому слову B′, которое
получается из некоторого слова Bi добавлением не более r
ошибок, можно однозначно восстановить исходное кодовое слово.

▶ Т.е. добавлением r ошибок два разных кодовых слова Bi и Bj

не могут быть преобразованы одно и то же слово B′.
Код C обнаруживает r ошибок, если по слову B′, которое
получается из некоторого слова Bi добавлением не более r
ошибок, можно однозначно определить, есть ли в B′ ошибки.

▶ Т.е. добавление r ошибок в кодовое слово Bi не может привести к
получению другого кодового слова Bj .
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Коды, исправляющие ошибки

Определение
Пусть α, β ∈ En

2 = {0, 1}n. Расстояние Хэмминга ρ(α, β) — это число
разрядов с отличающимися значениями у векторов α и β.

Например, ρ((1010), (1100)) = 2.
Отображение ρ является метрикой на {0, 1}n: для него
выполняются аксиомы метрики.

Аксиомы метрики
1. Неотрицательность: ρ(α, β) ⩾ 0,

и индикация тождества: ρ(α, β) = 0 ⇐⇒ α = β;
2. Симметричность: ρ(α, β) = ρ(β, α);
3. Неравенство треугольника: ρ(α, γ) ⩽ ρ(α, β) + ρ(β, γ).
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Коды, исправляющие ошибки

Определение
Шар (замкнутый шар) радиуса r в En

2 с центром в α ∈ En
2 — это

множество
S
n
r (α) = {β ∈ En

2 : ρ(α, β) ⩽ r}.

Определение
Пусть C = {C1, . . . , Ck} — равномерный двоичный код.
Кодовым расстоянием кода C называется число

ρC = min
Ci,Cj∈C
Ci ̸=Cj

ρ(Ci, Cj).
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Коды, исправляющие ошибки

Утверждение
Код C исправляет r ошибок тогда и только тогда, когда ρC ⩾ 2r + 1.

Доказательство

B1 B2

r
r

S
n
r (B1)

S
n
r (B2)

Слова, которые могут получится из Bi ∈ C добавлением
не более r ошибок, образуют шар радиуса r с центром в Bi.
Код исправляет r ошибок ⇐⇒ эти шары не пересекаются.
Это значит, что минимальное расстояние между их центрами
ρC > 2r, т.е. ρC ⩾ 2r + 1.

193/274



Коды, исправляющие ошибки
Утверждение
Код C обнаруживает r ошибок тогда и только тогда, когда ρC ⩾ r + 1.

Доказательство

B1 B2

r

S
n
r (B1)

Слова, которые могут получится из Bi ∈ C добавлением
не более r ошибок, образуют шар радиуса r с центром в Bi.
Код обнаруживает r ошибок ⇐⇒ эти шары не содержат кодовых
слов (кроме своих центров).
Это значит, что минимальное расстояние между кодовыми
словами ρC > r, т.е. ρC ⩾ r + 1.
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Оценка функции Mr(n)

Исправление ошибок и количество кодовых слов
Рассматриваем равномерные двоичные коды со словами длины n.
Такой код может иметь от 2 до 2n кодовых слов.
Если код имеет 2s кодовых слов, то каждое из них содержит s бит
информации. То есть, для передачи N бит информации нужно
будет посылать закодированное сообщение длины n ·

⌈
N
s

⌉
≈ n

s ·N .
Таким образом, чем больше число 2s кодовых слов в коде, тем
более компактно кодируются сообщения.
Но чем больше кодовых слов, тем сложнее добиться большого
кодового расстояния, и тем меньше ошибок исправляет код.
Поэтому имеет смысл рассмотреть число Mr(n): максимальное
число кодовых слов в коде, исправляющем r ошибок.
Отметим: обычно вероятность наличия ошибок зависит от длины
сообщения. Поэтому мы фиксируем длину кодовых слов, после
чего можно определить, сколько ошибок должен исправлять код.
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Оценка функции Mr(n)

Sr(n) = |S
n
r (α)| — число элементов в шаре радиуса r в En

2 .

Утверждение
Sr(n) = C0

n + C1
n + . . .+ Cr

n.

Доказательство
Шар состоит из r + 1 слоёв (сфер): центр α; наборы, отличные
от α в одном разряде; в двух разрядах; . . . ; в r разрядах.
Число наборов, отличающихся от α в i разрядах, равно числу
способов выбрать эти разряды среди n разрядов (без повторений,
порядок выбора не важен) — Ci

n.
Центр шара — это один разряд (1 = C0

n).
Всего получаем Sr(n) = C0

n + C1
n + . . .+ Cr

n.
Это число не зависит от α.
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Оценка функции Mr(n)

Определение
Mr(n) — это максимальное число кодовых слов в коде,
исправляющем r ошибок, с кодовыми словами длины n.

Теорема
2n

S2r(n)
⩽Mr(n) ⩽

2n

Sr(n)
.

Доказательство
1) Если код с m кодовыми словами исправляет r ошибок, то
шары радиуса r в центрах с кодовыми словами не пересекаются.
Число точек в шаре равно Sr(n), а во всех m шарах m · Sr(n).
Тогда m · Sr(n) ⩽ |En

2 | = 2n, т.е. m ⩽ 2n

Sr(n)
.

Поскольку это верно для любого кода, то и Mr(n) ⩽ 2n

Sr(n)
.
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Оценка функции Mr(n)

Доказательство (продолжение)
2) Построим код C, исправляющий r ошибок, в котором
не менее 2n

S2r(n)
кодовых слов.

На первом шаге включим в код C произвольный набор α1.
Пусть в C уже включены α1, . . . , αi, и он исправляет r ошибок.
Тогда в качестве αi+1 выбираем любое слово, которое находится
на расстоянии не менее 2r + 1 от каждого слова α1, . . . , αi.
После включения αi+1 в C он также будет исправлять r ошибок.
Повторяем, пока можно выбрать новое слово.
Пусть в итоге получилось m кодовых слов.
Все наборы из En

2 находятся на расстоянии 2r или менее от
каких-то кодовых слов, т.е. попадают хотя бы в один шар радиуса
2r с центром в кодовом слове.
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Оценка функции Mr(n)

Доказательство (продолжение)
Тогда m шаров радиуса 2r покрывают все 2n наборов и En

2 ,
т.е. m · S2r(n) ⩾ 2n (отметим, что шары могут пересекаться).
Тогда m ⩾ 2n

S2r(n)
, а значит Mr(n) ⩾ m ⩾ 2n

S2r(n)
.
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Лекция 11
Коды Хэмминга. Автоматы.

Схемы из функциональных элементов
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Коды Хэмминга

Длина двоичной записи

Пусть n ⩾ 1 — длина кодовых слов и k : 2k−1 ⩽ n ⩽ 2k − 1.
Это наибольшее k такое, что k − 1 ⩽ log2 n, т.е. k = blog2 nc+ 1.
И наименьшее k такое, что log2(n+ 1) ⩽ k, т.е. k = dlog2(n+ 1)e.
k — это количество двоичных разрядов, достаточное для записи
любых чисел от 1 до n.

Двоичные записи чисел
Пусть m ∈ {1, . . . , n}. Запись m = (mk−1 . . .m1m0)2 будет означать,
что двоичная запись числа m имеет вид mk−1 . . .m1m0,
где mi ∈ {0, 1}, i = 0, k − 1.
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Коды Хэмминга

Множества Dp

Пусть k : 2k−1 ⩽ n ⩽ 2k − 1. Тогда при p = 0, k − 1 обозначаем

Dp = {m ∈ {1, . . . , n} : m = (mk−1 . . .m1m0)2, где mp = 1}

Примеры
D0 = {1, 3, 5, 7, 9, . . .}.
D1 = {2, 3, 6, 7, 10, 11, . . .}.
D2 = {4, 5, 6, 7, 12, 13, 14, 15, . . .}.
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Коды Хэмминга

Определение

Пусть k : 2k−1 ⩽ n ⩽ 2k − 1. Кодом Хэмминга порядка n называется
множество всех наборов (a1, . . . , an) ∈ En

2 , удовлетворяющих системе
уравнений (все сложения производятся по модулю 2):

⊕
j∈D0

aj = 0

⊕
j∈D1

aj = 0

. . .⊕
j∈Dk−1

aj = 0
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Коды Хэмминга

Теорема

Код Хэмминга порядка n содержит 2n−k наборов, где k = blog2 nc+ 1,
и исправляет одну ошибку.

Доказательство
1) Число наборов в коде Хэмминга равно числу решений системы

⊕
j∈D0

aj = 0

⊕
j∈D1

aj = 0

. . .⊕
j∈Dk−1

aj = 0

⇐⇒



a1 =
⊕

j∈D0\{a1}

aj

a2 =
⊕

j∈D1\{a2}

aj

. . .

a2k−1 =
⊕

j∈Dk−1\{a2k−1}

aj
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Коды Хэмминга

Доказательство свойств кода Хэмминга (продолжение)
Заметим, что переменные a1, a2, a4, . . . , a2k−1 не встречаются в
правых частях уравнений.
Чтобы получить все решения системы, можно произвольным
образом выбирать все aj , где j 6= 2l, l = 0, k − 1. Оставшиеся aj
определяются однозначно по уравнениям.
Количество произвольно выбираемых aj равно n− k. Значит,
система имеет 2n−k решений. Столько же и наборов в коде.
2) Докажем, что код Хэмминга исправляет одну ошибку.
Приведём алгоритм получения исходного кодового слова по
кодовому слову с одной ошибкой.
Пусть передавалось слово α = a1 . . . an. Пусть произошла одна
ошибка в разряде d и получено слово β = b1 . . . bn, ad 6= bd.
Поскольку d ∈ {1, . . . , n}, можно записать d = (dk−1 . . . d0)2.
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Коды Хэмминга
Доказательство свойств кода Хэмминга (продолжение)

Опишем, как по слову β найти разряд ошибки d.
Вычисляем δp =

⊕
j∈Dp

bj , p = 0, k − 1.

Утверждение
В условиях теоремы о коде Хэмминга (δk−1 . . . δ0)2 = d.

Доказательство
Поскольку α является кодовым словом, имеем

⊕
j∈Dp

aj = 0.

Тогда δp = 1 ⇐⇒
⊕

j∈Dp

bj 6= 0 =
⊕

j∈Dp

aj , т.е. α и β отличаются в

разряде из Dp. Это возможно тогда и только тогда, когда d ∈ Dp,
т.е., по определению Dp, dp = 1. Получается δp = dp, p = 0, k − 1.
Тогда (δk−1 . . . δ0)2 = (dk−1 . . . d0)2 = d.
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Коды Хэмминга

Доказательство свойств кода Хэмминга (продолжение)
Итак, если в слове β есть ровно одна ошибка, то указанный
алгоритм позволяет найти разряд d этой ошибки.
Заменяя bd на bd, можно получить исходное кодовое слово α.
Если в слове β нет ошибок, то β является кодовым словом. Тогда⊕
j∈Dp

bj = 0, и указанный алгоритм получит δp = 0, p = 0, k − 1.

В этом случае исходное кодовое слово α совпадает со словом β.
Таким образом, при наличии в кодовом слове не более одной
ошибки, можно однозначно получить исходное кодовое слово.
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Коды Хэмминга

Теорема
2n

2n
⩽M1(n) ⩽

2n

n+ 1
.

Доказательство
Напомним, что Mr(n) — это максимально возможное число
кодовых слов в коде, исправляющем r ошибок.
1) Раньше была доказана общая оценка: 2n

S2r(n)
⩽Mr(n) ⩽ 2n

Sr(n)
,

где Sr(n) = C0
n + C1

n + . . .+ Cr
n. Тогда S1(n) = C0

n + C1
n = 1 + n.

Подставим в правое неравенство r = 1. Получаем M1(n) ⩽ 2n

n+1 .
2) Рассмотрим код Хэмминга порядка n. Пусть у него m кодовых
слов. Ранее доказано, что m = 2n−k, где k = blog2 nc+ 1.
Число k можно оценить сверху: k = blog2 nc+ 1 ⩽ log2 n+ 1.
Тогда m оценивается снизу: m ⩾ 2n−(log2 n+1) = 2n

2n .
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Коды Хэмминга

Доказательство оценки M1(n) (продолжение)
Поскольку M1(n) — максимальное число слов в коде,
исправляющем одну ошибку, а код Хэмминга исправляет одну
ошибку, имеем M1(n) ⩾ m ⩾ 2n

2n .

Замечание
1. Нижнюю оценку 2n

2n нельзя получить из 2n

S2r(n)
⩽Mr(n).

Поскольку S2(n) ≈ n2

2 , получится худшая оценка 2n

n2/2
.

Лучшая оценка получается именно благодаря коду Хэмминга.
2. При n = 2k − 1 код Хэмминга имеет 2n

n+1 слов, и M1(n) =
2n

n+1 .
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Автоматы

Бесконечные последовательности
Пусть A — конечное непустое множество.

A∞ — это множество счётно-бесконечных последовательностей
вида ai1ai2 . . ., где ain ∈ A при n ∈ N.
Пусть a = ai1ai2 . . . ∈ A∞. Обозначим a(t) = ait при t ∈ N.
Для введения индексации с нуля пишем a = a(0)a(1) . . . ∈ A∞.
Конкатенация слова u = u1 . . . uk ∈ A∗ и последовательности
a = a(1)a(2) . . . ∈ A∞ — это последовательность

u ∗ a = ua = u1 . . . uka(1)a(2) . . . ∈ A∞.

При этом для любого a ∈ A∞ определяем Λa = a.
Бесконечное повторение слова u = u1 . . . uk ∈ A∗, u 6= Λ есть

uω = u1 . . . uku1 . . . uk . . . ∈ A∞.
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Автоматы

Определение автомата: структура
Конечный автомат — это система A = (A,B,Q, F,G, q0), где

A 6= ∅ — конечный входной алфавит,
B 6= ∅ — конечный выходной алфавит,
Q 6= ∅ — конечное множество состояний,
F : A×Q→ B — функция выходов,
G : A×Q→ Q — функция переходов,
q0 ∈ Q — начальное состояние.

В теории алгоритмов существует много разных вариантов
конечных автоматов.
Мы рассматриваем вариант, который называют конечными
автоматами-преобразователями или автоматами Мили.
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Автоматы

Определение автомата: функционирование
На вход автомату подаётся бесконечное слово x ∈ A∞. На выходе
получается бесконечное слово y ∈ B∞.
Автомат работает в дискретном времени: t = 1, 2, . . . На каждом
такте t автомату подаётся очередной символ x(t).
После каждого такта t автомат находится в состоянии q(t) из Q.
До первого такта он находится в состоянии q(0) = q0.
На каждом такте t автомат меняет своё состояние q(t) и выдаёт
символ выхода y(t) согласно каноническим уравнениям:
y(t) = F (x(t), q(t− 1)),

q(t) = G(x(t), q(t− 1)),

q(0) = q0.

Вход: x = x(1)x(2) . . .

Выход: y = y(1)y(2) . . .

Состояния: q = q(0)q(1)q(2) . . .
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Автоматы

Определение автомата: функционирование
Автомат однозначно генерирует последовательности y и q:

▶ Изначально задано q(0) = q0;
▶ t = 1: автомат получает на вход x(1) и вычисляет
y(1) = F (x(1), q(0)),
q(1) = G(x(1), q(0));

▶ t = 2: автомат получает на вход x(2) и вычисляет
y(2) = F (x(2), q(1)),
q(2) = G(x(2), q(1));

▶ Аналогично продолжается при t = 3,∞.

Таким образом, автомат A реализует функцию ϕ : A∞ → B∞,
которая для каждого x выдаёт выдаёт генерируемую автоматом
последовательность y = ϕ(x).
Если автомату на вход подано конечное слово x(1) . . . x(k),
автомат выдаст конечное слово y(1) . . . y(k) той же длины.
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Автоматы

Схема работы автомата

x(t)

y(t)

q(t)

q(t− 1)

q(t− 1)

t = 1, 2, . . . — время
В начальный момент q = q0


y(t) = F (x(t), q(t− 1)),

q(t) = G(x(t), q(t− 1)),

q(0) = q0.

214/274



Автоматы
Если A = Cn, то у автомата несколько входов x1, . . . , xn ∈ C∞.
Если B = Dm, то у автомата несколько входов y1, . . . , ym ∈ D∞.

Автомат с несколькими входами и выходами

xn(t)

y1(t)

q(t)

q(t− 1)

q(t− 1)

t = 1, 2, . . . — время
В начальный момент q = q0

ym(t)

x1(t)

x(t) = (x1(t), . . . , xn(t))

y(t) = (y1(t), . . . , ym(t))
y(t) = F (x(t), q(t− 1)),

q(t) = G(x(t), q(t− 1)),

q(0) = q0.
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Автоматы

Определение
Отображение ϕ : A∞ → B∞ называется автоматным, если оно
реализуется некоторым автоматом с входным алфавитом A
и выходным алфавитом B.

Пример
A = B = Q = {0, 1}, канонические уравнения

y(t) = q(t− 1),

q(t) = x(t),

q(0) = 0.

Вход: x = x(1)x(2)x(3) . . .

Выход: y = 0 x(1)x(2) . . .

Состояния: q = 0 x(1)x(2)x(3) . . .

Этот автомат реализует функцию единичная задержка: z(x) = 0x.
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Автоматы
Определение
Диаграмма Мура для автомата (A,B,Q, F,G, q0) — это
ориентированный псевдограф с множеством вершин Q.

В этом графе для каждой пары (a, q) ∈ A×Q проводится дуга из
вершины q в вершину q′ = G(a, q) с пометкой a(b), где b = F (a, q).
Вершина q0 (начальное состояние) помечается символом ∗.

Диаграмма Мура однозначно задаёт автомат.

Пример
Единичная задержка: A = B = Q = {0, 1}

y(t) = q(t− 1),

q(t) = x(t),

q(0) = 0.

1(0)
0(0) 1(1)

0(1)

∗
0 1
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Схемы из функциональных элементов
Определение
Пусть G = (V,E) — ориентированный граф и v ∈ V .

Полустепень захода deg−(v) — количество дуг, заходящих в v.
Полустепень исхода deg+(v) — количество дуг, исходящих из v.
Вершина v называется истоком, если deg−(v) = 0.

Определение
Ориентированный граф G называется ациклическим, если в нём нет
ориентированных циклов.

Пример
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Схемы из функциональных элементов

Определение СФЭ: структура
Схема из функциональных элементов (СФЭ) — это ориентированный
ациклический граф, в котором

Полустепень захода каждой вершины равна 0, 1 или 2;
Каждому истоку (входу) приписана переменная xi (входная
переменная);
Каждой вершине v, в которую входит 1 дуга, сопоставлена булева
функция x;
Каждой вершине v, в которую входит 2 дуги, сопоставлена булева
функция xy или x ∨ y;
Вершина с приписанной функцией называется функциональным
элементом;
Некоторым вершинам (выходам) приписаны переменные yj
(выходные переменные). Входы тоже могут быть выходами.
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Схемы из функциональных элементов

Определение СФЭ: функционирование
Пусть схема имеет входные переменные x1, . . . , xn
и выходные переменные y1, . . . , ym.
Для каждой вершины v определим булеву функцию
fv(x1, . . . , xn), которая реализуется в вершине v:

1. Если v — исток, которому приписана переменная xi,
то fv(x1, . . . , xn) = xi.

2. Пусть вершине v приписана функция x и в неё заходит одна дуга
из вершины u, причём функция fu уже определена.
Тогда fv = fu(x1, . . . , xn).

3. Пусть вершине v приписана функция g(x, y) (xy или x ∨ y) и в неё
заходят две дуги из вершин u1, u2, причём функции fu1

, fu2
уже

определены. Тогда fv = g(fu1
(x1, . . . , xn), fu2

(x1, . . . , xn)).

Схема реализует набор функций, которые реализуются в
вершинах-выходах.
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Схемы из функциональных элементов

Пример: формула

x1

y

y = x1x2 ∨ (x1x2)x3

x2 x3 Число входов равно числу различных
символов переменных.
Во входы не заходят дуги, но из них
может исходить любое число дуг.
Выход один (обозначается дугой,
ведущей в дополнительную вершину).
В функциональный элемент входит по
одной дуге на каждый аргумент его
функции, а исходит ровно одна дуга.
Формула без входов представляет собой
дерево.
Формула реализует булеву функцию.
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Схемы из функциональных элементов

Пример: СФЭ

x1

y1

y1 = x1x2 ∨ (x1x2)x3
y2 = x1x2x3

x2 x3

y2

Отличия от формулы:
Из каждого функционального элемента
может исходить любое число дуг.
СФЭ может не являться деревом, но в
ней нет ориентированных циклов.
Выходов может быть несколько.
СФЭ реализует набор булевых функций
(булев оператор)

F : {0, 1}n → {0, 1}m.

В примере F = (x1x2 ∨x1x2x3, x1x2x3).
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Схемы из функциональных элементов

Замечания
Мы рассматриваем СФЭ с функциональными элементами &,∨,¬.
В общем случае рассматривают и СФЭ с другими
функциональными элементами.
Формулу (над множеством {xy, x ∨ y, x}) можно рассматривать
как частный случай СФЭ с функциональными элементами &,∨,¬.
Поскольку {xy, x ∨ y, x} — полная система, любая булева
функцией реализуется формулой над {xy, x ∨ y, x}, а значит
и схемой из функциональных элементов с элементами &,∨,¬.
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Лекция 12
Схемы из функциональных элементов с задержками.
Автоматность осуществляемых ими отображений.

Моделирование автоматной функции
СФЭ с задержками
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Схемы из функциональных элементов с задержками

Понятие схемы с задержками
Схема из функциональных элементов с задержками (СФЭЗ)
определяется так же, как СФЭ, со следующими отличиями:

Новый элемент z: некоторым вершинам, в которые входит одна
дуга, может быть сопоставлена автоматная функция z(x).
В графе могут быть ориентированные циклы, но каждый
ориентированный цикл должен проходить хотя бы через одну
вершину, которой приписана функция задержки z(x).
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Схемы из функциональных элементов с задержками

Функионирование схемы с задержками
Пусть схема имеет входные переменные x1, . . . , xn
и выходные переменные y1, . . . , ym.
Считаем, что идёт дискретное время: t = 1, 2, . . .. В каждый
момент времени на каждый вход поступает символ 0 или 1.
Считаем, что функциональные элементы срабатывают мгновенно,
преобразовывая сигналы 0 и 1 в соответствии с приписанными им
функциями.
Элемент задержки работает как функция z(x): в первый момент
выдаёт 0; в каждый момент времени запоминает вход и выдаёт
его на следующем такте.
Схема с задержками реализует набор функций над бесконечными
словами: (En

2 )
∞ → (Em

2 )∞, которые берутся из выходов схемы.

226/274



Схемы из функциональных элементов с задержками

Пример: схема из функциональных элементов и задержек

x1(t)

y(t)

x2(t)

Отличия от СФЭ:
Допускаются элементы, реализующие
функцию единичной задержки.
Допускаются ориентированные циклы, но
каждый из них должен иметь задержку.
Схема функцию

F : ({0, 1}n)∞ → ({0, 1}m)∞.

В примере
y(t) = x1(t)x2(t) ∨ x1(t)x2(t)q(t− 1),

q(t) = x1(t)x2(t)q(t− 1),

q(0) = 0.
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Автоматность отображения СФЭ с задержками

Теорема
Любая схема из функциональных элементов с задержками
осуществляет автоматное отображение.

Доказательство
Пусть дана СФЭЗ Σ со входными переменными x1, . . . , xn,
выходными переменными y1, . . . , ym и задержками R1, . . . , Rr.
Для i = 1, r: пусть в задержку Ri идёт дуга из vi. Удалим эту дугу,
а саму вершину Ri превратим во вход с входной переменной q′i.
Вершину vi пометим выходной переменной qi.
В Σ каждый цикл проходит через задержку. Поэтому после
указанных преобразований будет получен граф без циклов.
Т.е. будет получена СФЭ Σ со входами x1, . . . , xn, q′1, . . . , q

′
r

и выходами y1, . . . , ym, q1, . . . , qr.
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Автоматность отображения СФЭ с задержками

Доказательство (продолжение)
x1

y1

x1

y1

q′1

q1

В примере задержка замена на вход q′1, дуга в задержку удалена,
а функциональному элементу ∨ приписан новый выход q1
(отображён дугой, выходящей из ∨, с кругом на конце).
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Автоматность отображения СФЭ с задержками

Доказательство (продолжение)
По определению функционирования СФЭ получаем зависимости{

yi = fi(x1, . . . , xn, q
′
1, . . . , q

′
r), i = 1,m,

qj = gj(x1, . . . , xn, q
′
1, . . . , q

′
r), j = 1, r,

где f1, . . . , fm, g1, . . . , gr — булевы функции.
Эта зависимость одинакова в каждый момент времени
функционирования схемы:{

yi(t) = fi(x1(t), . . . , xn(t), q
′
1(t), . . . , q

′
r(t)), i = 1,m,

qj(t) = gj(x1(t), . . . , xn(t), q
′
1(t), . . . , q

′
r(t)), j = 1, r.

230/274



Автоматность отображения СФЭ с задержками

Доказательство (продолжение)

q1(t)

q′1(t)

В исходной СФЭ с задержками q′j(t) = z(qj(t)),
т.е. q′j(t) = qj(t− 1) и q′j(1) = 0. Последнее запишем как qj(0) = 0.
Тогда функционирование СФЭ с задержками описывается

yi(t) = fi(x1(t), . . . , xn(t), q1(t− 1), . . . , qr(t− 1)), i = 1,m,

qj(t) = gj(x1(t), . . . , xn(t), q1(t− 1), . . . , qr(t− 1)), j = 1, r,

q1(0) = . . . = qr(0) = 0.
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Автоматность отображения СФЭ с задержками
Доказательство (продолжение)

Введём переменные:
▶ X = (x1, . . . , xn) принимает значения из En

2 ;
▶ Y = (y1, . . . , ym) принимает значения из Em

2 ;
▶ Q = (q1, . . . , qr) принимает значения из Er

2 .

Обозначим F (X,Q) = (f1(X,Q), . . . , fm(X,Q)) : En
2 × Er

2 → Em
2

и G(X,Q) = (g1(X,Q), . . . , gr(X,Q)) : En
2 × Er

2 → Er
2 .

Тогда функционирование СФЭ с задержками описывается
Y (t) = F (X(t), Q(t− 1)),

Q(t) = G(X(t), Q(t− 1)),

Q(0) = (0, . . . , 0).

А это канонические уравнения автомата
A = (En

2 , E
m
2 , E

r
2 , F, G, q0), где q0 = (0, . . . , 0).
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Моделирование автоматной функции СФЭ с задержками

Определение
Пусть даны 2 автомата
A1 = (A1, B1, Q1, F1, G1, q01) и A2 = (A2, B2, Q2, F2, G2, q02)
и инъективные отображения K1 : A1 → A2 и K2 : B1 → B2.
Будем говорить, что автомат A2 моделирует автомат A1 при
отображениях K1,K2, если для любой входной последовательности
a1a2 . . . ∈ A∞

1 верно:
если A1 отображает a1a2 . . . ∈ A∞

1 в b1b2 . . . ∈ B∞
1 ,

то A2 отображает K1(a1)K1(a2) . . . ∈ A∞
2 в K2(b1)K2(b2) . . . ∈ B∞

2 .

Моделирование позволяет закодировать входной и выходной
алфавит (например, словами из нулей и единиц), но при этом
сохранить функциональность автомата.
Мы будем моделировать произвольные автоматы с помощью СФЭ
с задержками, которые работают в алфавитах En

2 , E
m
2 .
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Моделирование автоматной функции СФЭ с задержками

Теорема
Для любого автомата A = (A,B,Q, F,G, q0) существует
моделирующая его СФЭ с задержками.

Доказательство
Выберем натуральные числа n,m, r так, что
|A| ⩽ 2n, |B| ⩽ 2m, |Q| ⩽ 2r.
Выберем произвольные инъективные отображения

K1 : A→ En
2 ,

K2 : B → Em
2 ,

K3 : Q→ Er
2 ,

причём так, что K3(q0) = θr = (0, . . . , 0).
В силу выбора n,m, r такие отображения существуют.

234/274



Моделирование автоматной функции СФЭ с задержками

Доказательство (продолжение)
Рассмотрим функции F ′ и G′ такие, что для любых a ∈ A и q ∈ Q
F ′(K1(a), K3(q)) = K2(F (a, q)), F ′ : En

2 × Er
2 → Em

2 ,
и G′(K1(a), K3(q)) = K3(G(a, q)), G′ : En

2 × Er
2 → Er

2 .

Эти условия могут не полностью задавать функции F ′ и G′. Они
заданы на наборах, которые являются кодами пар (a, q) ∈ A×Q.
На оставшихся наборах доопределим их произвольно.
Тогда автомат A′ = (En

2 , E
m
2 , E

r
2 , F

′, G′, θr) моделирует A.
Выпишем канонические уравнения A′:

Y (t) = F ′(X(t), Q(t− 1)),

Q(t) = G′(X(t), Q(t− 1)),

Q(0) = θr.
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Моделирование автоматной функции СФЭ с задержками

Доказательство (продолжение)
Переменная X принимает значения из En

2 , поэтому можно
считать её вектором булевых переменных. Аналогично для Y и Q:

X(t) = (x1(t), . . . , xn(t)),

Y (t) = (y1(t), . . . , ym(t)),

Q(t) = (q1(t), . . . , qr(t)),

Тогда канонические уравнения A′ можно записать в виде
yi(t) = fi(x1(t), . . . , xn(t), q1(t− 1), . . . , qr(t− 1)), i = 1,m,

qj(t) = gj(x1(t), . . . , xn(t), q1(t− 1), . . . , qr(t− 1)), j = 1, r,

q1(0) = . . . = qr(0) = 0,

где fi, i = 1,m, gj , j = 1, r — некоторые булевы функции.
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Моделирование автоматной функции СФЭ с задержками

Доказательство (продолжение)
Теперь построим СФЭ с задержками, реализующую эти
уравнения.
Сначала построим СФЭ, реализующую набор булевых функций
(f1, . . . , fm, g1, . . . , gr). Она будет иметь
входы x1, . . . , xn, q

′
1, . . . , q

′
r и выходы y1, . . . , ym, q1, . . . , qr.

qry1 q1ym

q′rx1 q′1xn

Эта схема в каждый момент времени вычисляет y1(t), . . . , ym(t)
и q1(t), . . . , qr(t) по x1(t), . . . , xn(t) и q′1(t), . . . , q

′
r(t).

237/274



Моделирование автоматной функции СФЭ с задержками

Доказательство (продолжение)

Для всех i = 1, r, в соответствии с каноническими уравнениями,
q′i(t) = qi(t− 1), причём q′i(1) = 0. Это значит, что q′i(t) = z(qi(t)).
Чтобы реализовать эти зависимости в схеме, нужно каждый выход
qi соединить со входом q′i через задержку. При этом пометки
входных и выходных переменных на этих вершинах удаляются.

qry1 q1ym

q′rx1 q′1xn

y1 ym

x1 xn

Получили СФЭ с задержками, реализующую то же отображение,
что и автомат A′, а значит, моделирующую автомат A.
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Моделирование автоматной функции СФЭ с задержками
Моделирование реальных систем

Автомат-преобразователь — это модель системы, которая
работает неопределённо долгое время, в каждый момент получает
определённый входные сигналы и выдаёт некоторые результаты.
Процессор компьютера является автоматом-преобразователем:

▶ Состояния (конечная память) — регистры.
▶ Входные сигналы — данные из оперативной памяти и с внешних

устройств (клавиатуры, мыши).
▶ Выходные сигналы — данные для записи в оперативную память,

позиция чтения/записи в оперативной памяти, вывод на внешние
устройства (дисплей).

Автомат — вычислительно слабое устройство, так как имеет лишь
конечную память. Компьютер является универсальным за счёт
наличия (условно) бесконечной оперативной памяти.
Моделирование автомата с помощью СФЭ с задержками
позволяет строить процессоры из простых элементов.
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Лекция 13
Теорема Мура. Схемный сумматор
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Отличимые состояния автомата

Будем рассматривать автоматы без начального состояния:
A = (A,B,Q, F,G).

Работа автомата на конечных словах
Расширим функции F и G на множество A∗ ×Q.
Пусть v ∈ A∗ (слово в алфавите A) и q ∈ Q.

▶ F (v, q) — это слово, которое выдаст автомат при работе над
словом v, начатой из состояния q. Ясно, что |F (v, q)| = |v|.

▶ G(v, q) — это состояние, в котором окажется автомат после работы
над словом v, начатой из состояния q.

Нетрудно видеть, что если |v| = 1, то эти функции совпадают с
функциями F и G из определения автомата.
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Отличимые состояния автомата

Определение
Два состояния qi и qj автомата A = (A,B,Q, F,G) отличимы
словом v, если F (v, qi) 6= F (v, qj).
Два состояния qi и qj автомата A отличимы, если они отличимы
хотя бы одним словом v ∈ A∗.

Слово v называют экспериментом, отличающим qi и qj , а его
длину — длиной эксперимента.
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Теорема Мура

Лемма
Пусть в автомате A = (A,B,Q, F,G) состояния qu и qv отличимы
некоторым словом длины p и не отличимы никакими словами
меньшей длины.
Тогда для любого k ∈ {1, . . . , p} в Q существуют два состояния,
которые отличимы некоторым словом длины k и не отличимы
никакими словами длины меньшей k.

Доказательство
По условию существует слово α = a(1) . . . a(p) ∈ A∗ такое,
что F (α, qu) 6= F (α, qv).
Пусть F (α, qu) = β = b(1) . . . b(p)

и F (α, qv) = γ = c(1) . . . c(p). Здесь β, γ ∈ B∗, β 6= γ.
Поскольку qu и qv не отличимы словами длины меньшей p, слова
β и γ должны отличаться в последнем символе, т.е. b(p) 6= c(p).
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Теорема Мура

Доказательство леммы (продолжение)
Пусть k ∈ {1, . . . , p}. Рассмотрим состояния
q′u = G(a(1) . . . a(p− k), qu)

и q′v = G(a(1) . . . a(p− k), qv).
Напомним, что b(p) 6= c(p). По принципу работы автомата
F (a(p− k + 1) . . . a(p), q′u) = b(p− k + 1) . . . b(p)

и F (a(p− k + 1) . . . a(p), q′v) = c(p− k + 1) . . . c(p).
Тогда q′u и q′v отличимы словом a(p− k + 1) . . . a(p) длины k.
Докажем, что q′u и q′v не отличимы словами длины меньшей k.
Пусть q′u и q′v отличимы словом α′ длины меньшей k. Это значит,
что F (α′, q′u) 6= F (α′, q′v).
Тогда F (a(1) . . . a(p− k)α′, qu) = b(1) . . . b(p− k)F (α′, q′u)

и F (a(1) . . . a(p− k)α′, qv) = c(1) . . . c(p− k)F (α′, q′v).

244/274



Теорема Мура

Доказательство леммы (продолжение)
Значит, состояния qu и qv отличимы словом a(1) . . . a(p− k)α′

длины меньшей p, что невозможно по условию теоремы.
Противоречие означает, что q′u и q′v не отличимы словами длины
меньшей k.
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Теорема Мура

Теорема (Мур)
Пусть в автомате A = (A,B,Q, F,G) число состояний |Q| = r
и состояния qi и qj отличимы. Тогда состояния qi и qj отличимы
некоторым словом длины не более r − 1.

Доказательство
Пусть α — слово минимальной длины, на котором состояния qi
и qj отличимы. Обозначим p = |α|.
Нужно доказать, что p ⩽ r − 1.
При m = 0, p рассмотрим бинарное отношение на множестве Q

Rm(q′, q′′) ≡ (q′ и q′′ не отличимы словами длины m).

Отметим, что если q′ и q′′ не отличимы словами длины m, то они
не отличимы и словами меньшей длины.
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Теорема Мура

Доказательство (продолжение)
Все отношения Rm являются отношениями эквивалентности:

1. Rm(p, p): любое состояния не отличимо само от себя;
2. Rm(p, q) = Rm(q, p): в определении Rm порядок состояний

не играет роли;
3. Rm(p, q) &Rm(q, s)→ Rm(p, s): если p и q дают одинаковые

результаты на словах определённой длины, и q и s дают на них
одинаковые результаты, то p и s будут давать одинаковые (те же
самые) результаты.

Отношение R0 является тождественно истинным: любые
состояния не отличимы словами длины 0.
Рассмотрим разбиение Q на классы эквивалентности
относительно Rm. Число этих классов обозначим s(m).
Ясно, что s(0) = 1.
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Теорема Мура

Доказательство (продолжение)
Если два состояния отличимы словами длины m− 1, то они тем
более отличимы словами длины m.
Это значит, что если два состояния принадлежат разным классам
эквивалентности Rm−1, то они принадлежит разным классам
эквивалентности Rm.
Таким образом, при увеличении m классы эквивалентности могут
только «распадаться» на несколько классов, и s(m) ⩾ s(m− 1).
Напомним, что состояния qi и qj отличимы словом длины p и не
отличимы словами меньшей длины.
Тогда, если m ⩽ p, то по лемме существуют состояния q′m, q

′′
m,

отличимые словами длины m, но не отличимые словами длины
m− 1, т.е. такие, что ¬Rm(q′m, q

′′
m) и Rm−1(q

′
m, q

′′
m).
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Теорема Мура

Доказательство (продолжение)
Это значит, что существуют два состояния, которые принадлежат
одному классу эквивалентности Rm−1 и разным классам Rm:
при переходе от m− 1 к m число классов возросло.
Итак, при 1 ⩽ m ⩽ p имеем строгое неравенство s(m− 1) < s(m):

1 = s(0) < s(1) < . . . < s(p− 1) < s(p) ⩽ r.

Тогда s(1) ⩾ 2, s(2) ⩾ 3, . . . , s(p) ⩾ p+ 1, а значит, r ⩾ p+ 1.
Отсюда получаем p ⩽ r − 1.

Отметим, что отношение «состояния q′ и q′′ неотличимы»
совпадает с Rr−1(q

′, q′′) и является отношением эквивалентности.
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Теорема Мура

Количество состояний у автомата — это мера памяти, которую он
использует для вычислений.

Алгоритм оптимизации автомата
Строим диаграмму Мура для автомата.
Удаляем из диаграммы состояния (и дуги), недостижимые
по ориентированным путям из начального состояния.
Разбиваем множество состояний на классы эквивалентности
по отношению неотличимости (пользуемся теоремой Мура).
«Склеиваем» каждый класс эквивалентности в одно состояние
с сохранением дуг.
Удаляем дубликаты дуг.

Можно показать, что указанный алгоритм строит автомат с
минимальным числом состояний для данной функции.
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Схемный сумматор

Определение
Схемный сумматор порядка n — это СФЭ с 2n входами x1, . . . , xn,
y1, . . . , yn и n+ 1 выходом z0, z1, . . . , zn такая, что для любых входных
значений выполняется (z0z1 . . . zn)2 = (x1 . . . xn)2 + (y1 . . . yn)2.

+
x1 . . . xn
y1 . . . yn

z0z1 . . . zn
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Схемный сумматор
Теорема
Существует сумматор порядка n, имеющий сложность (число
функциональных элементов) не более 9n− 5.

Доказательство
Рассмотрим сложение «в столбик»:

+
x1 . . . xn
y1 . . . yn

z0z1 . . . zn

Обозначим перенос в разряд k с помощью qk:

q0q1 . . . qn−1

+
x1 . . . xn−1xn
y1 . . . yn−1yn

z0z1 . . . zn−1 zn
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Схемный сумматор

Доказательство (продолжение)
Тогда мы имеем

▶ zn = xn ⊕ yn, qn−1 = xnyn;
▶ zi = xi ⊕ yi ⊕ qi, qi−1 = xiyi ∨ xiqi ∨ yiqi, i = 1, n− 1;
▶ z0 = q0.

Построим полусумматор:
СФЭ Σ′ с двумя входами x, y
и двумя выходами q, z.
Полусумматор имеет
сложность 4 и вычисляет
функции q = xy и z = x⊕ y.
Сложность 4 имеем благодаря
соотношению x⊕ y =
= (x∨ y) · (x∨ y) = xy · (x∨ y).

x

z

y

Σ′

q
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Схемный сумматор

Доказательство (продолжение)
Построим ячейку сумматора: СФЭ Σ1 с тремя входами x, y, q
и двумя выходами q′, z.

x

z

q

Σ1

q′

y

Ячейка сумматора имеет сложность 9 и вычисляет две функции:
q′ = xy ∨ (x⊕ y)q = xy ∨ (x ∨ y)q = xy ∨ xq ∨ yq;
z = x⊕ y ⊕ q.
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Схемный сумматор

Доказательство (продолжение)
Наконец, построим сумматор:

yn−1xn−1

zn

ynxn

zn−1z1z0

y1x1

Сумматор составлен из n− 1 ячеек сумматора и одного
полусумматора. Итоговая сложность 9(n− 1) + 4 = 9n− 5.
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Лекция 14
Схемный вычитатель. Схемный умножитель.

Теорема Карацубы
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Схемный вычитатель

Определение
Вычитатель порядка n — это СФЭ с 2n входами x1, . . . , xn, y1, . . . , yn
и n выходами z1, . . . , zn такая, что для любых входных значений
таких, что (x1 . . . xn)2 ⩾ (y1 . . . yn)2,
выполняется (z1 . . . zn)2 = (x1 . . . xn)2 − (y1 . . . yn)2.

− x1 . . . xn
y1 . . . yn
z1 . . . zn

На входных значениях с (x1 . . . xn)2 < (y1 . . . yn)2 вычитатель
может выдавать произвольные значения на выходе.
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Схемный вычитатель

Теорема
Существует вычитатель порядка n, имеющий сложность (число
функциональных элементов) не более 11n− 5.

Доказательство
Обозначим X = (x1 . . . xn)2 и Y = (y1 . . . yn)2.
X − Y = −(−X + Y ) = (2n − 1)− ((2n − 1−X) + Y ).
2n − 1 = (1 . . . 1︸ ︷︷ ︸

n

)2. Поэтому 2n − 1− (x1 . . . xn)2 = (x1 . . . xn)2.

Тогда, чтобы реализовать вычитатель, достаточно у сумматора
порядка n инвертировать значения на входах x1, . . . , xn
и на выходах z1, . . . , zn.
Поскольку X ⩾ Y , для записи разности достаточно n битов, и на
выходе z0 у сумматора всегда будет 0. Не используем этот выход.
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Схемный вычитатель

Доказательство (продолжение)
x1 xn y1 yn

z1 zn

z0
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Схемный вычитатель

Доказательство (продолжение)
Сложность сумматора 9n− 5, дополнительно добавлено
2n отрицаний. Итоговая сложность 11n− 5.

Если X < Y , то за счёт отбрасывания z0 построенный вычитатель
будет выдавать остаток от деления X − Y на 2n.
Вычитатели в компьютерах обычно обрабатывают случай X < Y
таким же образом.
Сумматоры в компьютерах обычно не используют выход z0.
Такой принцип работы позволяет сумматору и вычитателю
автоматически поддерживать работу с отрицательными целыми
числами в дополнительном коде.
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Схемный умножитель

Определение
Умножитель порядка n — это СФЭ с 2n входами x1, . . . , xn, y1, . . . , yn
и 2n выходами z1, . . . , z2n такая, что для любых входных значений
выполняется (z1 . . . z2n)2 = (x1 . . . xn)2 · (y1 . . . yn)2.

× x1 . . . xn−1 xn
y1 . . . yn−1 yn

z1z2 . . . znzn+1 . . . z2n−1z2n

Если 0 ⩽ X < 2n и 0 ⩽ Y < 2n, то 0 ⩽ XY < 22n. Поэтому
умножитель имеет 2n выходов.
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Схемный умножитель

Умножение «в столбик»
Обозначим uij = yi · xj ∈ {0, 1}.

× x1 . . . xn−1 xn
y1 . . . yn−1 yn

+

u11 . . . u1(n−1)u1n
u21 u22 . . . u2n 0

. .
.
. .
.
. .
.
. .
.

. .
. ...

un1un2 . . . unn 0 . . . 0

z1 z2 . . . zn zn+1 . . . z2n−1 z2n

Вычисление всех ui,j , i, j = 1, n, требует n2 элементов &.
Реализация нуля требует двух элементов: 0 = x1 · x1.
Сложение n чисел длины не более 2n можно произвести n− 1
сумматорами S2n, каждый имеет сложность 18n− 5.
Общая сложность n2 + 2 + (n− 1)(18n− 5) = 19n2 − 23n+ 7.
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Теорема Карацубы

O-символика
Пусть f(n) и g(n) — функции натурального аргумента.
Говорят, что f(n) = O(g(n)), если существует константа C > 0
такая, что f(n) ⩽ C · g(n).
Например:

▶ Сложность умножения в столбик 19n2 − 23n+ 7 = O(n2).
▶ n1,5 = O(n1,6).

Теорема (А. А. Карацуба)

Существует умножитель порядка n сложности O(nlog2 3).

Значение log2 3 немного меньше, чем 1,6. Поэтому сложность
умножителя Карацубы можно оценить как O(n1,6).
Эта сложность заметно меньше, чем сложность умножения в
столбик O(n2).
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Теорема Карацубы
Доказательство теоремы Карацубы будет использовать несколько
лемм, которые мы сформулируем и докажем ниже.

Обозначение
M(n) — минимальная сложность умножителя порядка n.

Лемма 1
Существует константа c1 > 0 такая, что M(n+ 1) ⩽M(n) + c1n.

Доказательство
Пусть X = (x0 x1 . . . xn︸ ︷︷ ︸

X1

)2 = x0 · 2n +X1.

и Y = (y0 y1 . . . yn︸ ︷︷ ︸
Y1

)2 = y0 · 2n + Y1.

Т.е. X1 = (x1 . . . xn)2, Y1 = (y1 . . . yn)2.
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Теорема Карацубы

Доказательство леммы 1 (продолжение)
Тогда

X · Y = (x0 · 2n +X1) · (y0 · 2n + Y1) =

= x0y0 · 22n + (x0Y1 + y0X1) · 2n +X1Y1.

Для вычисления этого значения с помощью СФЭ требуется:
▶ Умножитель порядка n для вычисления X1Y1;
▶ 2n элементов & для вычисления x0Y1 и y0X1, ещё 1 для x0y0;
▶ Сумматор порядка n для вычисления x0Y1 + y0X1;
▶ Два сумматора порядка 2n+2 для вычисления внешних сложений;
▶ Умножение на 2l (битовый сдвиг) делается через подачу входа

в старшие биты результата и нулей в младшие l бит (сложность 0);
▶ Достаточно реализовать константу 0 в схеме один раз: 0 = x1x1

(сложность 2). Используем 0 для заполнения младших битов при
сдвигах и старших битов при подаче в сумматоры коротких чисел.
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Теорема Карацубы

Доказательство леммы 1 (продолжение)
Напомним, что сложность сумматора порядка n не превосходит
9n− 5.
Тогда существует константа c1 > 0 такая, что суммарная
сложность всей схемы, кроме схемы, кроме блока X1Y1, не
превосходит c1n.
Блок X1Y1 можно реализовать со сложностью M(n).
Получаем M(n+ 1) ⩽M(n) + c1n.
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Теорема Карацубы

Лемма 2 (основная)
Существует константа c2 > 0 такая, что M(2n) ⩽ 3M(n) + c2n.

Доказательство
Пусть X = (x1 . . . xn︸ ︷︷ ︸

X1

xn+1 . . . x2n︸ ︷︷ ︸
X2

)2 = X1 · 2n +X2.

и Y = (y1 . . . yn︸ ︷︷ ︸
Y1

yn+1 . . . y2n︸ ︷︷ ︸
Y2

)2 = Y1 · 2n + Y2.

Т.е. X1 = (x1 . . . xn)2, X2 = (xn+1 . . . x2n)2,
Y1 = (y1 . . . yn)2, Y2 = (yn+1 . . . y2n)2.
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Теорема Карацубы

Доказательство основной леммы 2 (продолжение)
Тогда

X · Y = (X1 · 2n +X2) · (Y1 · 2n + Y2) =

= X1Y1 · 22n + (X1Y2 +X2Y1) · 2n +X2Y2 =

= X1Y1 · 22n+ [(X1+X2) · (Y1+Y2)−X1Y1−X2Y2] · 2n+X2Y2.

Для вычисления этого значения с помощью СФЭ требуется:
▶ Умножитель порядка n+ 1 для вычисления (X1 +X2)(Y1 + Y2);
▶ Два умножителя порядка n для вычисления X1Y1 и X2Y2

(их выходы используются по 2 раза);
▶ Два сумматора порядка n для вычисления X1 +X2 и Y1 + Y2;
▶ Два вычитателя порядка 2n+ 2 и два сумматора порядка 4n;
▶ 0 элементов для реализации битовых сдвигов (умножение на 2l),

2 элемента для реализации константы 0.

268/274



Теорема Карацубы

Доказательство основной леммы 2 (продолжение)
Напомним, что сложность сумматора порядка n не превосходит
9n− 5, а вычитателя 11n− 5.
Поэтому существует c > 0 такое, что суммарная сложность
сумматоров и вычитателей (и константы 0) не превосходит cn.
Тогда, с учётом леммы 1,

M(2n) ⩽M(n+ 1) + 2M(n) + cn ⩽ 3M(n) + (c1 + c)n.

Выбирая c2 = c1 + c, получаем M(2n) ⩽ 3M(n) + c2n.
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Теорема Карацубы

Лемма 3
Существует константа c3 > 0 такая, что M(2k) ⩽ c3 · 3k при k ∈ N.

Неравенство в лемме эквивалентно M(n) ⩽ c3 · nlog2 3 при n = 2k.

Доказательство

Введём функцию g(k) = M(2k)
3k

.
В силу леммы 2 имеем

g(k) =
M(2k)

3k
=
M(2 · 2k−1)

3k
⩽

3M(2k−1) + c22
k−1

3k
=

=
M(2k−1)

3k−1
+
c2
3

(
2

3

)k−1

= g(k − 1) +
c2
3

(
2

3

)k−1

.
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Теорема Карацубы
Доказательство леммы 3 (продолжение)

Т.е. g(k) ⩽ g(k − 1) + c2
3

(
2
3

)k−1.

Тогда g(k − 1) ⩽ g(k − 2) + c2
3

(
2
3

)k−2 и т.д.

Получаем, с учётом
∞∑
i=0

qi = 1
1−q при q < 1,

g(k) ⩽ g(k − 1) +
c2
3

(
2

3

)k−1

⩽ g(k − 2) +
c2
3

(
2

3

)k−1

+
c2
3

(
2

3

)k−2

⩽ . . .

. . . ⩽ g(0) +
c2
3

((
2

3

)k−1

+ . . .+
2

3
+ 1

)
⩽

⩽ g(0) +
c2
3

∞∑
i=0

(
2

3

)i

= g(0) + c2.
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Теорема Карацубы

Доказательство леммы 3 (продолжение)
Для реализации 1-разрядного умножителя нужно использовать
один элемент &. Поэтому M(1) = 1 и g(0) = M(20)

30
= 1.

Выбирая c3 = c2 + 1, получим g(k) ⩽ c3, т.е. M(2k) ⩽ c3 · 3k.
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Теорема Карацубы
Теорема (А. А. Карацуба)

Существует умножитель порядка n сложности O(nlog2 3).

Доказательство

При n ⩾ 2 выберем натуральное число k такое, что 2k−1 < n ⩽ 2k.
Числа длины n можно умножать на умножителе порядка 2k, если
подавать в старшие разряды нули.
Напомним, что константу 0 необходимо реализовать только один
раз, и это требует 2 элементов: 0 = x1x1.
Получаем M(n) ⩽M(2k) + 2.
Тогда в силу леммы 3 имеем

M(n) ⩽M(2k) + 2 ⩽ c3 · 3k + 2 = 3c3 · 3k−1 + 2 =

= 3c3(2
k−1)log2 3 + 2 ⩽ 3c3n

log2 3 + 2 ⩽ 3(c3 + 1)nlog2 3.
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